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Abstract—This paper proposes the nonlinear SVM-type auto-
matic decision algorithm in a noisy environment for hammering
test system. The proposed method (i) suppresses the noise which
is many at low frequency by using a Butterworth type high pass
filter, and (ii) extraction of hammering signal from noise signal
estimation based on minimum statistics method and Kalman
filter algorithm with colored driving source. Furthermore, (iii)
finding the optimal discriminant boundary using a nonlinear
support vector machine with the first formant and first formant
frequency as features obtains from cepstrum analysis results, and
(iv) judged and evaluated from an automatic decision algorithm
considering time change of feature. The effectiveness of the
proposed method was demonstrated by computer simulation.

I. INTRODUCTION

Hammering test is one of the non-destructive tests used to
determine whether or not concrete structures, such as bridges
and tunnels, are damaged by cracking or peeling. In recent
years, there have been accidents in Japan where people have
died due to collapsing ceiling panels in tunnels[1]. The cause
of this accident was the dropping, loosening, and corrosion of
the anchor bolts and cracks of the protective concrete due to
insufficient inspection and test by hammering test. After this
accident, the importance of hammering test was reaffirmed,
and problems with hammeing test began to be pointed out.

The first problem is the decrease in sound volume due to
the change of the inspection hammer. Until now, hammering
tests have been carried out with a regular hammer, but it is
difficult to make accurate judgments because regular hammer
inspections are difficult to carry out in high places and narrow
areas. To overcome this, a new hammer was developed. The
angle and length of the tip of the hammer can be adjusted,
enabling inspection in high places and narrow areas. However,
this inspection using the hammer also caused the disadvantage
of low-hitting volume because the sound was generated by
rolling the hammer.

The second problem is that the noise is superimposed on
the hammering sound. Most hammering tests in Japan are

restricted, but not stopped. As a result, the test environment is
one in which vehicles are constantly on the road. In addition,
a new wall lifting robot is currently being researched that can
climb walls and extract hammering sounds. Because of this,
the noise generated by the traveling vehicles that reach the
inspectors will increase even more, since there will be no need
to even restrict the traffic.

The third problem is the lack of inspectors who can deter-
mine the healthy part and damaged part with high accuracy.
An inspector with a high ability to distinguish between the
sound of healthy parts and the sound of damaged parts of a
hammering sound can distinguish between high and low fre-
quencies, large and small hammering amplitudes, and different
tones. Conversely, if the above capabilities are not high, it is
not possible to determine the healthy part and damaged part
with high accuracy.

II. PREVIOUS METHOD

In [2], the effect of the presence or absence of defects on
the sound is discussing by conducting a hammering test of
actual bridges with clear signs of flaking and delamination.
In this previous study, to evaluate the sensitivity of the output
to the input, (i) the amplitude ratio is obtained by dividing
the maximum sound pressure at each hitting position by the
maximum load obtained by the impulse hammer. (ii) The
frequency spectrum of sound pressure differs depending on
the size and condition of the defect, making it difficult to
determine between healthy and damaged parts, and (iii) It was
confirmed that it is possible to discriminate between healthy
and damaged parts by using Self Organizing Maps.

However, in the actual field, it is difficult to extract accurate
features due to the superimposition of noise on the hammering
sound. In the previous study, they assumed hammering test on
real bridges. However, since the superimposition of noise is
not a condition, errors in the determination of healthy and
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Fig. 1: Frequency analysis

damaged parts are expected to occur in an environment where
loud noise exists, such as in actual sites.

In contrast, the author’s previous study[3] proposed the
hammering test system based on noise suppression using the
Kalman filter algorithm with colored driving source and auto-
matic judgement using Support Vector Machine(SVM), a kind
of machine learning. However, the noise suppression algorithm
of the previous method can suppress noise spectrum that are
smaller than hammering spectrum, but it is difficult to suppress
noise spectrum that are larger than the hammering supectrum.
In addition, there existed many cases of judgement errors
due to the existence of overlap in the feature distributions of
healthy and damaged parts.

