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Abstract—The Volterra filter is a digital filter that can describe
nonlinearity. In this work, we analyze the dynamic behaviors
of an adaptive signal processing system with the Volterra filter
and a time-varying unknown system by a statistical-mechanical
method. Specifically, assuming the self-averaging property with
an infinitely long tapped-delay line, we derive simultaneous dif-
ferential equations that describe the behaviors of the macroscopic
variables in a deterministic and closed form and obtain the exact
solution by solving them analytically. In addition, the validity of
the derived theory is confirmed by comparison with numerical
simulations.

I. INTRODUCTION

Digital signal processing techniques have been used in var-
ious fields, such as information communication. In particular,
the technique of changing the processing in real time in
accordance with the surrounding conditions is called adaptive
signal processing and is widely used. It is accomplished by
updating the adaptive filter in accordance with the surrounding
environment and the nature of signals.

There are several previous studies in which the behavior
of adaptive filters was analyzed by the statistical-mechanical
method [1]-[4]. They dealt with the case of a linear unknown
system and a linear adaptive filter. However, if the unknown
system is nonlinear, the adaptive filter must also have non-
linearity. One expression of nonlinearity is the Volterra series
expansion. The Volterra filter uses the Volterra kernel of the
Volterra series as a digital filter [5].

In this work, we describe the results of applying the
statistical-mechanical method of online learning to an adaptive
signal processing system consisting of a time-varying non-
linear unknown system and an adaptive Volterra filter [6].
We introduce two macroscopic variables, that is, the cross-
correlation between the unknown system and the adaptive
filter and the autocorrelation of the adaptive filter. Specifically,
on the basis of the self-averaging when the tapped delay
line is assumed to be infinitely long, we derive simultaneous
differential equations of the two variables in a deterministic
and closed form and obtain the exact solution by solving them
analytically.

II. VOLTERRA FILTER

The Volterra filter is a digital filter that can describe non-
linearity and uses the Volterra kernel of the Volterra series
expansion as the filter coefficients. The relation between input
and output of Lth Volterra filter is

Fig. 1. Block diagram of the adaptive system.

y(n) =

N−1∑
k1=0

hk1(n)x(n− k1)

+

N−1∑
k1=0

N−1∑
k2=0

hk1,k2
(n)x(n− k1)x(n− k2)

+ · · ·

+

N−1∑
k1=0

...

N−1∑
kL=0

hk1,k2,...,kL
(n)

L∏
i=1

x(n− ki). (1)

Here, x(n) and y(n) are the input signal and output signal of
time step n, respectively. hk1,..,kL

(n) is the Lth Volterra coef-
ficient. In the adaptive Volterra filter, each Volterra coefficient
hk1,..,kL

(n) is updated. Volterra coefficients are symmetric,
i.e., in the case of second-order coefficients,

hk1,k2
(n) = hk2,k1

(n) (2)

holds [5].

III. ANALYTICAL MODEL

The Volterra filter applied to adaptive signal processing is
called the adaptive Volterra filter. Various methods used for
a simple linear adaptive filter, such as the gradient method
and the recursive least-squares (RLS) method, can be used
to update the adaptive Volterra filter. We analyze the case in
which the least mean squares (LMS) algorithm, which is one
of the gradient methods, is used for updating.

Figure 1 shows a block diagram of adaptive signal pro-
cessing. In Fig. 1, P and H denote the unknown system
and adaptive filter, respectively. Here, x(n) and d(n) are
the input and output of the unknown system P, u(n) is the
output of the adaptive filter H, ξ(n) is the background noise,
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and e(n) is the error signal. P and H are represented by a
Volterra filter with tap length N and only have the second-
order coefficients, p(n) = {pk1,k2(n)}, h(n) = {hk1,k2(n)},
k1, k2 = 0, 1, ..., N − 1. The initial matrix p(0) is generated
independently from a distribution with a mean of zero and a
variance of unity. The initial matrix h(0) is set to be a zero
matrix.

