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Abstract—A Canonical Signed Digit FIR filter (CSD–FIR filter)
design problem is difficult to solve in polynomial computation
time. Therefore, metaheuristics are used to obtain a semi-optimal
solution to the problem. Parameter free genetic algorithm (PfGA)
does not require to set any parameters that we need to adjust in
advance. On the other hand, diversity of the search is relatively
inferior for the CSD–FIR filter design problem. In this paper,
we propose the CSD–FIR filter design method with PfGA with
adaptive size of offspring (PfGA–AO) for better diversity and
keeping the parameter free characteristic of the algorithm.
PfGA–AO is applied for several design examples to show it’s
effectiveness.

I. INTRODUCTION

Digital filters are classified into FIR(Finite Impulse Re-
sponse) and IIR(Infinite Impulse Response) filters. Com-
pared to the IIR filter, the FIR filter has the guaranteed
BIBO(Bounded–Input Bounded–Output) stability and the abil-
ity to achieve the perfect linear phase characteristics. However,
when a steep cutoff characteristic is required, a very high order
FIR filter is often necessary. Therefore, the circuit scale of FIR
filters is often larger than that of IIR filters.

In embedded systems, the constraints on the available circuit
scale may be strict by constraints such as cost and power
consumption. Therefore, it is important to reduce the circuit
scale of the FIR filter and to design them by the desired circuit
size. It is well known that the shifters inside the multipliers
are dominant to the circuit scale of the FIR filter. The number
of the shifters corresponds to the number of non–zero digits
involved in each filter coefficient. Thus, it is important to
reduce the non–zero digits to reduce the overall circuit scale
of the FIR filter.

To reduce the numbers of the shifters, canonical signed digit
(CSD) representation of the filter coefficients are proposed
[1][2]. In the CSD representation, each digits of the filter
coefficients are represented by 0, 1, and − 1. Also, adjacent
of the non–zero digits is prohibited. Lastly, the available non–
zero digits are constrained to limit the overall circuit size of
the filter.

CSD–FIR filter design problem can be defined as a mixed
integer linear programming (MILP) problem [3]. This problem
is known to be NP–hard problem and it is hard to obtain the
optimal solution in polynomial computation time. To solve
such a problem, approaches with metaheuristics are proposed
[4][5][6].
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Output

Fig. 1. Type–I FIR filter schematic

Many metaheuristics approaches was proposed for solving
the CSD–FIR filter design problem, but for most approaches
we need to adjust the parameters in advance. For example, the
genetic algorithm (GA) have parameters such as the population
size, the crossover rate, and the mutation rate. Although the
behavior of these parameters can be predicted empirically, it is
often determined by trial and error. To deal with this difficulty,
parameter free GA (PfGA) was proposed [8]. For further
improvement, distributed PfGA (DPfGA) is also proposed in
the same literature. PfGA–AO consists of adaptively varying
offspring number for more distributed search. In this paper,
several design examples of CSD–FIR filters with PfGA and
PfGA–AO are presented to show it’s effectiveness.

II. DESIGN PROBLEM

A. FIR filter design problem

The schematic of the even order – even symmetrical (Type–
I) FIR filters are shown in Fig. 1. The magnitude response of
the Type–1 FIR filters are formulated as follows,

H(ω) =

∣∣∣∣∣
N/2∑
n=0

an cosnω

∣∣∣∣∣
ω ∈ [0, π] ,

(1)

where N is the filter order, an is the filter coefficients, and
ω is the normalized angular frequency. Because Type-I FIR
filter is a perfect linear phased filter, it’s group delay is always
constant at N/2 samples.

An equripple FIR filter is designed in a sense of min–max
criterion defined as follows,

min
a

max
ω∈Ω
|H(ω)−D(ω)|, (2)
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Fig. 2. Schematic of the multiplier
left: normal multiplier, right: CSD multiplier

H(ω) is the amplitude response of the FIR filter with contin-
uous coefficients a = [a0, a1, · · · , aN/2], D(ω) is the desired
filter’s amplitude response, and Ω is the approximation band.
Remez exchange algorithm is one of the well known algorithm
that gives the optimal solution to this design problem [9].

B. CSD expression
A multiplier consists of shifters and adders as shown in

Fig.2. It is clear that the number of shifters and the number of
non–zero digits corresponds one on one from the schematic.
Therefore, reducing the non–zero digits from the coefficient
reduces the circuit scale. In literature [3], CSD expression are
used to reduce the non–zero digits.

