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Abstract—The problem of recovering information about a
generating time-dependent dynamical system from measurement
data is investigated as an inverse problem. Fractional Brownian
motion is often used for modelling real-world applications that
deal with specific properties such as long-range dependence or
self-similarity. The self-similarity parameter, also known as Hurst
parameter H , is directly related to the distribution of ordinal
patterns in fractional Brownian motion. Thus the corresponding
information entropy measure, known as permutation entropy,
can extract significant information about the generating system.
As real-world applications often involve multivariate correlated
measurements, multivariate variants of permutation entropy have
to be considered. While pooled permutation entropy is able to
estimate H , it fails to detect cross-correlations between variables.
In this work, we use multivariate permutation entropy based
on principal component analysis (MPE-PCA) to investigate self-
similarity and cross-correlations. We examine the variation of
permutation entropy of principal components with variations of
H and cross-correlations and find those principal components
behave equally to their origin under certain conditions, i.e.,
as H increases, the MPE-PCA of the principal components
decreases. Furthermore, MPE-PCA discovers cross-correlations
in multivariate fractional Brownian motion.

Index Terms—Fractional Brownian Motion, Ordinal Pattern,
Permutation Entropy, Principal Component Analysis

I. INTRODUCTION

Time series data is part of many real-world applications,
e.g., weather records, patient health evolution metrics, (indus-
trial) sensor data, stock prices, website clicks, server metrics,
or network data – just to name a few. For many real-world
applications, modelling of time-dependent dynamical systems
requires specific properties such as long-range dependence or
self-similarity. For example, long-term memory is fundamental
in internet traffic [1] or for financial data [2]. If return series
exhibit a long-range dependence, this indicates that observed
returns over time are not independent. When returns are not
independent, past returns may help predict future returns [3].
Time-dependent dynamical systems with long-range depen-
dence or self-similarity are commonly described by fractional
Brownian motion (fBm), which has foundations based on a
solid theory and proved to be successfully applied in many
real-world challenges, e.g., proven in [4], [5], [6].

Solving the inverse problem of fBm means to infer from ob-
servable measurements the parameters of a generating dynam-
ical system, e.g., the self-similarity of fBm, which is generally

expressed by the so-called Hurst parameter H [7]. Over the
years, several heuristic methods, such as re-scaled (R/S) range
analysis [8] and detrended fluctuation analysis (DFA) [9] or
classical statistical inversion methods, [7] have been proposed
for this purpose. A more recently discussed approach from
the field of machine learning is the application of principal
component analysis for Hurst parameter estimation [10]. In
addition, efficient mappings from observations to a set of
scalar-valued features that capture specific properties can
provide information about the underlying system. Specifically,
entropies, a measure from information theory, are promising
through an encoding that preserves information content [11].
Permutation entropy (PE) is a robust, scalar-valued measure
that determines the degree of complexity of time series by
analysing the distribution of ordinal patterns [12]. PE on fBm
is well understood: The distribution of ordinal patterns of
specific lengths yield interesting parameter functions, e.g., they
are directly related to the Hurst parameter H and therefore
helpful to solve inverse problems [13], [14], [15].

Nevertheless, in many fields of applications, multivariate
measurements are performed. Examples for multivariate frac-
tional Brownian motion (mfBm) can be found in economic
time series [16], or functional Magnetic Resonance Imaging
of several brain regions [17]. Pooled permutation entropy
(PPE), a multivariate extension of PE, is also suitable to
study the self-similarity of in the multivariate case, but it
fails to distinguish mfBms with the same Hurst parameters
but different cross-correlations between variables [18], [15].
In [19] we introduce multivariate permutation entropy based
on principal component analysis (MPE-PCA), an alternative
multivariate extension of PE that includes correlations of
variables and show its relevance and efficiency on various
multivariate real-world time series data sets in classification.
In this work, we generalise MPE-PCA and apply it to mfBm,
examining the variation of MPE-PCA of pricipal components
(PCs) with variations of H and cross-correlations. We show
that PCs of fBm behave like their origin under certain condi-
tions, i.e., as H increases, MPE-PCA decreases. Furthermore,
unlike PPE, MPE-PCA detects when large cross-correlations
at high Hurst parameter value H cause the behaviour of all
variables to converge and is thus suitable for discovering cross-
correlations.
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(a) m = 3, Hi = 0.25 for all i, ρij = 0.1