Therefore, in this study, based on the differences in the
distributions found in the frequency analysis result of ham-
mering signals recorded from real environments and noise
signals, low-frequency noise suppress is performed using a
Butterworth type high-pass filter(BW-type HPF), followed by
noise estimation using the minimum statistics method and
hammering signal estimation using the Kalman filter algorithm
with colored driving source. Next, we adopt the first formant
as a feature instead of the spectrum peak, which is a feature
of conventional methods, and calculate the optimal hyperplane
using nonlinear SVM, which is a nonlinear extension of linear
SVM. Finally, we use a judgement algorithm that takes the
time transition into account, which enables highly accurate
noise suppression and automatic judgement making.

III. PROPOSED METHOD

A. low frequency noise suppression by BW-type HPF

First, in order to understand the characteristics of ham-
mering signals and noise signals, we prepared sound data
with only hammering signals and sound data with only noise
signals, and performed frequency analysis as shown in Figure
1.
From Fig 1, it can be seen that there is a large noise in the
low-frequency range and hammering sound in the middle to
the high-frequency range. As a result of preparing several
experimental sound data and frequency analyses, it was found
that the inside of bridges and tunnels often had a large noise
in the low-frequency band. Therefore, the noise present in the
low-frequency band is suppressed by the following third-order

BW-type HPF. The observed signalx̂L/R(n) after BW-type
HPF is expressed by the following equation.

x̂L/R(n) =

M∑
l=0

alxL/R(n− l)−
W∑
l=1

blx̂L/R(n− l) (1)

However, M = W = 2048 are the feedback forward order and
feedback order, respectively, and al and bl are the feedforward
coefficient and feedback coefficient, respectively.

B. Residual noise power spectrum estimation by the minimum
statistical method[4]

Next, Calculate the observed spectrum after BW-type HPF
in the frequency domain. Separate the observed signalx̂L/R(n)
after BW-type HPF by a certain short time(frame), and perform
Short Time Fourier Transform(STFT) of x̂L/R(n) for each in-
terval. By STFT, we obtain the observed spectrum X̂L/R(λ, k)

after BW-type HPF. X̂L/R(λ, k) is obtained by the following
equation.

X̂L/R(λ, k) =

W−1∑
µ=0

x̂L/R(λN + µ) · h(µ) · exp
(
−j

2πµk

W

)
(2)

Where λ is the frame number, k is the frequency bin
number, W is the DFT frame length (W = 2048), and N
is the frame interval (N = W/2 = 1024). In addition, the
Hanning window is used as the window function this time.

For noise estimation, if the residual noise spectrum included
in the observed spectrum X̂L/R(λ, k) after BW-type HPF
fluctuates significantly from frame to frame, it is expected
that there will be errors in the judgment of noise estima-
tion. Therefore, we can reduce the noise estimation error by
smoothing the observed spectrum X̂L/R(λ, k) after BW-type
HPF calculated by 2. When X̂L/R(λ, k) is smoothed in the
frame direction, the smoothed observation power spectrum
X̄L/R(λ, k) is expressed by the following equation.

X̄L/R(λ, k) = α·X̄L/R(λ−1, k)+(1−α)·|XL/R(λ, k)|2 (3)

α is the smoothing factor. It is set to a value in the range
(α = 0.9 · · · 0.95).

Next, the smoothed residual noise power spectrum
VL/R(λ, k) is obtained using the minimum statistical method.
VL/R(λ, k) is obtained by searching for the minimum value
of the spectrum in the range of the past Ld frames for
X̄L/R(λ, k). The VL/R(λ, k) is expressed by the following
equation.

VL/R(λ, k) = min(X̄L/R(λ, k), X̄L/R(λ− 1, k),
X̄L/R(λ− 2, k), · · · , X̄L/R(λ− Ld + 1, k))

}
(4)
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The minimum statistical method is a widely known method
for continuous noise estimation with tracking capability. How-
ever, the minimum statistical method has the disadvantage of
targeting a relatively high SNR.

Because noise estimation and noise suppression in the
frequency domain are generally based on the premise that
the probability that the observed power spectrum for each
frequency component is the maximum and the noise power
spectrum is the minimum is high. In this case, a relatively high
SNR is achieved by suppressing the noise power spectrum,
which is relatively abundant in the low-frequency region, using
a Butterworth-type HPF in advance.

