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Abstract—Digital differentiators are often used to estimate the
derivative of measured signal. They are realized as FIR (Finite
Impulse Response) or IIR (Infinite Impulse Response) digital
filters. Low-pass maximally flat differentiators have smooth
frequency response and are useful since it can avoid signal
distortion caused by ripple in the passband of the differentiator.
However, the conventional design method of low-pass maximally
flat IIR digital differentiator is limited for flatness degree. Hence
this paper proposes a design method for low-pass maximally
flat IIR digital differentiators with arbitrary flatness degree. At
first, the proposed method formulates the simultaneous equations
to derive the coefficients of denominator. Then, the recurrence
formula is formulated to derive the coefficients of numerator.
Through design examples, it is shown that the proposed method
can treat arbitrary flatness degree.

I. INTRODUCTION

Digital differentiators are widely used to estimate a time /
space derivative of an input signal. In recent years, digital
differentiators are paid great attention in many fields, e.g.
instrumentation and control, signal processing, biomedical
signal processing, and so on [1], [2], [3]. In general, input
signals include noise. Since the magnitude response of full-
band differentiator is similar to high-pass filter, full-band
differentiator amplifies noise lying in the middle to high
frequency band. To avoid this problem, low-pass filter or band-
pass filter is often cascaded before or after differentiator to
suppress noise. However, it is common that cascading of filter
and differentiator enlarges the circuit scale [4]. Therefore,
low-pass differentiator has been studied, which realize noise
suppression and differentiation as one system [4], [5], [6].

A digital differentiator, including low-pass one, is usually
designed as a digital filter in the frequency or z-plane. IIR
(Infinite Impulse Response) digital filters [6], [14], [15], [16],
[17] can realize steeper cutoff and larger attenuation than FIR
(Finite Impulse Response) digital filters. Hence IIR digital
filters are suitable for applications with processing time limit
and circuit scale limit.

Several filter design methods minimize differential errors
[14]. Such methods are efficient to suppress approximation
error on whole of the passband and the stopband. However,
these methods cases undesirable distortion of an input signal
in the passband due to their passband ripple [10]. On the other
hand, maximally flat filters [4], [5], [6], [10], [11], [15], [16]
are designed to achieve that the magnitude and group delay
response, and its first- to high-order derivatives are exactly the
same as those of the ideal filter at ω = ±ω0. Thus, maximally

flat filters can provide extremely high-accuracy around ω0.
Design method for full-band maximally flat FIR digital dif-

ferentiators [15], [16], low-pass ones [6] have been proposed.
In general, the center frequency of low-pass maximally flat
differentiator is set to ω0 = 0. Even though the method pro-
posed in [6] can realize low-pass differentiator, the frequency
resopnse with arbitrary flatness degree, which controls the
bandwidth of passband in low frequency and stopband in high
frequency, is not explicitly proposed. That is, users cannot
adjust the bandwidth of passband or stopband of the low-
pass differentiator. It is desired to derive explicit procedure for
low-pass IIR digital differentiator design with arbitrary flatness
degree.

This paper proposes a design method for a low-pass max-
imally flat IIR digital differentiator with arbitrary flatness
degree. The flatness degree for stopband is controlled by the
number of zeros at ω = π. That is, the shape of numerator
is limited by the stopband flatness degree. Then, the proposed
method gives the frequency response of the differentiator with
power series. The coefficients of denominator are derived by
solving a set of linear equations. The coefficients of numerator
are derived by using the coefficients of denominator. Through
some design examples, the effectiveness of the proposed
method is discussed.

II. THE PROPOSED METHOD

In general, the desired frequency response of low-pass
digital differentiator is given by,

Hd(e
jω) =

{
jωe−jωτ0 , ω < ωc

0, ωc < ω
, (1)

where τ0 and ωc are the desired group delay and cutoff
frequency of the differentiator. The frequency response of IIR
digital differentiator is given by,

H(ejω) =
B(ejω)

A(ejω)

=

∑N
n=0 b(n)e

−jωn∑M
m=0 a(m)e−jωm

, (2)

where a(n) and N are coefficients and order of numerator. In
the same manner, b(n) and M are coefficients and order of
denominator.
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When H(ejω) satisfies the following flat constraints,
H(ejω) is called maximally flat digital differentiator.

dn

dωn
|H(ejω)|

∣∣∣∣
ω=0

=


0, n = 0

1, n = 1

0, n = 2, 3, · · ·, 2u
(3)

dn

dωn
τ(ejω)