0 500 1000 1500 2000

t

−200

0

200
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(d) m = 3, Hi = 0.25 for all i, ρij = 0.65
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(e) m = 5, Hi = 0.75 for all i, ρij = 0.65
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(f) m = 5, different Hi ∈ [0.35, 0.75], ρij = 0.65
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Fig. 1. Six realisations of mfBm of length T = 2000 with different variable dimensions, different Hurst parameters, and ηij = 0.1/(1−Hi −Hj), where
(a)-(c) have a low correlation coefficient ρij = 0.1 and (d)-(e) have a high correlation coefficient ρij = 0.65.

II. PRELIMINARIES

We shortly formalise multivariate fractional Brownian mo-
tion (mfBm) and subsequently key concepts of ordinal pattern
representations that are the basis of permutation entropy (PE).

A. Multivariate Fractional Brownian Motion

In this work, we focus on a class of special stochastic
processes. A stochastic process or more generally a mathe-
matical object that is similar to itself at all scales is called a
fractal. When you zoom in on a fractal, it resembles or looks
exactly like the original shape. The mathematical property
is called self-similarity and is expressed by the so-called
Hurst parameter H . The fractional Brownian motion (fBm)
is the unique mean-zero Gaussian process, which is zero at
origin and has stationary and self-similar increments. In case
H = 1/2, fBm corresponds to the ordinary Brownian motion.
In case H > 1/2, the process has a persistence property
and positively correlated increments, i.e., an upward jump
is more likely followed by another upward jump and vice
versa, and the process exhibits long-range dependence. For
H → 1, the process becomes smoother, less irregular and
more trendy. In case H < 1/2, the process has negatively
correlated increments and an anti-persistence property.

Definition 1 ([20]). An m-multivariate process
((Xi(t))mi=1)t∈R is called multivariate fractional Brownian
motion (mfBm) with Hurst parameter H = (H1, . . . ,Hm),
Hi ∈ (0, 1) for i = 1, ...,m, and denoted as Bm

H(t) , if it is
1) Gaussian distributed,
2) self-similar with Hurst parameter H , i.e., there exists a

vector H = (H1, . . . ,Hm) where Hi ∈ (0, 1) for i =
1, . . . ,m such that for any a > 0 it holds

(X1(at), ..., Xm(at))t ∼ (aH1X1(t), ..., aHmXm(t))t,

where ∼ denotes the equality of finite-dimensional dis-
tributions, and it has

3) stationary increments, i.e., Xi(t)−Xi(s) ∼ Xi(t− s).

Figure 1 shows six mfBms with different Hurst parameters.
Stationarity refers to the fact that the distribution of the process
does not change in time, which has significant consequences.
In particular, the BiHi

(t) are identically distributed, i.e., the
expectation values and variances of components do not depend
on time t. Furthermore, the distribution of (BiHi

(t), BiHi
(s))

depends only on t − s, so the correlations of the compo-
nents also depend only on t − s. Therefore, mfBm can be
characterised by its covariances and cross-covariances of its
variables, i.e., by the parameters σi > 0, ρij ∈ (−1, 1) and
ηij ∈ R for i, j = 1, ...,m, which allow two components to
be more or less correlated and the process to be reversible
in time or not. Parameter σi > 0 is the standard deviation
of the i-th variable at time t = 1. Parameter ρij = ρji is
the correlation coefficient between the variables i and j at
time t = 1. Parameters ηij = −ηji are antisymmetric and
linked with the time-reversibility of mfBm.

Lemma 1 (Covariance Function of mfBm [21]). The mfBm
Bm
H(t) marginally is an fBm BiHi

(t), such that the covariance
function of the i-th variable BiHi

of mfBm is

Cov(BiHi
(s), BiHi

(t)) =
σ2
i

2
(|s|2Hi +|t|2Hi−|t−s|2Hi), (1)

where σ2
i = V ar(BiHi

(1)). The cross-covariances of mfBm
for all (i, j) ∈ {1, ...,m}2 and i 6= j are given by

Cov(BiHi
(s), BjHj

(t)) =
σiσj

2
(wij(−s)+wij(t)−wij(t−s))

(2)
where the function wij(h) is defined as

wij(h) =

{
(ρij − ηij sign(h))|h|Hi+Hj if Hi +Hj 6= 1,
ρij |h|+ ηijh log |h| if Hi +Hj = 1.