C. Estimation of residual noise coefficient
To calculate the residual noise spectral coefficients, we

use the residual noise power spectrum VL/R(λ, k) and the
smoothed observation power spectrum X̄L/R(λ, k).

The ratio of VL/R(λ, k) to X̄L/R(λ, k) gives the fraction of
the residual noise power spectrum included in the smoothed
observation power spectrum X̄L/R(λ, k) for each frame num-
ber and each frequency bin number.

The residual noise power spectral coefficient QL/R(λ, k) is
expressed by the following equation.

QL/R(λ, k) =

√
osubL/R(λ, k)

VL/R(λ, k)

X̄L/R(λ, k)
(5)

The osubL/R(λ, k) in equation (5) is the oversubtraction
coefficient [5].

The over subtraction coefficient applies a correction to the
ratio of the smoothed observation power spectrum X̄L/R(λ, k)
to the residual noise power spectrum for musical noise re-
duction. By setting a larger proportion of the residual noise
spectrum in the observed spectrum X̂L/R(λ, k) after BW-
type HPF by the over subtraction coefficient, we can prevent
residual noise spectrum from being left unestimated in the
residual noise spectrum calculation by the full-wave rectifica-
tion process and reduce the generation of musical noise.
To calculate the over subtraction coefficient, we need the left-
right signal to noise ratio SNRL/R(λ, k) for each spectral bin.
The SNRL/R(λ, k) is expressed by the following equation.

SNRL/R(λ, k)

= 10 log

(
X̄L/R(λ, k)−min

(
VL/R(λ, k), X̄L/R(λ, k)

)
VL/R(λ, k)

)
(6)

Using the calculated SNR, the over subtraction coefficient
osubL/R(λ, k) is expressed as.

osubL/R(λ, k) =


1.0 (SNRL/R(λ, k) > 20)

4.5 (SNRL/R(λ, k) < −5)

4.0− 3.0

20.0
· SNRL/R(λ, k) (else)

(7)

D. Residual noise spectrum estimation by full wave rectifica-
tion process

The residual noise spectrum is calculated by multiplying
the post-BW-type HPF observed spectrum X̂L/R(λ, k) by the
fraction of the residual noise spectrum contained in the post-
BW-type HPF observed spectrum X̂L/R(λ, k). Therefore, the
residual noise spectrum |V̂L/R(λ, k)| is expressed by the fol-
lowing equation using the observed spectrum X̂L/R(λ, k) after
BW-type HPF and the noise spectrum coefficient QL/R(λ, k).

|V̂L/R(λ, k)| =


X̂L/R(λ, k) ·QL/R(λ, k)

(X̂L/R(λ, k) ≤ X̂L/R(λ, k) ·QL/R(λ, k))

X̂L/R(λ, k) ·QL/R(λ, k)− X̂L/R(λ, k)

(else)
(8)

E. Estimate the variance value of residual noise signal

The residual noise signal v̂L/R(n) is calculated by per-
forming an inverse short time fourier transform(ISTFT) on the
residual spectrum |V̂L/R(λ, k)| using the phase of the observed
spectrum X̂L/R(λ, k) after BW-type HPF using phase of
X̂L/R(λ, k). The residual noise signal v̂L/R(n) obtained for
each frame by the inverse short-time Fourier transform is
multiply added (OverLap Add) to the residual noise signal
v̂L/R(n) at intervals of N samples.

Calculate the variance of the residual noise signal σ2
v̂L/R

(n).
The σ2

v̂L/R
(n) is expressed by the following equation using the

residual noise signal v̂L/R(n).

σ2
v̂L/R

(n) =
1

N − 1

N−1∑
λ=1

v̂2L/R(n− λ) (9)

Where N is the number of samples used to calculate the
variance value.

F. estimate hammering signal for the kalman filter with col-
ored driving source.

The left and right hammering signals are estimated by per-
forming noise suppression on a state-space model consisting
of a state equation representing the temporal variation of the
hammering signal and an observation equation representing the
observation signal superimposed on the hammering signal and
noise signal, using the variance value of the noise signal and
the Kalman filter algorithm with colored driving source. In the
Kalman filter with colored driving source, the 2N dimensional
state vector is defined as.

d(n+ 1) = [dL(n+ 1), dL(n), · · · , dL(n−N + 2),
dR(n+ 1), dR(n), · · · , dR(n−N + 2)]T

}
(10)

The equation of state for the temporal change of the
hammering signal is as follows.
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[state equation]

d(n+ 1) = Φd(n) + δ(n+ 1) (11)

Now, the 2N×2Nmatrix state transition matrix Φ and the 2N
dimensional driving source vector δ(n + 1) are expressed as
follows.

