
On Sparse Graph Estimation Under Statistical and
Laplacian Constraints

Jitendra K Tugnait
Auburn University, Auburn, AL, USA

E-mail: tugnajk@auburn.edu

Abstract—We consider the problem of estimating the structure
of an undirected weighted sparse graph underlying a set of
signals, exploiting both smoothness of the signals as well as their
statistics. We augment the objective function of Kalofolias (2016)
which is motivated by a signal smoothness viewpoint and imposes
a Laplacian constraint, with a penalized log-likelihood objective
function with a lasso constraint, motivated from a statistical
viewpoint. Both of these objective functions are designed for
estimation of sparse graphs. An alternating direction method
of multipliers (ADMM) algorithm is presented to optimize
the augmented objective function. Numerical results based on
synthetic data show that the proposed approach improves upon
Kalofolias (2016) in estimating the inverse covariance, and
improves upon graphical lasso in estimating the graph topology.
We also implement an adaptive version of the proposed algorithm
following adaptive lasso of Zou (2006), and empirically show that
it leads to further improvement in performance.

I. INTRODUCTION

An undirected simple weighted graph is denoted G =
(V, E ,W) where V = {1, 2, · · · , p} = [p] is the set of p
nodes, E ⊆ [p]× [p] is the set of undirected edges, and W ∈
Rp×p stores the non-negative weights Wij ≥ 0 associated with
the undirected edges. If there is an edge between nodes i and
j, then edge {i, j} ∈ E and Wij > 0, otherwise {i, j} 6∈ E
and Wij = 0. In a simple graph Wii = 0. In an undirected
graph, if {i, j} ∈ E , then {j, i} ∈ E . In graphical models
of data variables x1, x1, · · · , xp, (x = [x1 x2 · · · xp]>), a
weighted graph G = (V, E ,W) (or unweighted G = (V, E))
with |V | = p is used to capture relationships between the
p variables xis [1]–[3]. If {i, j} ∈ E , then xi and xj are
related (similar or dependent) in some sense, with higher Wij

indicating stronger similarity or dependence.
Graphical models provide a powerful tool for analyzing

multivariate data [1]–[3]. In a statistical graphical model, the
conditional statistical dependency structure among p random
variables x1, x1, · · · , xp, is represented using an undirected
graph G = (V, E). There is no edge between nodes i and j iff
xi and xj are conditionally independent given the remaining p-
2 variables. Suppose x has positive-definite covariance matrix
Σ with inverse covariance matrix Ω = Σ−1. Then Ωij , the
(i, j)-th element of Ω, is zero iff xi and xj are conditionally
independent. Such models for x have been extensively studied.
In high-dimensional settings, one estimates Ω under some
sparsity constraints; see [4]–[8].

This work was supported by NSF Grants CCF-1617610 and ECCS-
2040536.

Graphical models for data variables have been inferred
from consideration other than statistical, depending upon
the intended application, nature of data and available
prior information [1]. One class of graphical models are
based on signal smoothness [1], [9]–[11]. Given n samples
{x(t)}nt=1 of the p data variables x1, x1, · · · , xp, x(t) =
[x1(t) x2(t) · · · xp(t)]>. Define

X =
[
x(1) x(2) · · · x(n)

]
∈ Rp×n . (1)

A measure of smoothness of signal x(t) under which the
signal takes “similar” values at “neighboring” vertices of a
given weighted undirected graph, is the function [1], [9]

1

2

p∑
i,j=1

Wij‖Xi. −Xj.‖22 = tr(X>LX) (2)

where Xi. denotes the ith row of X , L = D − W is
the (combinatorial) graph Laplacian (matrix), and D is the
diagonal weighted degree matrix with Dii =

∑p
j=1Wij .

Based on the smoothness constraint, graph learning from data
X becomes equivalent to estimation of Laplacian L [1], [9].

Another set of approaches are based on statistical considera-
tions under the graph Laplacian constraint [1], [12]–[14] where
Laplacian L, after regularization, plays the role of inverse
covariance Ω; L is a symmetric, non-negative-definite matrix
but with non-positive off-diagonal entries. These approaches
apply only when off-diagonal entries of inverse covariance are
non-positive.

Graph Laplacian matrix has been extensively used for
embedding, manifold learning, clustering and semi-supervised
learning [15], [16]; see [1], [9] for further applications.

A. Related Work and Our Contributions

Prior work related to the objective of our paper is dis-
cussed in detail in Sec. II. In this paper, we augment the
smoothness-based objective function of Kalofolias [9] with
a penalized log-likelihood objective function with a lasso
constraint (as in [7]). An alternating direction method of
multipliers (ADMM) algorithm is presented to optimize the
augmented objective function to infer the graph topology and
to estimate the inverse covariance (or, equivalently, the graph
edge weights). Numerical results based on synthetic data show
that the proposed approach improves upon [9] in estimating the
inverse covariance or the Laplacian, and improves upon [7] in
estimating the graph topology. It also outperforms [13] which

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

232978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021

uses a Laplacian constraint. We also implement an adaptive
version of the proposed algorithm following adaptive lasso of
[17], and empirically show that it leads to further improvement
in performance.

Notation: Given A ∈ Rp×p, we use |A| and tr(A) to
denote the determinant and trace of A, respectively. Given
a set V , |V | denotes its cardinality (number of elements). For
a matrix B ∈ Rp×q , we define the the Frobenius norm and
the vectorized `1 norm, respectively, as ‖B‖F =

√
tr(B>B)

and ‖B‖1 =
∑
i,j |Bij | where Bij is the (i, j)-th element

of B. We also denote Bij by [B]ij . Given A ∈ Rp×p,
A+ = diag(A) is a diagonal matrix with the same diagonal as
A, and A− = A−A+ is A with all its diagonal elements set
to zero. Symbol Ip is the p×p identity matrix, 1p is a column
of p ones, Bi. and B.j denote column vectors comprising
ith row and jth column, respectively, of B, and 1A denotes
indicator function (1 if A is true, else 0). For a symmetric
matrix A, A � 0 and A � 0 denote that A is positive-definite
and positive semi-definite, respectively.

II. SOME EXISTING APPROACHES

Here we briefly review some significant existing methods
for graph estimation.