(3)

Moreover, a setting of ρij = 1 and ηij = 0 in Eqs. (2) or
(3) is matching with the definition in the univariate case, that
is (1). For m = 1, Definition 1 matches the definition in the
univariate case.
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Fig. 2. All possible ordinal patterns of order d = 3 (left) and ordinal pattern
determination of order d = 3 and time delay τ = 1 for a univariate time
series at any time point t ∈ [τ(d− 1), T ] (right).

B. Ordinal Pattern Representations

In this section, we introduce ordinal pattern symbolisation
and the concept of permutation entropy based on them, which
we use to investigate the qualitative behaviour of mfBms.

Ordinal Pattern Symbolisation. To calculate the entropy
of a time series, the sequence of real-valued measured values
must be encoded into a sequence of symbols. As far as
current research is concerned, there are two general approaches
for time series symbolisation. On the one hand, classical
symbolisation approaches use threshold values and data range
partitioning for symbol assignment, such as the well-known
Symbolic Aggregate approXimation (SAX) representation in-
troduced by Chiu et al. [22]. On the other hand, ordinal
pattern symbolisation, an approach based on the idea of Bandt
and Pompe [12], uses the total order between two or more
neighbours encoded by its permutations for symbolisation.
Benefits of the ordinal pattern approach are discussed, for
example, in [19], [23], [24], [25]. The formalism is introduced
as follows.

Definition 2. A vector (x1, ..., xd) ∈ Rd has ordinal pattern
(r1, ..., rd) ∈ Nd of order d ∈ N if xr1 ≥ ... ≥ xrd and
rl−1 > rl in the case xrl−1

= xrl .

Note that equality of two values within a pattern is not
allowed. In this case, for example, the newer value is replaced
with a smaller value. Fig. 2 (left) shows all possible ordinal
patterns of order d = 3 of a vector (x1, x2, x3). To symbolise
a time series (x1, x2, ..., xT ) ∈ RT each point in time t ∈
{d, ..., T} is assigned its ordinal pattern of order d. The order
d is chosen to be much smaller than the total length T of the
time series to look at smaller windows within the series. In
order to assess the overarching trend, the delayed behaviour
is of interest. The time delay τ ∈ N is the delay between
successive points in the symbol sequences. Different delays
show different details of the structure of a time series. Fig. 2
(right) visualises the ordinal pattern determination of order
d = 3 and time delay τ = 1 in a time series at any time point
t ∈ [τ(d− 1), T ].

Ordinal Pattern Distributions. Not the ordinal patterns
themselves, but their distributions in different parts of a
univariate time series (xt)

T
t=1 are of interest. Thus, each

ordinal pattern is identified with exactly one of the symbols
j = 1, 2, ..., d!. Then, permutation entropy is defined as (Shan-

non) entropy of the distribution of ordinal pattern symbols.

Definition 3 ([12]). The permutation entropy (PE) of order
d ∈ N and delay τ ∈ N of a univariate time series x = (xt)

T
t=1,

T ∈ N is defined as

PEd,τ (x) = −
d!∑
j=1

pτ,dj ln pτ,dj , (4)

where pτ,dj is the frequency of ordinal pattern j in the time
series.

For time series with maximum random ordinal pattern
symbols (resulting in a uniform pattern distribution), PE is
ln(d!). For time series with a regular pattern, e.g., in the case
of monotony, PE is equal to zero [11]. As an extension of
PE, Morabito et al. [26] introduce multi-scale permutation
entropy (MSPE) capturing the complexity of time series on
different time scales. In addition, Fadlallah et al. [27] introduce
weighted permutation entropy (WPE), taking into account
patterns that differ in amplitudes.

Multivariate Permutation Entropy. As in many fields of
applications, multivariate measurements are performed, Keller
and Lauffer [28] provide a canonical definition of multivariate
permutation entropy, called PPE. This approach aims to use
marginal frequencies of d! ordinal patterns regarding all m
variables as input for entropy calculation. For the determina-
tion of PPE, an auxiliary matrix has to be established first:

1) For each variable i = 1, ..,m and for each ordinal pat-
tern j = 1, ..., d!, count all time steps s ∈ [τ(d−1)+1, T ],
for which the variable-time pair (i, s) has the ordinal
pattern j.