Φ =



0 0 · · · · · · 0 0 · · · · · · · · · 0

1 0 · · · · · · 0
...

. . .
...

0
. . . . . .

...
...

. . .
...

...
. . . . . .

...
...

. . .
...

0 · · · 0 1 0 0 · · · · · · · · · 0
0 · · · · · · · · · 0 0 0 · · · · · · 0
...

. . .
... 1 0 · · · · · · 0

...
. . .

... 0
. . . . . .

...
...

. . .
...

...
. . . . . .

...
0 · · · · · · · · · 0 0 · · · 0 1 0


δ(n+ 1) =

[
dL(n+ 1), 0, · · · , 0, dR(n+ 1), 0, · · · , 0

]T


(12)

The drive source vector δ(n+1) consists of only the hammer-
ing signals dL(n + 1) and dR(n + 1), as shown in equation
(12), and thus constitutes a colored driving source.

Note that the state transition matrix Φ in Eq. (12) is a matrix
that expresses the relationship with the next time and is a
shift matrix consisting of only 0 and 1. It can be inferred that
when the Kalman filter algorithm with colored driving source
is implemented in a noise suppression application, real-time
performance will not be sacrificed in its operation.

Next, from the equation (10), define the 2-dimensional
observation vectors for the observation signals xL(n+1) and
xR(n+ 1), where the noise signals vL(n+ 1) and vR(n+ 1)
are superimposed on the hammering signals dL(n + 1) and
dR(n+ 1) at the next time, as follows.

x(n+ 1) = [xL(n+ 1), xR(n+ 1)]T (13)

In this case, the observation equation is expressed as follows.

x(n+ 1) = mTd(n+ 1) + v(n+ 1) (14)

Now, the 2 × 2N observation transition vector mT and noise
vector v(n+ 1) are respectively as follows.

mT =

[
1 0 · · · 0 1 0 · · · 0
1 0 · · · 0 1 0 · · · 0

]

v(n+ 1) =

[
vL(n+ 1)
vR(n+ 1)

]
 (15)

By solving equation (11) and equation (14), unlike the usual
Kalman filter [7][8], we can estimate the best estimated ham-
mering signal d̂(n+1|n+1) by sequential state and observa-
tion updates without parameter estimation. The best estimated

hammering signal d̂(n+1|n+1) =
[
d̂L(n+ 1), d̂R(n+ 1)

]T
is computed by noise suppression using the Kalman filter
algorithm with colored driving source.

G. Feature extraction

Calculate the hammering cepstrum cL/R(τ) by applying an
ISTFT to the logarithmic hammering spectrum obtained from
the hammering signal d̂L/R(n + 1) using the STFT. If the
Fourier transform is denoted by the symbol F , the hammering
cepstrum cL/R(τ) is as follows.

cL/R(τ) = F−1
[
log D̆L/R(λ, k)

]
(16)

The quefrency q(τ) is as follows.

q(τ) = 1000 ·
W∑
τ=0

0.046

W
τ (17)

However, since it is multiplied by 1000, the dimension is [ms],
and 0.046 is the number of seconds of DFT frame length W .

Next, the low quefrency part of the hammering cepstrum
is liftered. Liftering is an operation to separate the various
quefrency components. The cepstrum in the low quefrency
part represents the hammering spectral envelope (the general
shape of the hammering spectrum), while the cepstrum in
the high quefrency part represents the fine structure of the
hammering spectrum. In this case, we wanted to extract the
hammering spectral envelope, so we applied a low pass lifter
to the hammering cepstrum as follows.

ĉL/R(τ) =

{
cL/R(τ) (5 < q(τ) < 41)

0 (else)
(18)

Finally, calculate the hammering formants pL/R(λ) by
performing a STFT on the hammering cepstrum ĉL/R after the
low pass lifter. Calculate the feature vector ϑλ by calculating
the first formant pλ and the first formant frequency fλ from
the hammering formants pL/R(λ) at all frame numbers. ϑλ is
the following equation.