In the CSD expression, the filter coefficient is encoded by
xn,k ∈ {1, 0,−1 = 1̄}. Additionally, adjacent of the non–zero
digits is forbidden. Where n is the filter coefficient index, and
k is the digit index in the coefficient. The filter coefficient an
is formulated as,

an =

p−1∑
k=0

xn,k2−k, (3)

where p is the word length. The schematic of the multiplier
with CSD representation is also shown in Fig.2.

C. CSD–FIR filter design problem
Adjacency of the non–zero digit is forbidden as follows.

|xn,k|+ |xn,k+1| ≤ 1 ∀ n, k. (4)

To limit the overall non–zero digits, to total number of
available non–zero digits is defined as Λ an constrained as
follows,

N/2∑
n=0

p−1∑
k=0

|xn,k| ≤ Λ. (5)

With the min–max criterion, CSD–FIR filter design problem
is defined as follows,

min
x

δ(x) = max
ω∈Ω
|H(ωi)−D(ωi)|

s.t. |H(ωi)−D(ωi)| ≤ δ(x)

|xn,k|+ |xn,k+1| ≤ 1

N/2∑
n=0

p−1∑
k=0

|xn,k| ≤ Λ

i ∈ {0, 1, 2, · · · , S},
x = [x0,0, x0,1, · · · , x0,p−1, · · · , xN/2,p−1],

(6)

where S is the number of frequency divisions.

III. GENETIC ALGORITHM (GA)

Genetic algorithm (GA) is a metaheuristics which mimics
the evolution of lifeforms [7]. In GA, x is called chromosome.
Then, genetic manipulations such as selection, crossover, and
mutation are applied.

A. Objective function

Objective function is defined as follows.

F (x) = δ(x) + φ1(x) + φ2(x), (7)

where φ1(x), φ2(x) are the penalty functions. φ1(x) is the
penalty for the number of available non–zero digits defined
as,

φ1(x) =

{
0 if λ ≤ Λ

λ− Λ if λ > Λ,
(8)

where λ is the overall non–zero digits used in the CSD–FIR
filter. φ2(x) is the penalty to forbid the adjacency of the non–
zero digits defined as,

φ2(x) =

N/2∑
n=0

p−2∑
m=0

|bn,mbn,m+1|. (9)

B. Selection

In selection, the chromosomes is sorted depending on the
objective function value. Then, the chromosomes with large
objective function value is eliminated. This selection method
is called as ranking selection. With selection, diversity of the
population converges.

C. Crossover

In crossover, two chromosomes after the selection are se-
lected randomly. Genes with the same index are swapped ran-
domly. This crossover method is called as uniform crossover.
With crossover, diversity of the population increases.

D. Mutation

In mutation, a randomly selected chromosome based on
the mutation rate is mutated. A random gene in the selected
chromosome mutates to allele. There are two alleles for CSD
expression. e.g. if the gene is 0, it’s alleles will be 1 and 1̄.
In this paper, one of the allele will be selected with same
probability.

IV. PARAMETER FREE GA (PFGA)

GA have parameters such as the population size, the cross
over rate, and the mutation rate. Additionally, it is not
mentioned in this paper, but GA have numerous amount of
crossover and selection methods. Adjusting these parameters
usually requires trial and error. To deal with this difficulty,
parameter free GA (PfGA) was proposed[8]. Abstract diagram
of the PfGA is shown in Fig.3. For the initial local group, two
chromosome are selected from the full search section.

In literature [8], new chromosome is randomly generated.
For CSD–FIR filter design problem, it initializes the popula-
tion by Remez exchange algorithm and rounds the coefficients
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Fig. 3. Diagram of the PfGA

to the CSD expression. Also, manipulation generating new
chromosome is performed by this method.

Crossover is performed by uniform crossover. Two chro-
mosomes are selected randomly from the local group for
crossover as parent. Since the probability of swapping or not
swapping genes is equal, uniform crossover is a method that
does not require any particular parameters. After crossover,
there will be two parent chromosomes and two offspring
chromosomes. These four chromosomes are called the family
group.

Mutation occurs to one of the offspring randomly by the
same probability. A gene is selected randomly and swapped
to allele same as the normal GA.

For selection, there are four different cases.
Case–1

In case–1, both offspring have better objective func-
tion value than the parents. Both offspring and the
better parent are returned to the local group. Since
three chromosomes are returned, the size of the local
group increases.

Case–2
In case–2, both parents have better objective function
value than the offspring. The best parent is returned
to the local group. Since only single chromosome is
returned, the size of the local group decreases. Be-
cause we need at least two chromosomes in the local
group, if the local group size is one, we generate new
chromosome as same as the initialization.

Case–3
In case–3, at least single parent have better objective
function value than the offspring. The best parent
and the best offspring is returned to the local group.
Since two chromosomes are returned, the size of the
local group is unchanged.