2) Divide the counts by m · δ, where δ := T − τ(d− 1) is
the total count of ordinal patterns each variable has.

3) Store the results, i.e., frequencies pτ,dij in a so-called pool-
ing matrix P ∈ (0, 1)m×d!, which reflects the distribution
of ordinal patterns in the multivariate time series across
its m variables.

Definition 4 ([28]). The pooled permutation entropy (PPE)
of a multivariate time series X = ((xit)

m
i=1)Tt=1 is defined as

the PE of the marginal frequencies pτ,d.j =
∑m
i=1 p

τ,d
ij for j =

1, ..., d! describing the distribution of the ordinal pattern is
defined by

PPEd,τ (X) = −
d!∑
j

pτ,d.j ln pτ,d.j . (5)

For example, PPE is successfully used in analysing elec-
troencephalography (EEG) signals, as cross-channel regulari-
ties between spatially distant variables, i.e., on different hemi-
spheres or in different areas, can be extracted by long-range
spatial non-linear correlations [28]. As a canonical extension
for MSPE, Morabito et al. [26] provide multivariate multi-
scale permutation entropy (MMSPE) and for WPE we pro-
vide multivariate weighted permutation entropy (MWPE) [15].
Both are based on PPE and are thus to be understood as
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extensions (and not alternatives) that investigate the special
aspects of scales and amplitudes.

C. Permutation Entropy on Fractional Brownian Motion

Bandt and Shiha [13] significantly contribute to the under-
standing of the underlying behaviour of PE on fBm. They
investigate the distribution of ordinal patterns in fBm of
different orders and, if possible, provide closed formulas for
calculation of pattern distributions as follows:

1) d = 2: The ordinal patterns are equally distributed, more
specifically

pτ12 = pτ21 = 1/2, (6)

such that PE2,τ (BH(t)) = − ln(1/2) for all τ .
2) d = 3: The distribution of ordinal patterns for all τ is

given by

pτ123 =
1

π
arcsin 2H−1 =: u. (7)

For a Gaussian process with stationary increments that
includes fBm, it is

pτj =

{
u if j = (123), (321),
(1− 2u)/4 otherwise, (8)

for all τ , i.e., PE3,τ (BH(t)) is monotonically dependent
on the Hurst parameter H .

3) d = 4: The distribution of ordinal patterns can also be
expressed in a closed formula that can be taken from [13].

4) d > 5: There are no closed formulas.
In previous work, we contribute to the understanding of

the behaviour in the multivariate case, i.e., PPE on mfBm.
Corresponding proofs can be found in [18].

Theorem 1. For order d = 2 and H ∈ (0, 1)m, it holds

PPE(BH(t)) = − ln(1/2). (9)

for all delays τ ∈ N and and variable dimensions m.

Theorem 2. For order d = 3, PPE(BH(t)) is independent of
all delays τ ∈ N, but monotonically dependent on the number
of variables m and the Hurst parameter H ∈ (0, 1)m.

III. RELATED WORK

As it is not possible to establish a total order between two
time points that are vector-valued, i.e., xt ∈ Rm and xt+1 ∈
Rm, there is no trivial generalisation of the PE algorithm to the
multivariate case. While the canonical extensions PPE, MSPE
and MWPE measure the complexity of the individual variables
before pooling the information, there are numerous studies on
additional multivariate variants based on alternative strategies.
Multivariate Permutation Entropy (MvPE) introduced by He et
al. [29] analysis the complexity of the phase space, i.e., ordinal
patterns are established over all variables at a fixed time.
Building on a theoretical foundation provided in [30], [31],
we provide in a previous work an extension of the univariate
ordinal pattern to multidimensionality by matrix assignment as
symbols storing both temporal and phase space information.
However, in an experimental evaluation, we show that the

application of this approach to real data is limited, as the
number of possible matrix assignments explodes due to the
combinatorial possibilities of ordinal patterns [19].