A. Smoothness-Based Graph Learning

Consider the approach of [9]. With reference to (1) and (2),
it is established in [9] that tr(X>LX) = 1

2 tr(WẐ) where
W , Ẑ ∈ Rp×p, Ẑij = ‖Xi. −Xj.‖22 and W is the weight
matrix (or the weighted adjacency matrix) with L = D −
W , W = W>, Wij ≥ 0 and Wii = 0 for 1 ≤ i, j ≤ p.
Instead of performing a penalized minimization of tr(X>LX)
to estimate L, [9] minimizes a penalized tr(WẐ) w.r.t. W for
graph learning. Given W , one has unique L and the edge-set
E . In the rest of the paper, we will scale Ẑ as Ẑ/n and still
denote the latter as Ẑ.

Define the space Wp of all valid p× p weight matrices W

Wp =
{
W ∈ Rp×p : W = W>, Wij ≥ 0, Wii = 0

}
(3)

In [9] one looks for minW∈Wp fs(W) where

fs(W) =tr(WẐ) +
β

2
‖W ‖2F − α

p∑
i=1

ln
(p∑
j=1

Wij

)
(4)

with parameters α > 0 and β ≥ 0 controlling the “shape.”.
In (4), tr(WẐ) is the main cost but minimizing it alone
w.r.t. W is ill-posed (W = 0 minimizes it). Using only the
logarithmic barrier (β = 0) leads to very sparse graphs, and
changing α only changes the scale of the solution. The term
β
2 ‖W ‖

2
F controls graph sparsity, with smaller β leading to

sparser graph.
1) A Forward-Backward Primal-Dual Algorithm: This is

the algorithm used in [9]. A forward-backward algorithm
based on [18] is given in [9] to optimize (4), where optimiza-
tion is carried for fixed α = 1 and then one scales W to obtain
a desired ‖W ‖. Software implementation of this algorithm is
available in [19].

2) ADMM Solution: This is an alternative solution given in
[20]. An ADMM algorithm (also a primal-dual algorithm) is
given in [20] to optimize (4), although in a different context
and using scaled Ẑ.

B. Graphical Lasso: Penalized Log-Likelihood

This is the approach first proposed in [7]. With Σ̂ de-
noting the sample covariance (assume zero-mean: Σ̂ =
1
n

∑n
t=1 x(t)x>(t)), seek Ω to yield minΩ�0 fL(Ω) where

fL(Ω) = tr(ΩΣ̂)− ln(|Ω|) + λ‖Ω−‖1 , (5)

λ‖Ω−‖1 is the lasso penalty and λ > 0. Unlike Laplacian
L, off-diagonal entries of Ω may not be non-positive. This
is a statistical approach. In addition to the coordinate descent
approach of [7], there are numerous algorithms to optimize
(5) such as [8], [21]–[23].

C. Generalized Graph Laplacian Estimation

Here we summarize the approach of [13]. In [1], [12]–
[14] approaches that make Ω = L (Laplacian, or some
regularized version) in (5) have been considered. In particular,
[13] considers fitting a generalized graph Laplacian (GGL)
matrix to data where a GGL matrix L = D−W +V such that
W and D are the weighted adjacency matrix and the diagonal
degree matrix of the graph (as before), respectively, and V is
a diagonal matrix with positive diagonal elements. With the
addition of V , GGL matrix L becomes positive definite. More
specifically, [13] considers

min
Θ�0

tr(ΘK̂)− ln(|Θ|), K̂ = Σ̂ + λ(I − 1p1
>
p) (6)

with Θ restricted to be a generalized graph Laplacian matrix
and λ is as in (5). A software implementation of this algo-
rithm is available in [24]. This is a statistical approach with
Laplacian constraint.

D. Adaptive Lasso

This modification of graphical lasso follows from [17],
which, however, is focused on regression problems. With
Ω̂ = arg minΩ�0 fL(Ω) from Sec. II-B, modify (5) as

min
Ω�0

tr(ΩΣ̂)− ln(|Ω|) + λ

p∑
i,j=1, i 6=j

Ωij/|Ω̂ij | , (7)

i.e., use penalty varying with (i, j) as λ/|Ω̂ij |; for |Ω̂ij | = 0,
we use λ/ε with 0 < ε � 1. This approach (approximately)
debiases estimate of Ω.

III. PROPOSED APPROACH

We propose to augment the smoothness-based objective
function of Kalofolias [9] with a penalized log-likelihood
objective function with a lasso constraint (as in [7]). As has
been observed by several researchers (see, e.g., [13]), W
estimated via [9] yields a (severely) biased estimate of the
Laplacian (whether combinatorial or generalized) L. But, as
the results of [9], [10] show, their approach performs quite
well in estimating the edges of the graph, with the performance

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

233

measured in terms of the F1-score. Recall that the F1-score is
defined as F1 = (2 × precision × recall)/(precision + recall)
where precision = |Ê ∩ E0|/|Ê |, recall = |Ê ∩ E0|/|E0|, and E0
and Ê denote the true and estimated edge sets, respectively.
On the other hand, while the penalized log-likelihood objective
function with a lasso constraint performs well in general, both
in terms of the F1-score and accuracy of estimation of the
precision matrix Ω, it does not guarantee that the off-diagonal
elements of Ω will be non-positive. Since our objective is
to estimate a Laplacian matrix, we propose to combine the
smoothness-based objective function of Kalofolias [9] with
a penalized log-likelihood objective function with a lasso
constraint. Our goal is to maintain the edge detection efficacy
of [9] (high F1-score) while improving the estimation accuracy
of W by exploiting its relationship to Ω.

A. Objective Function

Combine (4) and (5) to define the cost

Laug(Ω,W) =γfL(Ω) + (1− γ)fs(W)

+ λg

p∑
i 6=j

√
W 2
ij + Ω2

ij (8)

where γ ∈ (0, 1) yields a convex combination of (4) and
(5). Cost Laug(Ω,W) is strictly convex in Ω and W for
W ∈ Wp and Ω � 0. We propose to minimize Laug(Ω,W)
w.r.t. W ∈ Wp and Ω � 0. The group-lasso penalty [4]
λg
∑p
i 6=j

√
W 2
ij + Ω2

ij in Laug(Ω,W) makes both Ωij and
Wij sparse for the same edge {i, j} of the graph, whereas
λ‖Ω−‖1 and β

2 ‖W ‖
2
F control sparsity in Ωij and Wij indi-

vidually.