ϑλ = {fλ, pλ} (19)

H. Generating teacher data

In Support Vector Machine (SVM) [12], supervised data is
required to determine the initial position of the hyperplane and
the support vector. This teacher data rλ is represented by the
following equation.
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rλ = {ζλ,ϑλ} = {ζλ, (fλ, pλ)} (20)

Now, ζλ is the class label, with +1 being the healthy part and
−1 being the damaged part.

I. Calculation of hyperplane by nonlinear SVM
The ultimate goal of SVM is to calculate the hyperplane that

properly separates the healthy part and damaged part. In order
to compute the appropriate hyperplane, the teacher data should
update w as an error if it is closer than a certain value h > 0
from the hyperplane so that it can correctly identify noises
smaller than h. This h is called the margin, and by maximizing
it, we can calculate the appropriate hyperplane. Now, the
discriminant function f(ϑλ), which outputs the healthy part as
+1 and the damaged part as −1, is expressed by the following
equation.

f(ϑλ) = sign{wTϕ(ϑλ) + b} (21)

However, ϕ(ϑλ) is a mapping function to a higher dimension.
The optimal discriminative hyperplane for margin maxi-

mization can then be obtained by solving the main problem
of the inequality constraint optimization problem, defined as.

evaluation function

Lp(w, ξ) = min
w,b,ξ

1

2
∥w∥2 + C

N∑
λ=1

ξλ

constraint
ζλ(w

Tϕ(ϑλ) + b)− 1 + ξλ ≥ 0, ξλ ≥ 0


(22)

Since the main problem is a 2-variable minimization problem
with complex constraints, we need to consider a dual problem
for the main problem and apply Lagrange’s undecided mul-
tiplier method to the main problem. The solution w0 and b0
of the optimization problem can be obtained by making the
condition called the KKT (Karush-Kuhn-Tucker) condition a
necessary and sufficient condition. The dual problem, calcu-
lated using the main problem and the KKT condition, is as
follows.

evaluation function

L(α) = max
α

N∑
λ=1

αλ − 1

2

N∑
λ=1

N∑
j=1

αλαjζλζjϕ(ϑλ)
Tϕ(ϑj)

constraint
0 ≤ αλ ≤ C, αT ζ = 0


(23)

By solving the KKT condition and the duality problem, the
weight coefficient of the optimal discriminative hyperplane w0

can be calculated as follows.

w0 =

N∑
λ=1

αλζλϕ(ϑλ) (24)

It can be seen that the optimal solution is represented by a
linear combination of the teacher data. The optimal bias term
B0 is computed on the data satisfying 0 < αλ < C. The
optimal bias term B0 is as follows.

b0 =
1

NM

∑
λ∈M

(
ζλ −

∑
m∈S

αmζmk(ϑλ,ϑm)

)
(25)

Now, m is an element of the set of support vectors S.
Using equation (24) and equation (25), the optimal identi-

fication boundary y is as follows.

y = ŵT
0 ϕ(ϑλ) + b0

=

N∑
λ=1

αλζλϕ(ϑλ)ϑ+
1

NM

∑
λ∈M

(
ζλ −

∑
m∈S

αmζmk(ϑλ,ϑm)

)
(26)

However, k(ϑλ,ϑm) is the kernel function, and in this case,
we applied the Gaussian kernel k(ϑ,ϑ

′
) to the kernel function.

The Gaussian kernel k(ϑ,ϑ
′
) is expressed as.

k(ϑ,ϑ
′
) = exp(

∥ϑ− ϑ
′∥

2σ2
) (27)

The Gaussian kernel is a kernel function that gives the same
effect as a decision by mapping to an infinite -dimensional
space.

By using nonlinear SVM instead of linear SVM, complex
feature distributions can be handled, thus enabling highly
accurate decisions.

J. Decision algorithm considering time transition

Figure 2 shows a plot of the feature values using the sound
and damage data as input data.