Mapping high dimensional data into low dimensional rep-
resentation can simplify the following learning task in terms
of data compression (reducing processing time and storage
space), visualisation (2D or 3D data are easier to visualise and
interpret), or performance improvement (avoiding the curse
of dimensionality, under-constrained problems and colinearity
to improve the performance of the machine learning model).
To reduce the number of variables m to only one dimension,
Rayan, Mohammad and Ali [32] propose the application of
various distance measures, in particular, Euclidian distance
with reference point (xit=0)mi=1, Manhattan distance with ref-
erence point (xit=0)mi=1, and Euclidian distance with reference
point 0. Consequently, after the dimensionality reduction,
Definition 3 can be used directly for the calculation of PE.
To account for correlations, in previous work, we propose to
reduce the dimension using principal component analysis and
show that the application of the so-called MPE-PCA increases
the accuracy of many predictions for classification on different
real-world data sets [19]. We exploit the use of correlations
in this work to detect cross-correlations between variables of
mfBm, which other methods such as PPE fail to do.

IV. ORDERING THE PRINCIPAL COMPONENTS OF
FRACTIONAL BROWNIAN MOTION

In this section, we recapitulate multivariate permutation
entropy based on principal component analysis (MPE-PCA)
and generalise it from the original work [19]. We then study
the behaviour of MPE-PCA on mfBm with variations of
the Hurst parameter H and cross-correlations to understand
the qualitative behaviour of mfBms, e.g. for solving inverse
problems.

A. Multivariate Permutation Entropy Based on Principal
Component Analysis

Given a multidimensional time series X = ((xit)
m
i=1)Tt=1,

where m is the dimensionality of the time series. MPE-PCA
can be intuitively understood as a transformation of data
into a decorrelated representation, where the total variance
describes some properties of a time series to be obtained by the
transformation. pricipal component analysis (PCA) converts a
set of observations of possibly correlated variables into a set
of values of linearly uncorrelated variables by an orthogonal
transformation. For m-dimensional data X , there are basically
m basis vectors that are orthogonal. The variance of data
points along each basis vector is the total variance of the
data. In particular, applying PCA to data X ∈ Rm×T means
finding a linear mapping V ∈ Rm×m onto a new decorrelated
representation

Z = V TX ∈ Rm×T , (10)

such that the variance of the projected data

Var(Z) =
1

n− 1

∑
i

‖V Txi‖2 (11)
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Algorithm 1: Computation of PCA

Input: Multivariate Time Series Xm×T , where X is
centered, i.e., mean zero

1 Function PCA(X):
2 Σm×m ← compute covariance matrix of X
3 V ΛV −1 ← compute eigendecomposition of Σ with

V = (v1, . . . , vm) and λ1 ≤ λm
4 Zm×T ← compute orthogonal transformation

// see Eq. (10)
5 return Z

is maximal. Then, to find the direction v1 of maximum
variance, we need to solve

max
v1

1

n− 1
‖vT1 X‖2 s.t. vT1 v1 = 1. (12)

Rewriting the objective, we have

1

n− 1
‖vT1 X‖2 =

1

n− 1
vT1 XX

T v1 = vT1 Σv1, (13)

where Σ is the covariance matrix of X . Maximisation under
constraint vT1 v1 = 1 means solving the Lagrangian

f(v1) = vT1 Σv1 − λ1(vT1 v1 − 1) (14)

with its derivative

df(v1) = 2(vT1 Σ− λ1vT1 )dv1. (15)

Setting the derivative to zero implies

Σv1 = λ1v1. (16)

From Eq. (,16) we see that v1 must be an eigenvector of Σ for
the largest eigenvalue. In general, PCA is thus based on eigen-
value analysis, i.e., an eigenvector of the covariance matrix
Cov(X) = Σ corresponds to a basis vector. An appropriate
algorithm to perform PCA is outlined in Algorithm 1 and can
be found in several statistical textbooks, e.g., in [33].

For ordering d vectors xt−(d−1)τ , ..., xt−τ , xt with xi ∈ Rm
based on their values, we propose to use the decorrelated i-th
principal component Zi = (zi,t−(d−1)τ , ..., zi,t−τ , zi,t) with
zi,l ∈ R. The rest of the PE calculation is the same as in
Definition 3 or Definition 4.