∣∣∣∣
ω=0

=

{
τ0, n = 0

0, n = 1, 2, · · ·, 2u− 1
(4)

dn

dωn
|H(ejω)|

∣∣∣∣
ω=π

= 0, n = 0, 1, · · ·, 2ν − 1 (5)

2(u+ ν) = N +M. (6)

Here τ(ejω) is the group delay of H(ejω). The flatness
degree, which controls the bandwidth of the passband and the
stopband, are denoted by 2u, 2u−1 and 2ν−1 for |H(ejω)| at
ω = 0, τ(ejω) at ω = 0 and |H(ejω)| at ω = π, respectively.
Note that u is a half of an odd integer and ν is a half of an
integer.

From (5), H(ejω) should have 2νth zeros at ω = π. Hence,
the proposed method defines numerator A(ejω) as,

A(ejω) = (e−jω + 1)2νP (ejω), (7)

where P (ejω) is Np th order polynomial. It is obvious that
H(ejω) with (7) satisfies (5). In the same manner, from the
case n = 0 in (3), H(ejω) should have at least one zero at
ω = 0. Hence the order of P (ejω) is Np ≥ 1. The order of
numerator is N = 2ν +Np, so that the order of denominator
is M = 2u−Np from (6).

To derive the other part of the frequency response, the
difference between Hd(e

jω) and H(ejω) is considered. The
flatness constraints (3) and (4) can be rewritten to the flatness
constraints for Hd(e

jω)−H(ejω) at ω = 0 as,

dn

dωn

{
Hd(e

jω)−H(ejω)
}∣∣∣∣

ω=0

= 0, n = 0, 1, · · ·, 2u.

(8)

That is, Hd(e
jω) − H(ejω) should have 2u + 1th zeros at

ω = 0,

Hd(e
jω)−H(ejω) = (e−jω − 1)2u+1R(ejω), (9)

where R(ejω) is an arbitrary function. By substituting (1), (2)
and (7) into (9) and transforming it, the following equation
holds.

H̃d(e
jω)

(e−jω − 1)
A(ejω)− P (ejω) = (e−jω − 1)2u+1R̃(ejω)

(10)

H̃d(e
jω) =

jωejωτ0

(e−jω − 1)2ν
, (11)

where P̃ (ejω) = (e−jω + 1)−2νP (ejω). The power series

expansion of H̃d(e
jω) at ω = 0 is introduced as,

H̃d(e
jω) =

∞∑
n=0

d(n+ 1)(e−jω − 1)n+1 (12)

d(n) =


0, n = 0
n∑

k=1

n−k∑
l=0

(
τ0
l

)(
−2ν

n− k − l

)
· (−1)k2−(n−k−l)

k , n > 0

,(13)

where
(
α
n

)
with a real number α and an integer n denotes,(
α

n

)
=

α(α− 1) · · · (α− n+ 1)

n!
.

Now, proposed method assumes numerator P (ejω) and
denominator A(ejω) can be transformed as,

P (ejω) =

Np∑
m=0

p(m)(e−jω − 1)m (14)

A(ejω) =

M∑
m=0

ã(m)(e−jω − 1)m. (15)

From (12) and (15), the following equation holds.

H̃d(e
jω)A(ejω) =

( ∞∑
n=0

d(n+ 1)(e−jω − 1)n

)

×

(
M∑

m=0

ã(m)(e−jω − 1)m

)

=

∞∑
n=0

g(n)(e−jω − 1)n (16)

g(n) =

min(n,M)∑
m=0

ã(m)d(n−m).

(17)

Then, by substituting (14) and (16) into (10), the following
equation holds,

∞∑
n=0

g̃(n)(e−jω − 1)n = (e−jω − 1)2u+1R̃(ejω), (18)

where the coefficients g̃(n) is given by,

g̃(n) =

{
g(n)− p(n), 0 ≤ n ≤ Np

g(n), Np < n ≤ 2u
. (19)

Hence the coefficients p(n) and ã(n) are derived by,

p(n) = g(n) =

min(n,M)∑
m=0

ã(m)d(n−m) (20)

ã(n) = C−1x, (21)
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where C and x are M − 1 ×M − 1 matrix and M − 1 × 1
vector given by,

{C}i,j = d̃(Np + i− j) (22)

d̃(n) =

{
d(n), n ≥ 0

0, n < 0
(23)

x = [ã(0) 0 0 · · · 0]t. (24)