Case–4
In case–4, at least single offspring have better ob-
jective function than the parents. The best offspring
and newly generated chromosome are returned to the
local group. The size of the local group is unchanged,
as same as case–3.

With PfGA, there is no need to tune the parameter such as
the population size, the mutation rate, and the position of
crossover in advance.

A. PfGA–AO

For further improvement of CSD-FIR filter design, we
applied PfGA–AO which is also proposed in literature [8] to
the problem. PfGA–AO adapts the number of offspring by
changing the number of crossovers defined as follows,

Psize(t+ 1) = Psize + 2− good2−
√
good1

if good2 ≥ 1, bad ≥ 1

Psize(t+ 1) = Psize + 1− good2−
√
good1

if good2 ≥ 1, bad = 0

Psize(t+ 1) = Psize + 2−
(
good1 +

good1

2
+
√
bad

)
if good2 = 0, bad ≥ 1

Psize(t+ 1) = Psize + 1−
(
good1 +

good1

2

)
if good2 = 0, bad = 0

(10)

where Psize is the number of crossovers, good2 is the number
of times when the two offspring are better than the parents,
good1 is the number of times when one among the two
offspring is better than the parents, and bad is the number
of times when the two offspring are the worse. Psize(0) = 1
and the minimum value of the Psize is 1. By adapting the
crossover number, it’s search diversity increases. Additionally,
selection rule is defined as follows.

Case–P1
When more than two offspring chromosomes have
better objective function value than there parents, two
chromosomes are randomly chosen to return to the
local group from the best three chromosomes in the
family group.

Case–P2
When all offspring chromosomes have worse objec-
tive function value then there parents, better parent
chromosome and newly generated chromosome are
returned to the local group.

Case–P3
When at least single parent have better objective
function value than all other offspring, both best
parent and offspring chromosomes are returned to
the local group.

Case–P4
When at least single offspring have better objective
function value than all other parents and offspring,
the best offspring and newly generated chromosome
are returned to the local group.

V. NUMERICAL EXPERIMENTS

To show the effectiveness of the PfGA and PfGA–AO
in CSD–FIR filter desinge problem, we conducted several
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numerical experiments. Each CSD–FIR filter’s parameters are
shown in TableI. The results are shown in Table.II and Fig. 4.

The initial coefficients for the filters are obtained by Remez
exchange algorithm, then converted to CSD expression. To fit
the non–zero digit number within the Λ, the coefficients are
rounded down. This simply reduced CSD–FIR filter’s results
are also shown in the results.

TABLE I
DESIGN EXAMPLES

Ex.1 Ex.2 Ex.3 Ex.4 Ex.5
N 50 100 150 200 250
p 16 16 16 16 16
ωp 0.2π 0.2π 0.2π 0.2π 0.2π
ωs 0.3285π 0.2654π 0.2436π 0.2327π 0.2262π
Λ 50 100 150 200 250

TABLE II
RESULTS

Ex.1 Ex.2 Ex.3 Ex.4 Ex.5
Average δ
(×10−3)

PfGA 3.4742 3.2830 2.5165 2.7206 2.6634
PfGA–AO 3.4244 3.1519 2.3251 2.4122 2.5255

Min. δ
(×10−3)

PfGA 3.4050 3.0920 2.3440 2.4180 2.3850
PfGA–AO 3.4050 2.8440 2.2490 2.1480 2.3420

Max. δ
(×10−3)

PfGA 3.7540 3.5000 2.8350 2.9450 2.8810
PfGA–AO 3.7800 3.3770 2.5740 2.7450 2.7720

Simple reduction δ
(×10−3)

4.1975 3.9063 3.2514 2.8332 2.9761

0.000000

0.000500

0.001000

0.001500

0.002000

0.002500

0.003000

0.003500

0.004000

0.004500
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e

PfGA PfGA-AO Simple reduction

Fig. 4. Objective function value (Average)

From TableII and Fig.4, it was shown that PfGA and PfGA–
AO was capable of obtaining better design result than simple
reduction. Additionally, PfGA–AO was able to obtain better
average, minimum, and maximum objective function value
against PfGA. Amplitude response of each design examples
are shown in Fig.5 – Fig.9. Since PfGA and PfGA–AO got the
same result for Ex.1, Fig.5 only shows single plot. Updating
curves of the best iteration and crossover number of PfGA–
AO are shown in Fig.10 – Fig.14. Since PfGA-AO has a larger
numbers of chromosomes to be evaluated in each generation, it
can be expected that better results will be obtained. However,
since the number of crosses is adaptive, the user can obtain
better results without setting the parameters of the algorithm.
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Fig. 6. Amplitude response (Ex.2)

VI. CONCLUSIONS

In this paper, we proposed a CSD–FIR filter design method
with PfGA and PfGA–AO. Both algorithms do not require to
adjust parameters such as population size, crossover rate, and
mutation rate. We showed that both algorithms are capable
of optimizing CSD–FIR filters from comparing it’s objective
function value against CSD–FIR filter designed by simply
reducing it non–zero digits by rounding down. Additionally,
we showed that PfGA–AO further more minimize the objective
function from PfGA.