Definition 5 ([19]). The multivariate permutation entropy
based on principal component analysis (MPE-PCA) of order
d ∈ N and delay τ ∈ N of a multivariate time series
((xit)

m
i=1)Tt=1, T ∈ N is defined as

MPE-PCAd,τ,i(Z
i) = −

d!∑
j=1

pτ,dj ln pτ,dj , (17)

where pτ,dj is the frequency of ordinal pattern j in the i-th
principal component Zi.

For completeness, we define a pooled version of all principal
components as follows.

Algorithm 2: Computation of MPE-PCA/PPE-PCA

Input: Multivariate Time Series Xm×T , Order d,
Delay τ , Principal Component(s) (i, r)

1 Z ← perform PCA(X) // see Alg. (1)
2 if r == i then
3 return PE(Zi) // see Definition 3
4 else
5 Function pooling(Z,d,τ):
6 Pm×d! ← pooling matrix initialised with zeros
7 for every principal component Zi ∈ Z do
8 for every ordinal pattern j = 1, . . . , d! do
9 c← # time steps with pattern j

10 Pij ← c divided by δ ·m

11 return P

12 Function marginalisation(P):
13 p1×d! ← vector initialised with zeros
14 for every column j = 1, . . . , d! in Pm×d! do
15 pj ← sum up pij
16 return p

17 return PE(p) // see Definition 3

Definition 6. The pooled permutation entropy based on prin-
cipal component analysis (PPE-PCA) of a multivariate time
series X = ((xit)

m
i=1)Tt=1 is defined as PE of the marginal

frequencies pτ,d.j =
∑m
i=1 p

τ,d
ij for j = 1, ..., d! of all principal

components Z ∈ Rm×T and can be calculated as

PPE-PCAd,τ (Z) = −
d!∑
j

pτ,d.j ln pτ,d.j . (18)

Depending on the application, e.g., for classification, it may
be helpful to use only a reduced representation Z ∈ Rr×T
instead of the whole representation Z ∈ Rm×T . This is based
on the assumption that if the first r < m basis vectors cover
a sufficiently large percentage of the total variance, then the
new r basis vectors are sufficient for the information content
of the data. Keeping only the first r PCs of the data X gives
the truncated transformation Zr = V Tr X , where V ∈ Rm×r
is a matrix of weights whose columns are the eigenvectors of
Σ sorted in descending order of the r highest corresponding
eigenvalues and is used for dimensionality reduction. Algo-
rithm 2 for computing MPE-PCA and PPE-PCA can also
be found on Github and Python Package Index (PyPI)1. In
previous work, MPE-PCA corresponds to a one-dimensional
projection, i.e., r = i = 1. Of course, it depends on the data
whether the first principal component also explains “enough
variance”. In [19] we show that on 15 out of 25 different real
multivariate time series data sets from the UEA MTSC archive
[34] we achieve an improvement in accuracy in terms of clas-
sification with the first principal component alone compared
to the standard measures discussed in Section III. For the sake

1https://github.com/marisamohr/mpePy, https://pypi.org/project/mpePy
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of completeness, we analyse all principal components Zi for
i = 1, ...,m and not only i = 1 in the following.

B. Principal Component Analysis Applied to Multivariate
Fractional Brownian Motion

Given a sample of mfBm of variable dimension m, i.e.,
X = ((xit)

m
i=1)Tt=1 ∈ Rm×T . Remember that as in Lemma 1

mfBm marginally is an fBm. PCA converts a set of observa-
tions of possibly correlated variables into a linear combination
of uncorrelated variables. That is, a decomposition is found
such that the matrix-vector multiplication X→ Z = VTX
gives the equations

Z1 = v11X
1 + · · ·+ vm1X

m

Z2 = v12X
1 + · · ·+ vm2X

m

... =
...

Zm = v1mX
1 + · · ·+ vmmX

m

, (19)

where Xi is a single fBm of length T . The variance of Z1 is
Var(Z1) = λ1.

Van Zanten [35] shows that the local almost sure behaviour
of a linear combination of independent fBms is equivalent to
a multiple of a single fBm.

Corollary 1 ([35]). Let X =
∑m
i akX

k, where X1, . . . , Xm

are independent fBms with Hurst parameters H1 < · · · < Hm

and a1, . . . , am ∈ R\{0}.
(i) If X is equivalent to a multiple of an fBm on [0, T ] for

some T > 0, then X is equivalent to a1X
1 and H2 −

H1 > 1/4.
(ii) If H2 − H1 > 1/4 then X and a1X

1 are locally
equivalent.