B. ADMM Solution Outline

We will use ADMM [22] after variable splitting to minimize
Laug(Ω,W). We note that Laug(Ω,W) is strictly convex,
and its domain is Cartesian product of the set Wp defined
in (3) and the set of strictly positive definite matrices Ω (the
latter because of − ln(|Ω|), i.e., use of the log-determinant
barrier function [25]). The objective function Laug(Ω,W) is
also closed, proper and lower semi-continuous.

Using variable splitting, we split fL(Ω) into f̃L(Ω,V1):

f̃L(Ω,V1) =tr(ΩΣ̂)− ln(|Ω|) + λ‖V −1 ‖1 (9)
subject to Ω = V1 ∈ Rp×p . (10)

We split fs(W) into f̃s(W ,V2,d) with d = [d1, · · · , dp]>:

f̃s(W ,V2,d) =tr(WẐ) +
β

2
‖W ‖2F − α

p∑
i=1

ln(di) (11)

subject to W = V2 ∈ Rp×p , W1p = d , (12)

where
∑p
j=1Wij = di is the ith element of W1p. Using

f̃L(Ω,V1) and f̃s(W ,V2,d) for fL(Ω) and fs(W), respec-

tively, in Laug(Ω,W), we have the cost with split variables

L̃aug(Ω,W ,V1,V2,d)

=γf̃L(Ω,V1) + (1− γ)f̃s(W ,V2,d)

+ λg

p∑
i 6=j

√
V 2
1ij + V 2

2ij (13)

subject to Ω = V1 , W = V2 , W1p = d . (14)

We minimize L̃aug(Ω,W ,V1,V2,d) with respect to
Ω,W ,V1,V2,d subject to the constraints in (14), following
the ADMM approach. The scaled augmented Lagrangian [22]
for this problem is

Lρ =γ(tr(ΩΣ̂)− ln(|Ω|)) + (1− γ)
(

tr(WẐ)

− α
p∑
i=1

ln(di) +
β

2

p∑
i 6=j

W 2
ij

)
+ λ‖V −1 ‖1

+ λg

p∑
i 6=j

√
V 2
2ij + V 2

1ij

+
ρ

2

(
‖V1 −Ω + U1‖2F + ‖V2 −W + U2‖2F

+ ‖d−W1p + u3‖22
)

(15)

where we have absorbed γ in λ in λ‖V −1 ‖1, U1,U2 ∈ Rp×p
and u3 ∈ Rp are the dual variables, and ρ > 0 is a
penalty parameter. Note also that since Wii = 0 for every
i, we have written β

2 ‖W ‖
2
F as β

2

∑p
i6=jW

2
ij in (15). The

Lagrangian Lρ is optimized iteratively. Given the results
Ω(k),W (k),V

(k)
1 ,V

(k)
2 ,d(k), U

(k)
1 , U

(k)
2 and u

(k)
3 , of the

kth iteration, in the (k + 1)st iteration, an ADMM algorithm
executes the following three updates [22]:

(a) Minimize Lρ w.r.t. Ω and W resulting in separable
optimizations in Ω and W . Define

La1(Ω) = γ
(

tr(ΩΣ̂)− ln(|Ω|)
)

+
ρ

2
‖V (k)

1 −Ω + U
(k)
1 ‖2F (16)

La2(W) = (1− γ)
(

tr(WẐ) +
β

2

p∑
i6=j

W 2
ij

)
+
ρ

2
‖V (k)

2 −W + U
(k)
2 ‖2F +

ρ

2
‖d(k) −W1p + u

(k)
3 ‖22
(17)

Minimization of Lρ w.r.t. Ω and W is then equivalent
to minimization of La1(Ω) w.r.t. Ω and minimization of
La2(W) w.r.t. W separately.

(a-i) Let Ω(k+1) ← arg minΩ�0 La1(Ω) .
(a-ii) Let W (k+1) ← arg minW∈Wp La2(W) .

(b) Minimize Lρ w.r.t. V1, V2 and d resulting in separable

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

234

optimizations in (V1, V2) and d. Define

Lb1(V1,V2) =λ‖V −1 ‖1 + λg

p∑
i 6=j

√
V 2
2ij + V 2

1ij

+
ρ

2
‖V1 −Ω(k+1) + U

(k)
1 ‖2F

+
ρ

2
‖V2 −W (k+1) + U

(k)
2 ‖2F) (18)

Lb2(d) =− α
p∑
i=1

ln(di)

+
ρ

2
‖d−W (k+1)1p + u

(k)
3 ‖22 (19)

Minimization of Lρ w.r.t. V1, V2 and d is then equiv-
alent to minimization of Lb1(V1,V2) w.r.t. V1, V2 and
minimization of Lb2(d) w.r.t. d separately.

(b-i) Let (V
(k+1)
1 ,V

(k+1)
2)← arg minV1,V2 Lb1(V1,V2).

(b-ii) Let d(k+1) ← arg mind Lb2(d) .
(c) Dual updates:

U
(k+1)
1 ← U

(k)
1 + V

(k+1)
1 −Ω(k+1) (20)

U
(k+1)
2 ← U

(k)
2 + V

(k+1)
2 −W (k+1) , (21)

u
(k+1)
3 ← u

(k)
3 + d(k+1) −W (k+1)1p . (22)

C. Detailed ADMM Solution

We now discuss solutions to updates (a) and (b). Update
(c) is a standard part of dual update in ADMM when using a
scaled augmented Lagrangian formulation [22].
Update (a-i). For update (a-i) we need

0 =
∂La1(Ω)

∂Ω
= γ(Σ̂−Ω−1)− ρ(V

(k)
1 −Ω + U

(k)
1) .

(23)

A similar problem has been solved in [22, Sec. 6.5]. Consider
eigen-decomposition of symmetric matrix Σ̂− (ρ/γ)(V

(k)
1 +

U
(k)
1) given by

Σ̂− (ρ/γ)(V
(k)
1 + U

(k)
1) = QΛQ> (24)

where Λ is a diagonal matrix with eigenvalues on the diag-
onal and Q has corresponding orthogonal eigenvectors as its
columns, resulting in QQ> = Q>Q = Ip. Then the solution
to (23) is given by

Ω(k+1) = QΛ̃Q> (25)

where Λ̃ is the diagonal matrix with `th diagonal element

Λ̃`` =
−Λ`` +

√
Λ2
`` + 4(ρ/γ)

2(ρ/γ)
. (26)

Since ρ > 0, Λ̃`` > 0 for every ` = 1, 2, · · · , p, and therefore,
Ω(k+1) � 0. It is shown in [22, Sec. 6.5] that Ω(k+1) given
by (25) satisfies (23).