Here i, j and t denotes the row and column index of matrix,
0 ≤ i ≤ M − 2, 0 ≤ j ≤ M − 2, and vector transpose,
respectively. As mentioned above, the proposed method sets
ã(0) = 1. With minumum numerator order Np = 1, the order
of denominator is M = 2u − 1. For this case, numerator
P (ejω) is employed just to realize a zero at ω = 0 since
p(0) = ã(0)d(0) = 0. On the other hand, with maximum
numerator order Np = 2u, the order of denominator is M = 0.
For this case, denominator A(ejω) only gives gain ã(0), so that
H(ejω) can be regarded as the frequency response of the low-
pass maximally flat FIR digital differentiator. By comparing
the coefficients derived by [4], the proposed method sets
ã(0) = 1.

III. DESIGN EXAMPLES

A. Influence of τ0
The proposed IIR differentiators are designed with same

flatness degree, but different group delay. In this example, ν,
u, Np and M are set as 4, 8.5, 9 and 8, respectively. The ideal
group delay at ω = 0, τ0, is varied as 5, 7, 9, 11 and 13.

Figures 1 and 2 show the magnitude response and the group
delay response of the proposed low-pass differentiator. From 2,
it is clear that the proposed method can realize the desired flat
group delay around ω = 0. From 1, it is clear that the proposed
method can realize the flat magnitude response around ω = 0
and ω = π. However, there is undesired peak in the transition
band as shown around ω = 0.7π for the example with τ0 =
11. Since such peak might amplify noise, adjustment of ideal
group delay τ0 is required to avoid peak. Figures from 3 to 7

Fig. 1. The magnitude response of the proposed differentiator with different
τ0.

TABLE I
PARAMETER OF THE PROPOSED

METHOD IN III-B.
M ν u Np τ0
8 5 4.5 1 2
4 5 4.5 5 10.5
0 5 4.5 9 9.5

show the zeros and poles of the proposed differentiator with
varying τ0. It is clear from these Figs. that the poles are located
outside of the unit circle at first, then move into the circle with
increasing value of τ0. Hence adjustment of τ0 is important
not only for avoiding peak in the transition band, but also for
the realization of causal and stable system.

B. Design example with different M

The proposed IIR differentiators are designed with same
flatness degree, but different numerator and denominator order.
In this example, ν and u are set as ν = 5 and u = 4.5,
respectively. The order of denominator M varies as 8, 4, 0.
Since u = (M+Np)/2 holds, Np varies as 1, 5, 9 with respect
to the value of M . The ideal group delay is adjusted to avoid
peak in the transition band. The parameters of the proposed
method is summarized in the table I.

Figures 8 and 9 show the magnitude response and the group
delay response of the low-pass differentiator. From 8, it is
clear that the proposed method can realize the flat magnitude
response around ω = 0 and ω = π. It is obvious that
even though each example realizes the flat passband, the cut-
off characteristic of the differentiator becomes steeper with
increasing value of M . From 9, it is clear that the proposed
method can realize the desired flat group delay around ω = 0.
For the special case, M = 0, the proposed differentiator
becomes low-pass maximally flat FIR digital differentiator.
Figure 10 shows the comparison of the magnitude response of
the proposed differentiator with M = 0 and FIR differentiator
designed by [4]. It is clear that the proposed method can
realize exactly same frequency response to the conventional

Fig. 2. The group delay response of the proposed differentiator with different
τ0.
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FIR differentiator. That is, the proposed method contains the
conventional design method of low-pass maximally flat FIR
digital differentiator. However, the zeros and poles for all
examples are not located in the unit circle as shown in from
Fig. 11. Hence, these differentiators are not causal and stable.
Even though the differentiator is not causal and stable, such
differentiators can be used for image processing and off-line
processing as mentioned in [17].

IV. CONCLUSIONS

This paper proposes a design method for a low-pass max-
imally flat IIR digital differentiator with arbitrary flatness
degree. The proposed method gives the suitable frequency
response of the differentiator. It can also express the frequency
response of a low-pass maximally flat IIR digital differentiator,
so that the proposed method containts the conventional design
method. The coefficients of denominator are derived by solv-
ing a set of linear equations. The coefficients of numerator
are derived by using the coefficients of denominator. Through
some design examples, it is confirmed that the proposed
method can realize the steep cut-off characteristic with same
flatness degree. Hence the proposed differentiator is suitable
for the derivative estimation in the noisy environment.
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Fig. 11. Zeros and poles of the proposed differentiator with M = 8.
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