Thus, if all marginal fBms Xi of mfBm are independent,
and for the Hurst parameters H2 − H1 > 1/4 holds, then
Zi and v1iX

1 from Eq. (19) are locally equivalent. If there
are cross-correlations between the variables of mfBm, PCA
identifies eigenvectors that decorrelate the data and decorate
the behaviour of fBm with a multiple. This results in different
representations or principal components for mfBm with the
same Hurst parameter H and different cross-correlations ρij .

C. Ordinal Pattern Distributions of Principal Components

In general, (permutation) entropy increases with the degree
of disorder and is maximum for absolutely random states. A
time series with Hurst parameter H = 1/2 is called a random
walk, while for Hurst parameter H < 1/2 or H > 1/2 the
increments of (m)fBm are negatively or positively correlated,
respectively. Thus, if the Hurst parameter varies, the entropy
of (m)fBm also varies, i.e., if the Hurst parameter H < 1
increases, the information content of (m)fBm increases due to
strong positive correlations. In case of high cross-correlation
between the variables, the variables adjust their behaviour to
each other as can be seen in Figure 1 (low cross-correlation at
the top, high cross-correlation at the bottom). For example, as
the cross-correlation increases, the steep downward trend of
the 5-th variable in Figure 1(c), dominated by the high self-
similarity or Hurst parameter H = 0.75, changes to a slightly

upward trend in Figure 1(f), adjusted by the remaining vari-
ables with Hurst parameters Hi ∈ [0.35, 0.5] for i = 1, . . . , 4.

Hereafter we restrict ourselves to the case H2−H1 > 1/4.
Since in this paper we study the detection of cross-correlations
using MPE-PCA, we consider two cases:

• ρij = 0: Since performing PCA or decorrelation has
no effect, the distributions of ordinal patterns and the
behaviour of MPE-PCA and PPE-PCA on the principal
components of mfBm are the same as in Section II-C.

• ρij 6= 0: Since the i-th principal component Zi and
v1iX

1 are locally equivalent and each element vij ∈ V
represents a loading, namely the correlation between the
original variable and the principal component, Zi behaves
like an fBm decorated by its loading. As the behaviour
of fBm is directly related to the Hurst parameter H ,
but the distribution of ordinal patterns of order d = 2
does not depend on the Hurst parameter H of an fBm,
neither do MPE-PCA2,τ,i for all τ, i and PPE-PCA2,τ . It
holds MPE-PCA2,τ,i = − ln(1/2) = PPE-PCA2,τ (see
Section II-C 1)). In contrast, PE and PPE of orders d = 3
and d = 4 are monotonically dependent on the Hurst
parameter H (see Section II-C 2) and 3)) and Theorem 2),
i.e., the decorrelation and the loadings, respectively, in-
fluence MPE-PCA and PPE-PCA. Although there are no
closed formulas for d > 4 (see Section II-C, 4)), similar
behaviour is to be expected as in the previous case [18].

In contrast to MPE-PCAi and PPE-PCA, the computations
of PEi on the i-th variable and PPE are independent of the
Hurst parameter H and on cross-correlations, such that these
measures are not able to detect cross-correlations.
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Fig. 3. Comparison of PPE and MPE-PCA of order d = 2 on mfBm.
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Fig. 4. Comparison of PPE and MPE-PCA of order d = 3 (left) and d = 4 (right) on mfBm.

V. EMPIRICAL EVALUATION

In this section, we evaluate the behaviour of MPE-PCA and
PPE-PCA on mfBm in an experimental setting underpinning
our theoretical findings. The following experimental calcula-
tions are based on a simulation of mfBm using Lemma 1
and a corresponding algorithm implemented by Amblard et al.
[20]. The length T = 7500 of mfBms is assumed to be large.
For the simulation of general mfBms, we compare a variation
in Hurst parameter H as well as different cross-correlations
ρi,j = {0.0, 0.8}. In order for Corollary 1 to be satisfied, the
relationship H2 = H1−0.26 or H2,3 = H1−0.26 is chosen for
m = 2 or m = 3 variables, respectively. The time-reversibility
parameter ηi,j is set to 0.1/(1−Hi−Hj). PEi and MPE-PCAi
are calculated on the single-dimensional i-th variable and i-
th principal component, respectively. The visualised values
correspond to the mean of 20 simulated experiments.