Update (a-ii). First some notation. Recall that Wi. ∈ Rp
denotes the ith row of W ∈ Rp×. Let W̌i. ∈ Rp−1 denote
the vector obtained from Wi. by deleting its ith row. Recall
that Wii = 0 for i = 1, 2, · · · , p, therefore, we do not have to

solve for them. Similarly, let ˇ̂
Zi., V̌2i., Ǔ2i. denote vectors in

Rp−1, obtained from Ẑi., V2i., U2i., respectively, by deleting
their ith row. Using this notation and noting that Ẑ and W
are symmetric, we can rewrite

tr(WẐ) =

p∑
i=1

W̌>
i.

ˇ̂
Zi. ,

p∑
i 6=j

W 2
ij =

p∑
i=1

W̌>
i. W̌i. . (27)

Similarly, we have

‖V (k)
2 −W + U

(k)
2 ‖2F =

p∑
i=1

W̌>
i. W̌i.

− 2

p∑
i=1

(V̌
(k)
2i. + Ǔ

(k)
2i.)>W̌i.

+

p∑
i=1

(V̌
(k)
2i. + Ǔ

(k)
2i.)>(V̌

(k)
2i. + Ǔ

(k)
2i.), (28)

‖d(k) −W1p + u
(k)
3 ‖22 =

p∑
i=1

W̌>
i. 1p−11

>
p−1W̌i.

− 2

p∑
i=1

(d
(k)
i + u

(k)
3i)1>p−1W̌i. +

p∑
i=1

(d
(k)
i + u

(k)
3i)2

(29)

where we have used the fact that since Ω and W are
symmetric, so are V1, V2, U1 and U2. Using (27)-(29), we
can express La2(W) as

1

1− γ
La2(W) =

p∑
i=1

La2i(W̌i.) (30)

where (Ip−1 denotes (p− 1)× (p− 1) identity matrix)

La2i(W̌i.) =
1

2
W̌>

i. AW̌i. + (b(i))>W̌i. + c(i) , (31)

A = (β + ρ̄)Ip−1 + ρ̄1p−11
>
p−1 , (32)

ρ̄ =
ρ

1− γ
, (33)

b(i) = ˇ̃Zi. − ρ̄(V̌
(k)
2i. + Ǔ

(k)
2i. + (d

(k)
i + U

(k)
3i)1p−1) ,

(34)

c(i) =
ρ̄

2

(
(d

(k)
i + u

(k)
3i)2 + ‖V̌ (k)

2i. + Ǔ
(k)
2i. ‖

2
2

)
(35)

and c(i) is not a function of W̌i.. Minimization of La2(W)
w.r.t. W ∈ Rp×p is then equivalent to minimization of
La2i(W̌i.) w.r.t. W̌i. ∈ Rp−1 separately for each i =
1, 2, · · · , p, exploiting the fact that Wii = 0.

To minimize Lai(W̌i.) w.r.t. W̌i. subject to Wij ≥ 0, we
consider [26] who minimizes (1/2)y>Py−y>h w.r.t. y ∈ Rq
subject to y` ≥ 0 ∀`, where P � 0 and h is arbitrary. The
monotonically convergent iterative solution of [26] is

y` ← y`
2[P (−)y]` + h

(+)
` + δ

[abs(P)y]` + h
(−)
` + δ

(36)

where 0 < δ � 1, P (+) = max(P , 0), P (−) = max(−P , 0),
abs(P) = P (+) +P (−), and “max” operation is elementwise.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

235

In our problem we have P = A, h = b(i), P (−) = 0 since all
elements of A are non-negative, and P (+) = P = A, hence
abs(P) = A.

Update (b-i). For update (b-i), notice that Lb1(V1,V2) is
completely separable w.r.t. (V1ij , V2ij) since

Lb1(V1,V2) =

p∑
i,j

Lb1ij(V1ij , V2ij) (37)

Lb1ij(V1ij , V2ij) =
(
λ|V1ij |+ λg

√
V 2
2ij + V 2

1ij

)
1i 6=j

+
ρ

2
(V1ij − Ω

(k+1)
ij + U

(k)
1ij)2

+
ρ

2
(V2ij −W (k+1)

ij + U
(k)
2ij)2 (38)

Therefore, we solve for

(V
(k+1)
1ij , V

(k+1)
2ij)← arg min

V1ij ,V2ij

Lb1ij(V1ij , V2ij) .

This is a sparse-group lasso problem. Set G1ij = Ω
(k+1)
ij −

U
(k)
1ij and G2ij = W

(k+1)
ij −U (k)

2ij . For i = j, we have V (k+1)
1ij =

G1ij and V
(k+1)
2ij = G2ij . For i 6= j, following [4], [27], its

solution is

V
(k+1)
mij =

S(G1ij ,

λ
ρ)
(

1− λg/ρ√
S2(G1ij ,

λ
ρ)+G

2
2ij

)
if m = 1

G2ij

(
1− λg/ρ√

S2(G1ij ,
λ
ρ)+G

2
2ij

)
if m = 2

where for a real scalar a and κ > 0, (a)+ := max(0, a),
S(a, κ) := (1− κ/|a|)+a denotes scalar soft thresholding.

Update (b-ii). In update (b-ii), we notice that

Lb2(d) =

p∑
i=1

Lb2i(di) (39)

Lb2i(di) =− α ln(di) + (ρ/2)(di −W
(k+1)
i. 1p + u

(k)
3i)2

(40)

Therefore, minimization of Lb2(d) w.r.t. d ∈ Rp is then equiv-
alent to minimization of Lb2i(di) w.r.t. scalar di separately for
each i = 1, 2, · · · , p. Setting

0 =
∂Lb2i(di)

∂di
= − α

di
+ ρ (di − gi)

where gi =W
(k+1)
i. 1p − u(k)3i . (41)

This leads to a quadratic equation in di. Since the ith node
degree di must be positive, we take

d
(k+1)
i =

1

2

(
gi +

√
gi + (4α/ρ)

)
(42)

where gi is specified in (41). This completes the solution.

