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Abstract—The successful deployment of wireless smart trans-
ducers in monitoring and control applications is conditioned by
their limited power budget. However, the high impact of sampling
rate on the overall power consumption of systems dealing with
sparse signals can be reduced by introducing a low rate random
sampling scheme based on compressive sensing. Although the
reconstruction of frequency-sparse signals is a widely studied
problem and solutions based on greedy and relaxation methods
exist, their performance is degraded in presence of spectral
leakage, which affects the sparsity of the signal representation
and consequently, its estimation accuracy. In this paper a two-
stage optimization approach, called Opti2, is proposed for the
reconstruction of periodic signals that can be expressed in terms
of fundamental frequency and harmonics. In the first stage, the
estimation provided by one of the well-known sparse optimization
algorithms is found and used as input to the second stage, where a
constrained non-linear optimization problem is solved iteratively.
The evaluation of the proposed method demonstrates that it
outperforms existing approaches in terms of accuracy, showing
its robustness to noise and compression rate.

Index Terms—compressive sampling, spectral leakage, recov-
ery algorithm, periodic signals

I. INTRODUCTION

Today, many applications are in favor of wireless smart
transducers, which are typically powered by batteries and
energy harvesting technology with a limited capacity. In order
to minimize the energy consumption in the sensor node, a
more effective sampling strategy based on compressive sensing
(CS) can be introduced, which reduces the sampling rate while
preserving the information content of the signal when it has a
sparse expansion.

Instead of acquiring N samples of the signal, in a CS
system a set of M � N measurements is generated by a
linear dimensionality reduction of the form y = Φs, where
Φ ∈ RM×N is the measurement matrix and s ∈ RN is a finite
length representation of the signal. The sparse representation
can be in terms of a frame or dictionary Ψ, given by s = Ψx,
meaning that x has only κ out of N nonzero coefficients or
it can be represented in terms of its largest κ coefficients
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without a significant loss. Stable recovery of sparse signals can
be guaranteed from just M = O(κ log(N/κ)) measurements
via convex optimization or iterative greedy algorithms, when
the sensing matrix A = ΦΨ obeys the Restricted Isometry
Property (RIP) and maximal incoherence between the pairs
(Φ,Ψ) is achieved [1], [2].

In many applications, the sparse representation is in the
frequency-domain and the signals are referred as spectrally
sparse. Unfortunately, frequency-sparse signals are sparse with
respect to the discrete Fourier transform (DFT) only if they
can be expressed as a superposition of sinusoids with fre-
quencies appearing in the lattice of those in the DFT. In
practice, such signals are rarely encountered and a DFT
frame of redundancy should be introduced [3], [4]. Several
recovery algorithms have been developed [3]–[7] to improve
the performance of the existing approaches and to extend the
recovery guarantees to redundant and coherent dictionaries.
The potential of `1-analysis for recovery of signals from
undersampled data, which are sparse in a redundant dictionary,
is studied in [4]. In [3], a coherence inhibition model is
introduced, resulting in the sparse iterative hard thresholding
(SIHT) algorithm that avoids dictionary elements with high
coherence. Alternatively, algorithms based on band exclusion
and local optimization techniques are proposed in [5], [6]
to deal with highly coherent sensing matrices, resulting in
the band-excluded local optimization orthogonal matching
pursuit (BLOOMP). In [7], the band-excluded interpolating
subspace pursuit (BISP) algorithm is proposed. It combines the
band exclusion and polar interpolation functions in a greedy
approach to improve the limitations due to the coherence and
the discretization of the frequency parameter space. The polar
interpolation function is based on the continuous basis pursuit
(CBP) technique, proposed in [8], which is combined with
orthogonal matching pursuit (OMP) in a two-stage approach
to account for continuous-valued frequency estimates in [9].