It can be seen that there are many overlapping features
between the sound data of the healthy part and the sound
data of the damaged part. This suggests that overlapping parts
may be difficult to determine even with the best discriminating
boundary, so a new feature that can separate healthy from
damaged parts is needed.

As a result of analyzing the time trends of the features, we
found that the judgment results of a certain frame are likely to
be the same continuously. Therefore, from frame number λ,
the dominant one in the constant frame set {Fi} is considered
as the judgment result as shown in Figure 3.

However, for this decision, the frame numbers from 1
to 5 are used as a constant frameset. Also, the number of
seconds in a 1 frame is 0.046 seconds, so even for a fixed
set of frames, 0.23 seconds, and the decision hammer is
moving only slightly. If the judgment changes moment by
moment in these 0.23 seconds, it means that there is a healthy
part and a damaged part in a small section of the hammer
movement, which is almost impossible. In order to prevent
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Fig. 2: Plotting features

Fig. 3: Decision algorithm considering time transition

the judgment from changing from moment to moment within
a very small movement interval, the judgment for the damaged
part is canceled the second time when the judgment for the
healthy part is made the first time and the judgment for the
damaged part is made the second time, and the judgment for
the damaged part is made when the judgment for the damaged
part is made the third time. In addition, when the judgment
of the healthy part and the damaged part is made alternately
3 times, the hammer moving section is judged as unknown as
it is extremely difficult to judge.

This enables highly accurate judgments by correcting erro-
neous judgments that exist in a certain set of frames that are
considered to represent residual noise or silence other than
strikes in the sound data.

IV. COMPUTER SIMULATION

A. Noise suppression

The spectrograms before and after noise suppression are
shown in Figure 4. First, in (i), we can see that there is a large
orange noise in the low-frequency range and an orange noise
that appears with time. Next, in (ii), we can see that noises
that are mostly in the low-frequency range and time-varying
noises such as car noises are suppressed.

In conclusion, it can be confirmed that low-frequency noise
and time-varying noise are suppressed by the noise suppression
method in this paper.

B. Determination of healthy and damaged parts

The cross-validation method was applied to evaluate the
performance of the decision results by linear SVM and nonlin-
ear SVM. For the experimental data, we prepared 3 of sound
and damage data from 3 bridges for 30 seconds each. In this
paper, a total of 7776 data (3888 data in the healthy part
and 3888 data in the damaged part) is used as the teacher
data. In order to improve the judgement accuracy, it would

Fig. 4: (i)Before noise suppression, (ii)After noise suppression

Fig. 5: Performance comparison

be better to increase the number of teacher data. However,
since the emphasis of this hammering test system is on real-
time, we decided to set the number of teacher data so that
the learning time would not be a burden to the workers in the
field. Using the prepared data, we evaluated the performance
of the conventional method [3] and the proposed method.

The result of the decision is shown in Figure 5.
From Figure 5, when the linear SVM was applied to the
previous method, the healthy part was 75.5% and the damaged
part was 86.1%. When the nonlinear SVM was applied, the
healthy part was 73.8% and the damaged part was 90.4%. In
comparison, when the linear SVM was applied to the proposed
method, the healthy part was 88.6% and the damaged part was
97.0%. When the nonlinear SVM was applied, the healthy part
was 87.6% and the damaged part was 99.6%.

These results show that the proposed method achieves
higher decision accuracy than the previous method.

V. CONCLUSION

This paper proposes a nonlinear SVM-type automatic de-
cision algorithm in noisy environment for hammering test
system.

The features of the proposed method are (i) low-frequency
noise suppression by a Butterworth type high-pass filter con-
sidering the frequency analysis of healthy part sound and
damaged part sound data and noise data, and residual noise
suppression by Kalman filter algorithm with a colored driving
source to achieve high accuracy noise suppression. In addition,
(ii) a judgment algorithm considering the time transition is
used to realize a general-purpose and highly accurate percus-
sion sound inspection system.
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The effectiveness of the proposed method is demonstrated
by comparing the spectrograms of the signals before and after
noise suppression and by evaluating the generic performance
of the cross-validation method for determining healthy and
damaged parts.

Future work includes the development of a system that can
accurately suppress noise and make automatic judgments even
in a tunnel environment and the development of a hammering
test system that can be applied to a wall lifting robot.
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