The unknown system has a time-varying property[7] that
satisfies

p(n+ 1) = a
1

N2 p(n) +

√
1− a

2
N2 w(n), (3)

where each element wk1,k2(n) of w(n) is independently gen-
erated from a distribution with a mean of zero and a variance
of unity at every time step. a is a parameter that controls the
rate of the time variation of the unknown system. Here, a = 1
corresponds to the time-invariant unknown system. Note that
Eq. (3) means that the norm of the coefficient vector p(n)
of the unknown system P is kept constant in the mean sense,
although the unknown system itself is time-varying.

The reference signal is shifted through the tapped delay
line in the Volterra filter. Therefore, the tap input vector is
x(n) = [x(n), x(n−1), · · · , x(n−N+1)]⊤. The input signal
x(n) is independently generated from a distribution with a
mean of zero and a variance of 1/N at every time step. The
outputs d(n) and u(n) of P and H, respectively, in time step
n are

d(n) =

N−1∑
k1=0

N−1∑
k2=0

pk1,k2
(n)x(n− k1)x(n− k2), (4)

u(n) =

N−1∑
k1=0

N−1∑
k2=0

hk1,k2
(n)x(n− k1)x(n− k2). (5)

The error signal e(n) is generated by adding an independent
background noise ξ(n) to the difference between d(n) and
u(n). That is,

e(n) = d(n)− u(n) + ξ(n). (6)

Here, the background noise ξ(n) is independently generated
from a distribution with a mean of zero and a variance of σ2

ξ

at every time step.
Coefficients of the adaptive Volterra filter h(n) are updated

by the LMS algorithm. The LMS algorithm is a method
proposed by Widrow and Hoff for minimizing the root mean
square error based on the steepest descent method [8]. There-
fore, the update formula is

h(n+ 1) = h(n) + µe(n)x(n)x(n)⊤, (7)

where µ is the step size parameter.

IV. THEORY

In this section, we describe a theoretical analysis of the
behaviors of the adaptive Volterra filter by a statistical-
mechanical method. The MSE of the model used can be

calculated with Eq. (6) as follows:

⟨e2(n)⟩ = ⟨(d(n)− u(n) + ξ(n))2⟩
= ⟨d2(n)⟩+ ⟨u2(n)⟩ − 2⟨d(n)y(n)⟩+ σ2

ξ . (8)

In this work, ⟨·⟩ denotes the expectation with respect to the
tap input vector x(n). Note that the background noise ξ(n) is
independent of the other stochastic variables and its variance
σ2
ξ is used. Next, we focus on each term of Eq. (8). From Eq.

(4), we obtain

⟨d2(n)⟩ =

⟨
N−1∑
k1=0

N−1∑
k2=0

N−1∑
k′
1=0

N−1∑
k′
2=0

pk1,k2(n)pk′
1,k

′
2
(n)

× x(n− k1)x(n− k2)x(n− k′1)x(n− k′2)

⟩
. (9)

The right-hand side of Eq. (9) can be divided into the following
four cases and others [9],[10].

k1 = k2 = k′1 = k′2 (10)
k1 = k′1, k2 = k′2, k1 ̸= k′2 (11)
k1 = k2, k

′
1 = k′2, k1 ̸= k′1 (12)

k1 = k′2, k2 = k′1, k1 ̸= k2 (13)

Note that we need not consider cases other than the above four
cases because their expectations are zero owing to the products
of independent components. The means of the input signals
corresponding to Eqs. (10)–(13) are respectively as follows:

N−1∑
k1=0

⟨x4(n− k1)⟩ = O

(
1

N2

)
, (14)

N−1∑
k1=0

N−1∑
k2=0
k2 ̸=k1

⟨x2(n− k1)x
2(n− k2)⟩ =

1

N2
, (15)