Most of the previous contributions focused on the frequency
estimation problem. However, some applications also require
an accurate estimation of the amplitude and phase. In vibration
monitoring for example, which allows to prevent equipment
failures, the estimation accuracy of vibrating signal parameters
is essential to correctly identify structural defects before the
system reaches a critical state. In rotating machinery, the
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varying transmission path of the vibration response collected
by a stationary sensor can be described as a periodic function,
which helps to identify electromechanical failures related to
the rotational speed of the machine [10]. Similarly, in power
line measurements, the harmonic content of current or voltage
waveforms should be determined at selected points of the
network for power quality analysis [11]. As periodic signals
are common in such applications, this paper focuses on the
reconstruction of periodic signals that can be expressed in
terms of its fundamental frequency and harmonics. A two-
stage recovery approach to account for a high accuracy signal
estimation is proposed. In the first stage, one of the existing
reconstruction techniques for compressible signals is employed
and used as input to the second stage, where a nonlinear
optimization problem is iteratively solved to improve the
estimation of the signal’s parameters. Experimental results
show that our approach outperforms the previously proposed
algorithms for spectrally sparse signal recovery with a rela-
tively low computational effort.

II. COMPRESSIVE SENSING FOR PERIODIC SIGNALS

Typically, periodic signals can be expressed in terms of the
fundamental frequency and harmonics, as a superposition of
K sinusoidal waveforms, with continuous time representation
given by

s(t) =

K∑
k=1

ak sin (2πfkt+ θk) (1)

where ak, fk and θk are the amplitude, frequency and phase
of each sinusoid, respectively. The fundamental frequency is
given by f1 and f2, f3, . . . , fK are positive integer multiples of
the fundamental frequency, then fk = k ·f1, for k = 2, . . . ,K.

Let us consider s ∈ RN a finite length discrete repre-
sentation of the signal model in (1). Such signals have a
κ-sparse representation in the DFT domain, with κ = 2K,
only when the sinusoids have integral frequencies, i.e. they
can be expressed as integer multiples of the frequency step
size δ = fs/N in the DFT basis Ψ ∈ CN , for a given
sampling rate fs. Unfortunately, in the general case of non-
integral frequencies, the DFT coefficients do not present the
same sparsity properties due to the spectral leakage. It is worth
recalling that DFT coefficients can be found by sampling
the frequency-domain convolution of the discrete-time Fourier
transform (DTFT) and the Dirichlet kernel, which describes
the leakage effect due to the finite length sequence.

One way to overcome this problem is to introduce a
redundant DFT frame or dictionary [3], [4], [6]. Such dic-
tionary corresponds to a finer discretization of the Fourier
representation, which can be seen as sampling at more closely
spaced intervals. The DFT frame Ψp with redundancy factor
p ∈ N contains Np = p ·N vectors and is defined as

Ψp =
[
e(ω1) e(ω2) . . . e(ωNp

)
]
, (2)

where each column vector e(ω) ∈ CN has elements en(ω) =
1√
N
ejωn, 1 ≤ n ≤ N and ω ∈ [0, 2π].

To take advantage of the sparsity property, a CS framework
is employed where the signal is acquired by a reduced set of
M � N linear measurements of the form

y = Φs + n, (3)

where Φ is a [M×N ] measurement matrix that should satisfy
certain conditions [12] and n accounts for additive white noise
in the measurement process with zero-mean and variance σ2

n.
Considering that s has a sparse representation s = Ψpx in
the redundant dictionary Ψp, optimal recovery of the κ-sparse
signal x ∈ CNp from the compressed measurements y is
feasible, when the elements of the dictionary form an orthonor-
mal basis, and thus are incoherent [13]. Sparse reconstruction
methods can recover x, which has a minimum number of
non-zero elements (i.e. ‖x‖0 ≤ κ), via convex optimization
or greedy algorithms. One of the most popular reconstruction
techniques based on iterative greedy solutions is OMP [14]
due to its low complexity and easy implementation. On the
other hand, basis pursuit denoising (BPDN) [15] and linear
Bregman iterations (LBI) [16] are some of the commonly
used convex optimization techniques. Those are based on
the `1-norm regularized optimization problem and variations,
for which efficient solvers are available [17]. However, the
DFT frame of redundancy in (2) violates the incoherence
requirements. As the redundancy factor p increases, the κ-
sparse approximation x becomes more accurate, but higher
coherence between the frame vectors is presented. To tackle
this issue, the previously mentioned algorithms for stable
frequency-sparse recovery have been developed [3]–[7].