D. Algorithm

A pseudocode for the ADMM algorithm described in Sec.
III-C is given in Algorithm 1 where we use the stopping
(convergence) criterion following [22, Sec. 3.3.1] and varying
penalty parameter ρ following [22, Sec. 3.4.1]. The stopping
criterion is based on primal and dual residuals being small

Algorithm 1 Proposed ADMM Algorithm
Input: Number of samples n, number of nodes p, data
{x(t)}nt=1, x ∈ Rp, parameters λij , λgij , α, β, γ and ρ0,
tolerances τabs and τrel, variable penalty factor µ, maximum
number of iterations kmax. λij = λ, λgij = λg for the

proposed approach and λij = λ/Ω̂ij , λgij = λg/
√

Ω̂2
ij + Ŵ 2

ij

for its adaptive lasso version where Ω̂ij and Ŵij are the result
of non-adaptive version.
Output: estimated Ŵ , Laplacian L̂ and edge-set Ê

1: Calculate sample covariance Σ̂ = 1
n

∑n
t=1 x(t)x>(t)

(after centering x(t)) and the distance-squared matrix Ẑ
with (i, j)th element Ẑij = 1

n

∑n
t=1(xi(t)− xj(t))2.

2: Initialize: U (0)
m = V

(0)
m = 0 ∈ R(p)×(p), m = 1, 2, u(0)

3 =
0 ∈ Rp, d(0) = 1p, Ω(0) = W (0) = (diag(Σ̂))−1, ρ(0) =
ρ0

3: converged = FALSE, k = 0
4: while converged = FALSE AND k ≤ kmax, do
5: Eigen-decompose Σ̂ − ρ(k)

γ

(
V

(k)
1 + U

(k)
1

)
as Σ̂ −

ρ(k)

γ

(
V

(k)
1 + U

(k)
1

)
= QΛQ> with diagonal ma-

trix Λ consisting of eigenvalues. Define diagonal ma-
trix Λ̃ with `th diagonal element Λ̃`` = (−Λ`` +√

Λ2
`` + 4ρ(k))/(2ρ(k)). Set Ω(k+1) = QΛ̃Q>.

6: Set ρ̄ = ρ(k)

1−γ and A = (β + ρ̄)Ip−1 + ρ̄1p−11
>
p−1.

7: for i = 1, 2, · · · , p do
8: Obtain ith row Ẑi. of Ẑ and delete its ith element

to yield ˇ̂
Zi. ∈ Rp−1. Set b(i) = ˇ̃Zi. − ρ̄(V̌

(k)
2i. +

Ǔ
(k)
2i. + (d

(k)
i + U

(k)
3i)1p−1).

9: while converged = FALSE do
10: Iterate on the `th element of W̌i. ∈ Rp−1 until

convergence as

[W̌i.]` ← [W̌i.]`
[b(i)]+` + δ

[Ab(i)]` + [b(i)]−` + δ

with initialization W̌i. = ˇW (k)
i..

11: end while
12: Obtain Wi. ∈ Rp from converged W̌i. ∈ Rp−1 by

inserting Wii = 0, and set W (k+1)
i. = Wi.

13: end for
14: for i, j = 1, 2, · · · , p do
15: Set G1ij = Ω

(k+1)
ij − U (k)

1ij and G2ij = W
(k+1)
ij −

U
(k)
2ij . For i = j, set V (k+1)

1ij = G1ij and V (k+1)
2ij =

G2ij . Define thresholding operator S(a, κ) := (1−
κ/|a|)+a where (a)+ := max(0, a). For i 6= j, the
(i, j)th element of Vm, m = 1, 2, is updated as
(λ̃ = λij/ρ

(k))

V
(k+1)
mij =

S(G1ij , λ̃)
(

1− λgij/ρ
(k)√

S2(G1ij ,λ̃)+G2
2ij

)
if m = 1 ,

G2ij

(
1− λgij/ρ

(k)√
S2(G1ij ,λ̃)+G2

2ij

)
if m = 2

16: end for

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

236

17: for i = 1, 2, · · · , p do
18: Set gi = W

(k+1)
i. 1p − u(k)3i . Update

d
(k+1)
i = 1

2

(
gi +

√
gi + (4α/ρ)

)
.

19: end for
20: Dual updates

U
(k+1)
1 = U

(k)
1 + V

(k+1)
1 −Ω(k+1)

U
(k+1)
2 ← U

(k)
2 + V

(k+1)
2 −W (k+1) ,

u
(k+1)
3 ← u

(k)
3 + d(k+1) −W (k+1)1p .

21: Check convergence. Let

e1 =
√
‖
[
Ω(k+1) , W (k+1) , W (k+1)1p

]
‖2F

e2 =

√
‖
[
V

(k+1)
1 , V

(k+1)
2 , d((k+1)

]
‖2F

e3 =

√
‖
[
U

(k+1)
1 , U

(k+1)
2 , (

√
p− 1)u

((k+1)
3

]
‖2F .

Set tolerances

τpri =(
√

2p2 + p) τabs + τrel max(e1, e2)

τdual =(
√

2p2 + p) τabs + τrel e3/ρ
(k) .

Define primary and dual residuals dp and dd

dp =
√
s1 , dd = ρ(k)

√
s2

where

s1 =‖Ω(k+1) − V
(k+1)
1 ‖2F + ‖W (k+1) − V

(k+1)
2 ‖2F

+ ‖W (k+1)1p − d((k+1)‖22
s2 =‖V (k+1)

1 − V
(k)
1 ‖2F + ‖V (k+1)

2 − V
(k)
2 ‖2F

+ (p− 1) ‖d(k+1) − d((k)‖22 .

If (dp ≤ τpri) AND (dd ≤ τdual), set converged =
TRUE .

22: Update penalty parameter ρ :

ρ(k+1) =

2ρ(k) if dp > µdd
ρ(k)/2 if dd > µdp
ρ(k) otherwise .