N−1∑
k1=0

N−1∑
k′
1=0

k′
1 ̸=k1

⟨x2(n− k1)x
2(n− k′1)⟩ =

1

N2
, (16)

N−1∑
k1=0

N−1∑
k2=0
k2 ̸=k1

⟨x2(n− k1)x
2(n− k2)⟩ =

1

N2
. (17)
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Now, we can rewrite Eq. (9) as

⟨d2(n)⟩ = O

(
1

N2

) N−1∑
k1=0

p2k1,k1
(n)

+
1

N2

N−1∑
k1=0

N−1∑
k2=0
k2 ̸=k1

p2k1,k2
(n)

+
1

N2

N−1∑
k1=0

N−1∑
k′
1=0

k′
1 ̸=k1

pk1,k1(n)pk′
1,k

′
1
(n)

+
1

N2

N−1∑
k1=0

N−1∑
k2=0
k2 ̸=k1

pk1,k2(n)pk2,k1(n). (18)

Assuming N → ∞, from Eq. (2), the second and fourth terms
only remain. Therefore, we can rewrite Eq. (18) as

⟨d2(n)⟩ =
2

N2

N−1∑
k1=0

N−1∑
k2=0
k2 ̸=k1

p2k1,k2
(n) = 2. (19)

We can also obtain ⟨u2(n)⟩ and ⟨d(n)u(n)⟩ in Eq. (8) by
the same procedure as that for ⟨d2(n)⟩:

⟨u2(n)⟩ =
2

N2

N−1∑
k1=0

N−1∑
k2=0
k2 ̸=k1

h2
k1,k2

(n), (20)

⟨d(n)u(n)⟩ =
2

N2

N−1∑
k1=0

N−1∑
k2=0
k2 ̸=k1

pk1,k2
(n)hk1,k2

(n). (21)

Next, we introduce the macroscopic variables R(n) and
Q(n) respectively defined as

R(n) =
2

N2

N−1∑
k1=0

N−1∑
k2=0

pk1,k2(n)hk1,k2(n), (22)

Q(n) =
2

N2

N−1∑
k1=0

N−1∑
k2=0

h2
k1,k2

(n). (23)

From Eqs. (19)–(21), we can express the MSE (8) in terms of
R(n) and Q(n) as

⟨e2(n)⟩ = 2 + 2Q(n)− 4R(n) + σ2
ξ . (24)

Now, we derive the simultaneous differential equations that
describe the dynamic behaviors of the macroscopic variables
R(n) and Q(n). From Eqs. (3) and (7),

pk1,k2(n+ 1) =a
1

N2 pk1,k2(n) +

√
1− a

2
N2 wk1,k2(n), (25)

hk1,k2(n+ 1) =hk1,k2(n) + µe(n)x(n− k1)x(n− k2).
(26)

By multiplying Eq. (25) by Eq. (26) and summing it over k1
and k2, we can obtain

N−1∑
k1=0

N−1∑
k2=0

pk1,k2
(n+ 1)hk1,k2

(n+ 1)

= α
1

N2

N−1∑
k1=0

N−1∑
k2=0

pk1,k2
(n)hk1,k2

(n)

+ µe(n)α
1

N2

N−1∑
k1=0

N−1∑
k2=0

pk1,k2(n)x(n− k1)x(n− k2)

+

√
1− α

2
N2 w(n)

N−1∑
k1=0

N−1∑
k2=0

(
hk1,k2

(n)

+ µe(n)x(n− k1)x(n− k2)
)
. (27)

This can be rewritten as follows using Eqs. (4) and (22):

N2R(n+ 1)

= a
1

N2 N2R(n)

+ a
1

N2 µe(n)d(n)

+

√
1− a

2
N2 w(n)

N−1∑
k1=0

N−1∑
k2=0

(
hk1,k2

(n)

+ µe(n)x(n− k1)x(n− k2)
)
. (28)