An estimation of the signal in (1) can be found from the
recovery of the κ-sparse approximation x. Even though most
of the existing algorithms for sparse signal reconstruction can
find a good estimation of the signal, in some applications a
more refined estimation of the signal’s parameters is needed,
which is why a two-stage optimization approach is introduced
below.

III. OPTI2: SIGNAL RECOVERY APPROACH

To obtain an accurate recovery of the signal s, the parame-
ters of each sinusoid ak, fk and θk should be estimated. Taking
advantage of the periodic nature of the signal and its sparse
approximation, we introduce a two-stage method that allows
a precise estimation from the reduced measurements y.

In the first stage, one of the approaches based on the
relaxation of the `0-norm optimization problem is employed.
Although the employed `1-norm as relaxation of the `0-norm
is weaker than `0-norm in ensuring sparsity, `1-regularized
optimization is a convex problem and admits efficient solu-
tion via linear programming techniques. The `1-regularized
optimization is equivalent to the least absolute shrinkage and
selection operator (LASSO) [18] problem, also referred to as
BPDN by the signal processing community. Thus, x can be
recovered solving the following minimization problem

x̂1 = min
x
‖y −Ax‖22 + λ ‖x‖1 , (4)
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where A = ΦΨp is the sensing matrix and λ ∈ [0,∞] is
the regularization parameter that controls the solution path. A
first estimation of the signal ŝ1 = Ψpx̂1 is found and used as
initial guess in the second stage. The support of x̂1, i.e. the
set of indexes associated to its κ non-zero coefficients Sx̂ =
{l : |xl| 6= 0, l ∈ [1, . . . , Np]}, can be used to obtain a first
estimation of the frequencies f̂k = lk · fs/Np. We exploit the
fact that the frequencies f2, f3, . . . fK represent the harmonics
of the fundamental frequency f1. Then we aim to refine the
estimation of f1 and the parameters ak and θk by solving a
non-linear optimization problem in an iterative fashion.

In the second stage, we define a search space around the
estimation of f̂1, which is given by the interval

I =
[
f̂1 − cδ, f̂1 + cδ

]
, (5)

where δ is the frequency resolution and c > 1 is an integer
used to control the dimension of the search space, which
should contain the value of the fundamental frequency (f1 ∈
I). Then, I is split in J subintervals of width ∆ = δ/2 and the
following optimization problem is solved for each subinterval.

(âj , f̂j , θ̂j) = G(y,Φ, fcj ) (6)

= arg min
a,f,θ

‖y −Φs̃‖22

s.t.


ak ≥ 0,

fcj − ∆
2 ≤ f ≤ fcj + ∆

2 ,
0 ≤ θk ≤ π,

 for k = 1, . . . ,K

where s̃ = [s̃1 s̃2 . . . s̃N ] is given by

s̃n =

K∑
k=1

ak sin (2πkfn+ θk), n ∈ {1, 2, . . . N}, (7)

fcj is the central value of the j-th interval and the vectors
a = [a1 a2 . . . aK ] and θ = [θ1 θ2 . . . θK ] comprise the
amplitudes and phases of the sinusoidal waveforms. The set of
parameters which result in the minimum squared error is then
selected and used for estimating ŝ. The number of sinusoids
composing the signal s is generally unknown, then K in (7)
is assumed to be the order of the highest harmonic component
that can be detected for the specified sampling rate, i.e. K =⌈

fs
2f1

⌉
. For instance, if a signal with the fundamental frequency

f1 = 1 kHz and the sampling rate fs = 10 kHz are considered,
then K is set to 5. The proposed approach is summarized in
Algorithm 1.

It is worthy to note that in the first stage it is possible to
use either a greedy iterative algorithm or convex optimiza-
tion approach. The performance of the proposed approach
is determined by the accuracy of the first estimation. If the
first estimation of the fundamental frequency fails, the second
stage will also provide a poor result. Nevertheless, studies have
shown that the existing sparse recovery techniques provide a
reliable reconstruction of the signal.