Order d = 2. In Figure 3 we compare PPE (top) and
MPE-PCA (middle) of order d = 2 and delay τ = 1 on
mfBms with m = 2 variables and different cross-correlations
ρij = 0.0 (left) and ρij = 0.8 (right). Figure 3(a) shows
a constant entropy with value − ln(1/2) for all variables i,
the pooled version PPE, and Hurst parameters H confirming
Theorem 1. The fluctuations in Figure 3(a)-(d) for increasing
Hurst parameter H result from length restriction T < ∞
in the simulation, i.e., a completely equal distribution of the
ascending and descending patterns can only be expected when
T →∞ converges [36]. At T <∞ the trend is dominated by
high Hurst parameter H and (permutation) entropy decreases.
As PE and PPE of order d = 2 are independent of the Hurst
parameter H as well as the cross-correlation, Figure 3(b), (c)

and (d) are equal to Figure 3(a). Figure 3(e) and (f) confirm
that neither PPE nor MPE-PCA of order d = 2 are able to
detect cross-correlations of the variables.

Orders d = 3 and d = 4. In Figure 4 we compare of
PPE (top) and MPE-PCA (middle) of order d = 3 (left) and
d = 4 (right), respectively, and delay τ = 1 on mfBms with
m = 2 (left) and m = 3 (right) variables, respectively, and
different cross-correlations ρij = {0.0, 0.8}. The fluctuations
with increasing Hurst parameter H can be explained by length
restriction in the simulation, as in the case d = 2. Figure 4(a)-
(d) and (g)-(i) confirm that PE, PPE, MPE-PCA and PPE-PCA
depend monotonically on the Hurst parameter H , i.e., entropy
decreases for increasing H . With Corollary 1, the principal
components are locally equivalent to an fBm decorated by its
loading. Figure 3(e)-(l) confirm that unlike PPE and PPE-PCA
of order d = 2, PPE-PCA of orders d = 3 and d = 4 are able
to detect cross-correlation of variables, since decorrelation of
variables using PCA decorates the behaviour of mfBm.

VI. CONCLUSION AND FUTURE WORK

In this work, we investigate the behaviour of multivariate
permutation entropy based on principal component analysis
(MPE-PCA) and pooled permutation entropy based on princi-
pal component analysis (PPE-PCA) on multivariate fractional
Brownian motion (mfBm) from a theoretical and experimental
point of view. We show that the entropies of the principal com-
ponents are monotonically dependent on the Hurst parameter
H , i.e., entropy decreases as H increases. Thus, MPE-PCA
and PPE-PCA are appropriate for solving inverse problems,
i.e., given an observed realisation of mfBm, the calculation of
MPE-PCA or PPE-PCA provide information about the level
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of H and thus parameters of the generating mfBm. Moreover,
we show that, unlike PPE, MPE-PCA or PPE-PCA of order
d > 2 can uncover large cross-correlations at large Hurst
parameter H . Since information about the Hurst parameter
H and correlations of the variables can be derived single-
handed from MPE-PCA or PPE-PCA, this approach offers
interesting advantages. In fact, this paper does not fully solve
the inverse problem but focuses on the theoretical relationships
that motivate the solution of inverse problems. Experiments
need to be evaluated in a detailed study to assess performance,
especially compared to other point estimators mentioned in the
introduction.

The main limitation of PCA is that it projects the data
linearly, with many real-world challenges containing complex,
non-linear relationships between variables. Since this work ex-
amines counts or sums of ordinal patterns, a linear relationship
may be reasonable. Nevertheless, it remains to be investigated
whether, for example, kernel PCA, independent component
analysis or functional PCA analysis can improve the results.
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[36] A. Dávalos, M. Jabloun, P. Ravier, and O. Buttelli, “Theoretical study
of multiscale permutation entropy on finite-length fractional gaussian
noise,” in 2018 26th European Signal Processing Conference (EU-
SIPCO), 2018, pp. 1087–1091.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

247