Note that the first terms on both sides of Eq. (28) are both
O(N2) but the second term on the right-hand side is O(1).
Thus, to change R(n) by O(1), O(N2) updates are needed.
Therefore, we use the value t, which is n normalized by
N2, as the time scale. By updating Eq. (28) N2dt times in
an infinitely small time dt, we can obtain N2dt equations,
as shown in Eq. (29). Note that terms that include w(n)
are omitted since their expectations are zero. By multiplying
Eq. (29) by a−

1
N2 , a−

2
N2 , · · · , a−

i
N2 , · · · , a−

N2dt−1

N2 , a−
N2dt
N2

in order from the top and summing all equations, we can obtain

a−dtN2R(n+N2dt) =

N2R(n) + µ

N2dt−1∑
i=0

a−
i

N2 e(n+ i)d(n+ i)

 .

(30)

Assuming N → ∞, the second term on the right-hand side
of Eq. (30) is replaced by its mean from self-averaging [3] as
follows:

N2R(t) +N2dR(t) =

adtN2R(t) + adtµ⟨e(n)d(n)⟩
N2dt−1∑

i=0

a−
i

N2 . (31)

We define the change in R(t) by updating N2dt times as
dR(t). From Eq. (31), we obtain

dR(t)

dt
=

(
adt − 1

dt

)
R(t) +

adtµ

N2dt
⟨e(n)d(n)⟩

N2dt−1∑
i=0

a
i

N2 .

(32)
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N2dt



N2R(n+ 1) = a
1

N2 N2R(n) + a
1

N2 µe(n)d(n)

N2R(n+ 2) = a
1

N2 N2R(n+ 1) + a
1

N2 µe(n+ 1)d(n+ 1)

...
...

...

N2R(n+N2dt) = a
1

N2 N2R(n+N2dt− 1) + a
1

N2 µe(n+N2dt− 1)d(n+N2dt− 1)

(29)

Considering dt → 0, we obtain

dR(t)

dt
= (ln a)R(t) + µ⟨e(n)d(n)⟩. (33)

From Eqs. (19), (21), (22), and (33), the differential equation
for R can be obtained as

dR(t)

dt
= (ln a− 2µ)R(t) + 2µ. (34)

Next, we derive the differential equation for Q(n). By
squaring both sides of Eq. (26), and summing over k1 and
k2, we can obtain

N−1∑
k1=0

N−1∑
k2=0

h2
k1,k2

(n+ 1)

=

N−1∑
k1=0

N−1∑
k2=0

h2
k1,k2

(n)

+ 2µe(n)

N−1∑
k1=0

N−1∑
k2=0

hk1,k2(n)x(n− k1)x(n− k2)

+ µ2e2(n)

N−1∑
k1=0

N−1∑
k2=0

x2(n− k1)x
2(n− k2). (35)

This can be rewritten as follows using Eqs. (5) and (23):

N2Q(n+ 1) = N2Q(n)

+ 2µe(n)u(n)

+ µ2e2(n)

N−1∑
k1=0

N−1∑
k2=0

x2(n− k1)x
2(n− k2).

(36)

Similarly to the case of R, by updating N2dt times in an
infinitely small time dt and summing all equations, we can
obtain

N2Q(n+N2dt) =

N2Q(n) + 2N2dtµ ⟨e(n)u(n)⟩+N2dtµ2
⟨
e2(n)

⟩
.

(37)

Using the value t = n/N2 as the time scale and defining the
change in Q(t) by updating N2dt times as dQ(t), we can
obtain

N2dQ(t) = 2N2dtµ ⟨e(n)u(n)⟩+N2dtµ2
⟨
e2(n)

⟩
. (38)

Considering dt → 0, we can obtain

dQ(t)

dt
= 2µ ⟨e(n)u(n)⟩+ µ2

⟨
e2(n)

⟩
. (39)

From Eqs. (21)–(24), the differential equation for Q can be
obtained as

dQ(t)

dt
= 4µ(R(t)−Q(t)) + µ2

(
2 + 2Q(t)− 4R(t)) + σ2

ξ

)
.