IV. SIMULATION RESULTS

The performance of the proposed approach is evaluated
through a set of numerical experiments that have been carried

Algorithm 1: Opti2
Input: Compressed measurements y, measurement

matrix Φ, redundant frame or dictionary Ψp

and frequency resolution δ
Output: Reconstructed signal ŝ

1 A = ΦΨp, ∆ = δ/2

2 Find x̂1 using (4) → ŝ1 = Ψpx̂1, f̂1 = l1 · fs/Np

3 I = [fImin
, fImax

] where
fImin

= f̂1 − cδ, fImax
= f̂1 + cδ

4 Split I in j subintervals I =
⋃J

j=1 [fjmin
, fjmax

)
where fjmin = fImin + (j− 1)∆, fjmax = fImin + j∆

5 for j = 1 to J do
6 fcj = (fjmin + fjmax)/2

7 (âj , f̂j , θ̂j) = G(y,Φ, fcj ) using (6)
8 error(j) = ‖y − Φŝj‖22
9 end

10 jmin = arg minj error
11 (â, f̂ , θ̂) = (âjmin

, f̂jmin
, θ̂jmin

)

12 ŝ =
∑K

k=1 âk sin (2πkf̂n+ θ̂k)

out in Matlab programming environment. The performance is
measured in terms of the mean squared error (MSE) of the
estimated signal ŝ via Monte Carlo (MC) experiments and
averaged over nMC = 30 independent trials.

MSE =
1

nMC

nMC∑
i=1

1

N
‖ŝ− s‖22 . (8)

An observation interval of 30 ms and a sampling rate fs =
10 kHz are considered for the simulated data, then discrete
signals of length N = 300 containing K = 4 sinusoidal
waveforms are generated. The amplitudes and fundamental fre-
quency are selected uniformly at random at each experiment,
while the phases are assumed to be in the interval [0, π]. A
DFT frame with redundancy factor p = 5 is considered and the
measurement matrix Φ ∈ RM×N is assumed to be Gaussian,
which guarantees that the sensing matrix fulfills the RIP [19].
The reduced set of measurements y from which the signal of
interest is recovered, is generated using (3).

Opti2 is compared with state-of-the-art methods to recon-
struct sparse signals: BPDN, LBI, l1-analysis, OMP+CBP,
BLOOMP and BISP. The evaluated approaches aim to recover
the sparse representation x̂, from which the signal is obtained
by ŝ = Ψpx̂, except l1-analysis which directly finds the
estimation ŝ. To solve the non-linear optimization problem
in (6), the built-in Matlab function fmincon was used, where
fcj , âk = max |ŝ1| and θ̂k = 0, for k = 1, . . . ,K were used
as initial guess. The toolbox [20] was employed for solving
(4) and [21], for the convex problems in l1-analysis and CBP.
On the other hand, the codes for the implementation of LBI,
BLOOMP and BISP are available in [22], [23] and [24],
respectively.

Fig. 1 depicts the results of the first experiment, where a
fixed number of measurements M = 150 and varying signal-

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

266



−5 0 5 10 15 20
10−2

10−1

100

101

102

SNR(dB)

M
SE

BPDN
LBI
l1-analysis
OMP+CBP
BLOOMP
BISP
Opti2

Fig. 1. Performance comparison of different reconstruction algorithms in
terms of the MSE vs. SNR.

to-noise ratio (SNR) from −5 to 20 dB are considered. Noisy
observations from the measurement model described in (3) are
simulated, where the SNR is defined as the ratio between the
power of the compressed noiseless measurements and the noise
variance σ2

n. The solid lines depict algorithms based on convex
optimization while the dashed lines depict the ones based
on greedy approaches. It can be observed that for low SNR
values, BPDN shows the worst performance followed by LBI
and l1-analysis. However, for higher SNR values l1-analysis
presents the worst performance. On the other hand, BLOOMP,
BISP and OMP+CBP have comparable performance, where
the latter slightly outperforms the other two. Note that Opti2
outperforms all the evaluated approaches for the considered
SNR region, reducing the MSE of the estimated signal in the
second optimization step and overcoming the effects caused
by the spectral leakage.