We also need to set U
(k+1)
m = U

(k+1)
m /2, m = 1, 2,

and u
(k+1)
3 = u

(k+1)
3 /2 for dp > µdd and U

(k+1)
m =

2U
(k+1)
m , m = 1, 2, and u

(k+1)
3 = 2u

(k+1)
3 for dd >

µdp.
23: k ← k + 1
24: end while
25: Denote the converged values of weighted adjacency and

precision matrices as W and Ω, respectively. For i 6= j,
if both |Ωij | > 0 and Wij > 0, assign edge {i, j} ∈ Ê ,
else {i, j} 6∈ Ê . Weighted adjacency matrix estimate Ŵ
is defined as nonzero only on {i, j} ∈ Ê such that Ŵij =
−Ωij if Ωij ≤ 0 and Ŵij = Wij if Ωij > 0. Clearly
Ŵ ∈ Wp. Finally, combinatorial Laplacian estimate is
L̂ = D̂− Ŵ where D̂ is the (diagonal) weighted degree
matrix corresponding to Ŵ .

where, in our case, at (k + 1)st iteration, the primal residual
is given by the vectorized matrix (Ω(k+1) − V

(k+1)
1)>

(W (k+1) − V
(k+1)
2)>

(W (k+1)1p − d((k+1))>

and the dual residual by the vectorized matrix

ρ(k)

 (V
(k+1)
1 − V

(k)
1)>

(V
(k+1)
2 − V

(k)
2)>(

(d(k+1) − d(k))1>p−1
)>
 .

For all numerical results presented later, we used ρ0 = 2,
µ = 10, and τabs = τrel = 10−4.

E. Adaptive Lasso Augmentation

Lasso and related approaches yield biased estimates [17].
To approximately debias, we will mimic the adaptive lasso
approach of [17] to propose an adaptive lasso augmentation
of the proposed approach. The basic idea in [17] is to replace
λΩij in the penalty with λΩij/|Ω̂ij | where Ω̂ij is any con-
sistent estimate of Ωij , typically a lasso estimate. Mimicking
this approach, we propose to replace λΩij and λg

√
W 2
ij + Ω2

ij

in (8) with λΩij/|Ω̂ij | and λg
√
W 2
ij + Ω2

ij/
√
Ŵ 2
ij + Ω̂2

ij ,

respectively, where Ω̂ij and Ŵij are the result of optimization
of Laug(Ω,W) (the non-adaptive version). The modified
objective function now is

L̃aug(Ω,W) = γ

tr(ΩΣ̂)− ln(|Ω|) + λ

p∑
i 6=j

Ωij

|Ω̂ij |

+ (1− γ)fs(W) + λg

p∑
i6=j

√
W 2
ij + Ω2

ij√
Ŵ 2
ij + Ω̂2

ij

. (43)

Notice that we make no changes to fs(W) (defined in (4)). It
has been shown in [9] that a lasso type penalty does not work
for his objective function fs(W).

We optimize twice, first non-adaptive version of
Laug(Ω,W), then the adaptive version L̃aug(Ω,W).
The Algorithm 1 applies both times and the modifications
required for the second optimization are specified therein.

F. Final Estimates

Suppose we denote the converged values of the weighted
adjacency and precision matrices resulting from our proposed
approach, whether non-adaptive or adaptive version, as W
and Ω, respectively. To calculate connected edges, we take
{i, j} ∈ Ê if both estimated Wij > 0 and estimated |Ωij | > 0,
else {i, j} 6∈ Ê , where Ê is the estimated edge-set. This reflects
that fact that both weighted adjacency matrix in fs(W) and
precision matrix in fL(Ω) have nonzero entries if and only
if corresponding edges are connected. As noted in [13], W
estimated via [9] typically results in a biased estimate of the
Laplacian L = D −W . Ideally, we should have L = Ω
implying that off-diagonal Ω− = −W . But estimated Ω is not

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

237

guaranteed to have non-positive off-diagonal entries. Based on
these considerations, we estimate W as Ŵ specified by

Ŵij =

 −Ωij if {i, j} ∈ Ê and Ωij < 0

Wij if {i, j} ∈ Ê and Ωij > 0
0 otherwise .

(44)

Clearly Ŵ ∈ Wp. Finally, combinatorial Laplacian estimate
is L̂ = D̂ − Ŵ where D̂ is the (diagonal) weighted
degree matrix corresponding to Ŵ . By construction, L̂ is a
combinatorial Laplacian matrix that is positive semidefinite
with non-positive off-diagonal entries.

IV. SIMULATION EXAMPLE

We consider Gaussian graphical models based on an Erdös-
Rényi graph where nodes are connected independently and
randomly with probability per = 0.03. In the upper triangular
Ω (inverse covariance), Ωij = 0 if {i, j} 6∈ E , and Ωij is
uniformly distributed over [−0.3,−0.1] if {i, j} ∈ E . With
Ω = Ω>, we take Ωii = −

∑p
j=1 Ωij for every i, yielding the

combinatorial Laplacian matrix L = Ω. Now add κI to Ω
with κ picked to make minimum eigenvalue of Ω + κI equal
to 0.001, and with ΦΦ> = (Ω + κI)

−1, we generate x =
Φw with w ∈ Rp as Gaussian w ∼ N (0, Ip), multivariate
Gaussian distribution with zero mean and identity covariance
matrix. We generate n i.i.d. observations from x using p =
100. Addition of κI yields a generalized Laplacian matrix
L = Ω + κI [13].

We apply seven methods for estimating the true edge-set
E0 and true (off-diagonal) inverse covariance Ω−0 (since it
equals −W under the Laplacian assumptions, combinatorial
or generalized):
(1) Lasso with cost (5), solved using the method of [22, Sec.

6.5] (also used in Sec. III), labeled “Lasso” in Table I.
(2) Smoothness-based graph learning [9] solved via the

ADMM approach of [20], labeled “smooth (ADMM
[20])” in Table I.

(3) Proposed approach described in Sec. III with γ = .5,
λg = 2λ, labeled “L+Sm (Laug(Ω,W))” in Table I.

(4) Smoothness-based graph learning [9] solved via the
forward-backward algorithm available in [19] (MAT-
LAB function gsp_learn_graph_log_degrees.m), labeled
“smooth [9]” in Table I. It requires one to set small values
in estimated W to be set to zero; following [9], [19], all
Ŵij ≤ 10−4 are set to zero.

(5) Generalized graph Laplacian (GGL) method of [13]
described in Sec. II-C, using MATLAB function esti-
mate_ggl.m from [24], labeled “GGL [13]” in Table I.

(6) Adaptive lasso, described in Sec. II-D, using the method
of [22, Sec. 6.5] but with variable lasso penalty, labeled
“Adap Lasso” in Table I.

(7) Adaptive lasso version of the proposed approach de-
scribed in Sec. III-E, with γ = .5, λg = 2λ, labeled
“L+Sm (L̃aug(Ω,W))” in Table I.