REFERENCES

[1] A. Peled, ”On the hardware implementation of digital signal processors,”
in IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.
24, no. 1, pp. 76-86, February 1976, doi: 10.1109/TASSP.1976.1162774.

[2] R. Jia, F. Wang, R. Chen, X. Wang, D. Shang and H. Yang,
”High-order reconfigurable FIR filter design based on statistical anal-
ysis of CSD coefficients,” 2013 International Conference on Field-
Programmable Technology (FPT), Kyoto, 2013, pp. 402-405, doi:
10.1109/FPT.2013.6718399.

[3] H. Samueli, ”An improved search algorithm for the design of multipli-
erless FIR filters with powers-of-two coefficients,” in IEEE Transactions
on Circuits and Systems, vol. 36, no. 7, pp. 1044-1047, July 1989, doi:
10.1109/31.31347.

[4] T. Imaizumi and K. Suyama, ”An effective allocation of non-zero digits
for CSD coefficient FIR filters using 0–1PSO,” 2013 Asia-Pacific Signal
and Information Processing Association Annual Summit and Confer-
ence, Kaohsiung, 2013, pp. 1-6, doi: 10.1109/APSIPA.2013.6694193.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

215



-90

-80

-70

-60

-50

-40

-30

-20

-10

	0

0 1/4	π 1/2	π 3/4	π π

A
m
pl
itu
de
	[d
B
]

Angular	frequency	[rad/s]

PfGA
PfGA-AO

Fig. 7. Amplitude response (Ex.3)

-90

-80

-70

-60

-50

-40

-30

-20

-10

	0

0 1/4	π 1/2	π 3/4	π π

A
m
pl
itu
de
	[d
B
]

Angular	frequency	[rad/s]

PfGA
PfGA-AO

Fig. 8. Amplitude response (Ex.4)

[5] T. Sasahara and K. Suyama, ”An ACO approach for design of CSD
coefficient FIR filters,” 2015 Asia-Pacific Signal and Information Pro-
cessing Association Annual Summit and Conference (APSIPA), Hong
Kong, 2015, pp. 463-468, doi: 10.1109/APSIPA.2015.7415314.

[6] N. Nakajima and K. Suyama, ”A Diversification Strategy for CSD
Coefficient FIR Filter Design using GA,” 2018 Asia-Pacific Signal
and Information Processing Association Annual Summit and Confer-
ence (APSIPA ASC), Honolulu, HI, USA, 2018, pp. 291-295, doi:
10.23919/APSIPA.2018.8659683.

[7] HOLLAND, John Henry, et al. Adaptation in natural and artificial
systems: an introductory analysis with applications to biology, control,
and artificial intelligence. MIT press, 1992.

[8] F. Kondo and T. Watanabe, “A study on distributed parameter free
genetic algorithm for TSP problem,” 2011 IEEE International Con-
ference on Systems, Man, and Cybernetics, 2011, pp. 675-680, doi:
10.1109/ICSMC.2011.6083718.

[9] J. H. McClellan and T. W. Parks, ”A personal history of the Parks-
McClellan algorithm,” in IEEE Signal Processing Magazine, vol. 22,
no. 2, pp. 82-86, March 2005, doi: 10.1109/MSP.2005.1406492.

-90

-80

-70

-60

-50

-40

-30

-20

-10

	0

0 1/4	π 1/2	π 3/4	π π

A
m
pl
itu
de
	[d
B
]

Angular	frequency	[rad/s]

PfGA
PfGA-AO

Fig. 9. Amplitude response (Ex.5)

	0.0034

	0.0036

	0.0038

	0.004

	0.0042

	0.0044

	0.0046

	0.0048

	0.005

	0 	100 	200 	300 	400 	500 	600 	700 	800 	900 	1000
	0

	5

	10

	15

	20

	25

	30

	35

	40

O
bj
ec
tiv
e	
Fu
nc
tio
n

C
ro
ss
	N
um
be
r

Update	curve	(PfGA-AO)
Cross	Number

Update	curve	(PfGA)
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Fig. 11. Update curve (Ex.2)
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Fig. 12. Update curve (Ex.3)
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Fig. 13. Update curve (Ex.4)
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