To analyse the accuracy of the estimated parameters â,f̂ and
θ̂, the MSE is evaluated after the first and second stages. The
vectors â and θ̂ comprise the estimations of the amplitudes âk
and phases θ̂k corresponding to each sinusoid in (7), while f̂
provides the estimation of the fundamental frequency. The set
Sx̂ is used to obtain the estimation of the parameters in the
first stage. An initial estimation of the fundamental frequency
is found by f̂1 = l1 · fs/Np, with l1 ∈ Sx̂ being the index
associated with the highest non-zero coefficient. First estimates
of amplitude and phase are computed as â1 = |x̂S | and θ̂1 =
arg(x̂S) respectively, where the coefficients x̂S are determined
by the least-squares solution

x̂S =
1

Np

(
Ψp

H
S ΨpS

)−1

Ψp
H
S ΦTy, (9)

with ΨpS been obtained by keeping the columns of Ψp

indexed by Sx̂. The estimation of the individual parameters
in the second stage are directly obtained from (6). The
results in Table I involve 100 independent experiments for
noisy observations with 20 dB of SNR. It can be noticed
that the second optimization stage significantly improves the
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Fig. 2. Performance comparison of different reconstruction algorithms in
terms of the MSE vs. M.

estimations obtained in the first stage, for both parameters and
signal.

TABLE I
MSE OF THE ESTIMATED PARAMETERS AND THE ESTIMATED SIGNAL AT
EACH STAGE OF THE PROPOSED APPROACH, CONSIDERING SNR = 20dB

MSE
Amplitude (â) Frequency (f̂ ) Phase (θ̂) Signal (̂s)

BPDN 0.1280 4.1163 1.1038 0.1253
Opti2 0.0025 0.4844 0.0928 0.0356

For the second experiment, the MSE is evaluated in terms
of the number of measurements M . We set M = βN , where
β ∈ (0, 1] and a range of subsampling ratios β is explored with
noiseless measurements to verify the compression level that
allows a successful estimation. The results are shown in Fig. 2.
Opti2 achieves the best performance, converging to a minimum
MSE with about 20% of compression rate. BPDN outperforms
the other approaches, improving its estimation accuracy as the
number of measurements increases. For a small number of
measurements, l1-analysis presents the worst behavior. LBI
and the greedy approaches present a comparable performance,
which do not improve considerably with an increasing number
of measurements.

The average computation time of the evaluated approaches
is listed in Table II, considering a scenario with SNR = 20 dB
and M = 150 measurements. The proposed approach is faster
than BISP and l1-analysis, which becomes extremely slow for
higher dimensions (N,M ). It should be taken into account
that the computation time of Opti2 includes the delay of the
first optimization step (in this case BPDN). Consequently, if
the processing time should be reduced, a faster approach as
LBI or OMP can be employed to get the first estimation of the
signal. The second optimization step carry out in Opti2 does
not increase the computation time considerably. Note that the
computations were performed on a notebook featuring an Intel
i7-8550U 4 Core processor.
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TABLE II
AVERAGE RUNTIME IN SECONDS

Algorithm Time (s)
BPDN 4.9796

LBI 0.5075
l1-analysis 183.0004
OMP+CBP 1.3960
BLOOMP 0.1332

BISP 12.1184
Opti2 6.5188

V. CONCLUSIONS

In this paper, we propose a two-stage reconstruction ap-
proach, referred as Opti2, to improve the estimation of periodic
signals that can be expressed as a sum of real-valued sinusoids.
The estimation provided by one of the well-established recov-
ery techniques for compressed measurements is used as first
estimation, which gets refined in a second stage by iteratively
solving a non-linear optimization problem. Experimental re-
sults show that Opti2 outperforms reported techniques used
in spectral compressive sensing, achieving accurate results in
terms of the MSE.
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