Table I shows the simulation results where the run time
in seconds was calculated via MATLAB tic-toc functions

on a Window 10 operating system with processor Intel(R)
Core(TM) i5-6400T CPU @2.20 GHz with 12 GB RAM, and
all ADMM approaches used variable penalty parameter ρ, as
in Algorithm 1. For each of seven schemes, tuning parameters
λ and/or β (α=1, as in [9]) were picked for n = 200 via
simulations to maximize the F1-score (as in [9], [13]), then λ
was scaled as ∝

√
ln(p)/n [8], [13] while β was kept fixed.

The performance measures are F1-score for efficacy in edge
detection, and normalized Frobenius error norm in estimating
Ω−0 (off-diagonal true Ω0, equaling −W), defined as

‖cΩ̂− −Ω−0 ‖F /‖Ω
−
0 ‖F (45)

where c is selected as follows. We scale estimate Ω̂− of
Ω−0 (when only signal smoothing is used we take Ω̂−0 =
−Ŵ), by a scalar c chosen to minimize mean-square error
‖Ω−0 − cΩ̂

−
0 ‖2F , resulting in c = tr(Ω−0 Ω̂−0)/tr(Ω̂−0 Ω̂−0). In

practice, Ω−0 is unknown. The above scaling preserves relative
weighting among Ωij which is what is relevant in applications
and is available without knowing Ω−0 . In applications such as
those in [1], [9], [15], [16] that require an estimate of the graph
Laplacian L, the eigenvectors of L and the relative values of
eigenvalues are exploited which do not depend on scaling c.
As noted in Sec. III-F, the combinatorial Laplacian estimate
is L̂ = D̂ − Ŵ = D̂ + Ω̂−0 .

Comparing only “Lasso”, “smooth (ADMM [20])” and
proposed “L+Sm (Laug(Ω,W))”, we see that the proposed
method significantly improves upon “smooth (ADMM [20])”
in estimation of inverse covariance without sacrificing the F1-
score, while it improves upon “Lasso” in both F1-score and
inverse covariance estimation. Adding adaptive lasso improves
both “Lasso” and “L+Sm (Laug(Ω,W))”. Indeed, “Adap
lasso” outperforms other six approaches for both graphs, but
along with “Lasso” it can not guarantee that off diagonal
terms of the precision matrix are non-positive. Both “smooth
[9]” and “GGL [13]” have poorer F1-score performance, but
are significantly faster. Approaches “smooth (ADMM [20])”
and “L+Sm (Laug(Ω,W))” are significantly slower since the
“inner loop” consisting of iterative solution (36) (line 10 in
Algorithm 1) slows it down (we run it for fixed 40 iterations
as a stopping criterion is not yet clear or effective), but it may
account for superior performance of “smooth (ADMM [20])”
over “smooth [9]”. Finally, lasso (and adaptive lasso) can be
made much faster by using fast algorithms such as [23].

V. CONCLUSIONS

Our objective was to estimate the structure of an undirected
weighted graph underlying a set of signals, exploiting both
smoothness of the signals as well as their statistics. Structure
estimation of a weighted graphs entails estimation of the
edge-set E and the weighted adjacency W (equivalently,
the corresponding combinatorial Laplacian L = D −W).
We augmented the smoothness-based objective function of
[9] with a penalized log-likelihood objective function with
a lasso constraint to improve inverse covariance estimation
performance of [9] without sacrificing the F1-score.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

238

Model: Erdös-Rényi Graph: number of nodes p=100
F1 score (±σ)

Lasso 0.3009 ±0.0200 0.2859 ±0.0417 0.2867 ±0.0679 0.2951 ±0.0458 0.3052 ±0.0355
smooth (ADMM [20]) 0.5018 ±0.1061 0.5881 ±0.1037 0.6339 ±0.1033 0.6339 ±0.1154 0.6592 ±0.1273
L+Sm (Laug(Ω,W)) 0.5017 ±0.0578 0.5497 ±0.0700 0.6129 ±0.0816 0.6285±0.0877 0.6965±0.0937

smooth [9] 0.1363 ±0.0398 0.1420 ±0.0397 0.1491 ±0.0399 0.1666 ±0.0495 0.1586 ±0.0592
GGL [13] 0.4609 ±0.0232 0.4901 ±0.0232 0.4984 ±0.0197 0.5032 ±0.0175 0.4927 ±0.0218

Adap Lasso 0.6566 ±0.0462 0.8412 ±0.0383 0.9429 ±0.0196 0.9800 ±0.0106 0.9987 ±0.0025
L+Sm (L̃aug(Ω,W)) 0.6657 ±0.0496 0.8331 ±0.0380 0.9309 ±0.0200 0.9710 ±0.0125 0.9836 ±0.0125

Frobenius Error Norm (±σ)
Lasso 0.9964 ±0.0043 0.9898 ±0.0098 0.6367 ±0.0914 0.4743 ±0.0378 0.3720 ±0.0212

smooth (ADMM [20]) 0.7478 ±0.0449 0.6773 ±0.0294 0.6457 ±0.0282 0.6312 ±0.0272 0.6166 ±0.0220
L+Sm (Laug(Ω,W)) 0.6250 ±0.0507 0.4550 ±0.0383 0.3280 ±0.0250 0.2402±0.0232 0.1458±0.0323

smooth [9] 0.7621 ±0.0316 0.7028 ±0.0236 0.6756 ±0.0224 0.6562 ±0.0200 0.6475 ±0.0166
GGL [13] 0.6062 ±0.0615 0.4204 ±0.0492 0.2866 ±0.0317 0.1963 ±0.0234 0.0848 ±0.0117

Adap Lasso 0.6808 ±0.0541 0.4964 ±0.0485 0.3561 ±0.0390 0.2540 ±0.0292 0.1096 ±0.0189
L+Sm (L̃aug(Ω,W)) 0.6627 ±0.0573 0.4887 ±0.0462 0.3550 ±0.0367 0.2612 ±0.0281 0.1490 ±0.0320