(40)

The derived differential equations for R(t) and Q(t) (Eqs.
(34) and (40), respectively) can be solved analytically, and we
obtain

R(t) =
2µ

2µ− lnα

(
1− αte−2µt

)
, (41)

Q(t) =
8µ2(1− µ)

(2µ− lnα)(2µ(1− µ) + lnα)

×
(
−αte−2µt + e2µ(µ−2)t

)
+

8µ(1− µ) + µ(2 + σξ
2)(2µ− lnα)

2(2µ− lnα)(2− µ)

×
(
1− e2µ(µ−2)t

)
. (42)

By substituting these equations into Eq. (24), we can obtain
the exact solution of the MSE as⟨

e2(t)
⟩
=2 + 2Q(n)− 4R(n) + σ2

=− 2(B − 2A)αte−2µt + 2(B − C)e2µ(µ−2)t

+ 2 + 2C − 4A+ σξ
2, (43)

where A, B, and C are respectively as follows:

A =
2µ

2µ− lnα
, (29)

B =
8µ2(1− µ)

(2µ− lnα)(2µ(1− µ) + lnα)
, (30)

C =
8µ(1− µ) + µ(2 + σξ

2)(2µ− lnα)

2(2µ− lnα)(2− µ)
. (31)

V. RESULTS AND DISCUSSION

We compare the theoretical and simulation results. Figure
2 shows the learning curves obtained theoretically and by
simulation. The conditions are µ = 0.1, σ2

ξ = 0, and
a = 0.5, 0.7, 0.9, 1.0. In the figure, the solid lines denote the
theoretical results and the symbols denote the results of the
numerical simulations. In the numerical simulations, the tap
length was set to N = 100. Figure 2 shows that the theoretical
results agree with the simulation results, so the theory explains
the behavior of MSE well. In addition, it can be seen that
MSE increases as the time variation of the unknown system
increases. This is considered to be due to the delay in following
the adaptive filter.
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Fig. 2. Learning curves (σ2
ξ = 0，µ = 0.1, a = 0.5, 0.7, 0.9, 1.0).

Fig. 3. Learning curves (σ2
ξ = 0，µ = 0.3, a = 0.5, 0.9, 1.0).

Figure 3 shows the learning curves obtained theoretically
and by simulation with varying tap length N . The conditions
are µ = 0.3, σ2

ξ = 0, and a = 0.5, 0.9, 1.0. In the
figure, the solid lines denote the theoretical results and the
symbols denote the results of the numerical simulations. In the
numerical simulations, the tap length was set to N = 10, 100.
It can be seen that when the tap length N is small, an error
occurs between the numerical simulations and the theory. This
is considered to be due to the finite-size effects of the tap
length N . From the above results, it was confirmed that the
exact solution of the MSE derived in this work is in good
agreement with the results of the numerical simulations.

VI. CONCLUSIONS

In this work, we described the results of applying the
statistical-mechanical method of online learning to an adap-
tive signal processing system consisting of a time-varying
nonlinear unknown system and an adaptive Volterra filter.
We introduced two macroscopic variables, that is, the cross-
correlation between the unknown system and the adaptive filter
and the autocorrelation of the adaptive filter. Specifically, on
the basis of the self-averaging when the tapped delay line
was assumed to be infinitely long, we derived simultaneous
differential equations of the two variables in a deterministic
and closed form and obtained the exact solution by solving
them analytically. The obtained exact solution was compared

with the numerical simulations, and it was found that the
agreement was good even when parameter a, which controls
the rate of the time variation of the unknown system, was
varied. Furthermore, it was confirmed that as a increases, the
adaptive filter is delayed and MSE increases, and when the tap
length N is small, the finite-size effects cause errors between
the theory and the numerical simulations.
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