Time(s) (±σ)
Lasso 1.2664 ±0.0412 1.2483 ±0.0361 1.2671 ±0.0393 1.2935 ±0.0353 1.2923 ±0.0368

smooth (ADMM [20]) 7.6652 ±0.1276 7.6504 ±0.0762 7.6550 ±0.0872 7.5839 ±0.5866 7.6422 ±0.0917
L+Sm (Laug(Ω,W)) 8.9153 ±0.2261 8.9272 ±0.4273 8.9606 ±0.2111 10.6124 ±2.4781 9.1852 ±0.3722

smooth [9] 0.2587 ±0.0068 0.2570 ±0.0031 0.2568 ±0.0023 0.2557 ±0.0024 0.2582 ±0.0021
GGL [13] 0.0652 ±0.0047 0.0639 ±0.0013 0.0637 ±0.0012 0.0636 ±0.0015 0.0633 ±0.0014

Adap Lasso 1.8343 ±0.2762 1.6987 ±0.0429 1.6394 ±0.0350 1.5736 ±0.0416 1.4602 ±0.0382
L+Sm (L̃aug(Ω,W)) 17.8266 ±0.8996 18.2939 ±1.3875 17.8056 ±0.3764 17.6605 ±0.8972 17.9927 ±0.5217

TABLE I: Simulation results for Erdös-Rényi graph based on 100 runs.

REFERENCES

[1] X. Dong, D. Thanou, M. Rabbat and P. Frossard, “Learning graphs from
data,” IEEE Signal Process. Mag., pp. 44-63, May 2019.

[2] S.L. Lauritzen, Graphical models. Oxford, UK: Oxford Univ. Press,
1996.

[3] J. Whittaker, Graphical Models in Applied Multivariate Statistics. New
York: Wiley, 1990.

[4] P. Danaher, P. Wang and D.M. Witten, “The joint graphical lasso
for inverse covariance estimation across multiple classes,” J. Royal
Statistical Society, Series B, vol. 76, pp. 373-397, 2014.

[5] N. Meinshausen and P. Bühlmann, “High-dimensional graphs and vari-
able selection with the Lasso,” Ann. Statist., vol. 34, no. 3, pp. 1436-
1462, 2006.

[6] K. Mohan, P. London, M. Fazel, D. Witten and S.I. Lee, “Node-based
learning of multiple Gaussian graphical models,” J. Machine Learning
Research, vol. 15, 2014.

[7] J. Friedman, T. Hastie and R. Tibshirani, “Sparse inverse covariance
estimation with the graphical lasso,” Biostatistics, vol. 9, no. 3, pp. 432-
441, July 2008.

[8] O. Banerjee, L.E. Ghaoui and A. d’Aspremont, “Model selection through
sparse maximum likelihood estimation for multivariate Gaussian or
binary data,” J. Machine Learning Research, vol. 9, pp. 485-516, 2008.

[9] V. Kalofolias, “How to learn a graph from smooth signals,” in Proc.
19th Intern. Conf. Artificial Intelligence & Statistics (AISTATS), Cadiz,
Spain, 2016.

[10] V. Kalofolias and N. Perraudin, “Large scale graph learning from smooth
signals,” in 7th Intern. Conf. Learning Representations (ICLR 2019),
New Orleans, LA, USA, May 6-9, 2019.

[11] X. Dong, D. Thanou, P. Frossard and P. Vandergheynst “Learning
Laplacian matrix in smooth graph signal representations,” IEEE Trans.
Signal Process., vol. 64, no. 23, pp. 6160-6173, Dec. 1, 2016.

[12] E. Pavez and A. Ortega, “Generalized Laplacian precision matrix estima-
tion for graph signal processing,” in Proc. IEEE ICASSP 2016, Shanghai,
China, March 2016, pp. 6350-6354.

[13] H.E. Egilmez, E. Pavez and A. Ortega, “Graph learning from data
under Laplacian and structural constraints,” IEEE J. Sel. Topics Signal
Process., vol. 11, no. 6, pp. 825-841, Sept. 2017.

[14] E. Pavez, H.E. Egilmez and A. Ortega, “Learning graphs with monotone
topology properties and multiple connected components,” IEEE Trans.
Signal Process., vol. 66, no. 9, pp. 2399-2413, May 1, 2018.

[15] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques
for embedding and clustering.,” in Proc. NIPS, vol. 14, pp. 585-591,
2001.

[16] M. Belkin, P. Niyogi and V. Sindhwani “Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples,”
J. Machine Learning Research, vol. 7, pp. 2399-2434, 2006.

[17] H. Zou, “The adaptive lasso and it oracle properties,” J. American
Statistical Assoc., vol. 101, pp. 1418-1429, 2006.

[18] N. Komodakis and J.C. Pesquet, “Playing with duality: An overview
of recent primal-dual approaches for solving large-scale optimization
problems,” IEEE Signal Processing Mag., vol. 32, pp. 31-54, 2015.

[19] N. Perraudin, J. Paratte, D. Shuman, V. Kalofolias, P. Vandergheynst
and D.K. Hammond, “GSPBOX: A toolbox for signal processing on
graphs,” arXiv:1408.5781v2 [cs.IT], 15 March 2016.

[20] J.K. Tugnait, “Graph learning from multi-attribute smooth signals,” in
Proc. 2020 IEEE Intern. Workshop on Machine Learning for Signal
Processing (MLSP 2020), Espoo, Finland, Sept. 21-24, 2020, pp. 1-6.

[21] R. Mazumder and T. Hastie, “The graphical lasso: New insights and
alternatives,” Electronic J. Statistics, vol. 6, 2012.

[22] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1-122, 2010.

[23] C.-J. Hsieh, M.A. Sustik, I.S. Dhillon and P. Ravikumar, “QUIC:
quadratic approximation for sparse inverse covariance estimation, ” J.
Mach. Learn. Res., vol. 15, pp. 2911-2947, 2014.

[24] H.E. Egilmez, E. Pavez and A. Ortega, “GLL: Graph Laplacian
learning package, version 1.0,” [Online]. Available: https://github.com/
STACUSC/Graph_Learning, 2017.

[25] P. Ravikumar, M.J. Wainwright, G. Raskutti and B. Yu, “High-
dimensional covariance estimation by minimizing `1-penalized log-
determinant divergence,” Electronic J. Statistics, vol. 5, pp. 935-980,
2011.

[26] X. Xiao and D. Chen, “Multiplicative iteration for non-negative
quadratic programming,” arXiv:1406.1008v1 [math.NA], 4 June 2014.

[27] J. Friedman, T. Hastie and R. Tibshirani, “A note on the group lasso
and a sparse group lasso,” arXiv:1001.0736v1 [math.ST], 5 Jan 2010.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

239

