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Abstract—Human pose estimation has made significant
progress with deep learning techniques, while the estimation of
occlusion keypoints is still an unsolved problem. One important
reason comes from the insufficiency of the existing benchmark
datasets, such as imbalanced body keypoints annotation and
lack of occluded training samples. To address this problem, we
propose Nearby-person Occlusion Data Augmentation (NODA),
a method that provides synthetic nearby-person occlusion images
by only utilizing existing annotations. First, we generate rough
mask of human bodies with keypoints annotation to build a
foreground human body pool. Then, one foreground human
body crop is randomly sampled and properly placed over
the training human body to synthesis nearby-person occlusion
training images. The proposed data augmentation method is
easy to implement and deploy to any other methods. Extensive
experimental results on MPII benchmark demonstrate the effec-
tiveness of our method with Simple and HRNet as the backbone
models. Especially on easily-confusable joints, our method makes
significant improvement.

Index Terms—Human Pose Estimation; Nearby-person Occlu-
sion; Data Augmentation; Deep learning

I. INTRODUCTION

Human pose estimation (HPE) is a research spot of com-
puter vision tasks aiming to estimate pixel-wise keypoints of
people on the images [1], which plays an important role in
a variety of high-level vision tasks, such as action recogni-
tion [2]–[4], action detection [5], human tracking [6], etc.
Due to the booming of deep learning in recent years [7]–
[10], the performance of human pose estimation has made
significant achievements [11]–[15]. However, there are still
some unsolved challenges, such as occlusion.

So far, the existing benchmark dataset such as MPII [16]
is labeled with the visibility of keypoints, but few studies
have used these annotations. Meanwhile, the insufficiency of
imbalanced body keypoints annotation and lack of occluded
training samples also influence the estimation performance.
As show in Fig. 1, the performance of each keypoint is highly
correlated with the amount of training data, and the estimation
accuracy of occluded keypoints are much lower than visible
keypoints.

Existing methods to handle occlusion with data augmenta-
tion can be divided into two types. One way is to synthesis
occluded images by pasting over parts from other object
datasets [17] or off-the-shelf segmentation models [18]. An-
other way is information dropping which is to erase body
region such as random erasing [19], Cutout [20], hide-and-
seek (HaS) [21] and GridMask [22]. These methods either

Image numbers PCKh@0.5

Fig. 1: MPII analysis based on Simple [23] with ResNet50 as
backbone. The keypoints annotations are imbalanced, and the oc-
cluded training samples are insufficient. The performance of occluded
keypoints is inferior. Here ”ank”, ”kne”, ”wri”, ”elb” and ”sho” re-
spectively indicate ”ankle”, ”knee”, ”wrist”, ”elbow” and ”shoulder”.
The ”r” and ”l” stand for ”right” and ”left”.

require additional annotation data, or the generated image is
quite different from the real image.

In this article, we propose a novel nearby-person occlusion
data augmentation approach to synthesize training images for
human pose estimation. First, we generate rough mask of
human body with keypoints annotation to build a foreground
human body pool. Then, one foreground human body crop
is randomly sampled and properly placed over the training
human body to synthesis nearby-person occlusion training
images. In summary, our main contributions are two-fold:

• We propose a novel nearby-person occlusion data aug-
mentation (NODA) approach to synthesize more occluded
training images with non-extra annotations. The synthe-
sized occluded images properly balance the training set.

• We comprehensively evaluate our method on benchmark
dataset MPII and demonstrate the effectiveness of our
method with different levels of mask.

II. RELATED WORK

A. Human Pose Estimation
Recently, pose estimation using DCNNs has shown superior

performance. DeepPose [11] firstly attempted to apply an
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Training images Rough masks Synthesized occluded imageOverlay strategy

(a) Keypoint-Masking [24] (b) Parsing-based Data Augmentation [18] (c) Information Dropping Methods [25]

Fig. 2: Top: Illustration of nearby-person occlusion data augmentation. The rough masks are obtained with existing annotations. With
the occlusion overlay strategy, the occluded images are generated for training. Bottom: Other related methods. (a) and (b) belong to
synthetic occlusion way. (c) belongs to information dropping way.

AlexNet-like deep neural network to learn keypoints coor-
dinates from full images in a very straightforward manner.
[12] proposed a heatmap representation for each keypoint
and largely improved the spatial generalization. Following
the heatmap-based framework, various methods [13]–[15],
[23] focused on designing the structure of the network and
indeed achieved significant improvement. However there are
still some unsolved challenges, such as occlusion. In this
work, taking advantage of the well-designed network struc-
ture Simple [23] and HRNet [15], we propose a novel data
augmentation solution to further improve the performance of
human pose estimation.

B. Occlusion Data Augmentation

Pasting over parts and information dropping of images are
two types of data augmentation widely used in image classifi-
cation [26], object detection [27], person re-identification [28].
In human pose estimation, Keypoint-Masking [24] augment
images by copying background patches over some of the
keypoints. [17] synthesis occluded images by pasting over
parts from other object datasets. Bin et al. [18] proposed
adversarial semantic data augmentation with off-the-shelf seg-
mentation models. [25] summarized information dropping
methods [19]–[22] and proposed to increase training time
to improve performance. Different from the existing data
augmentation strategies, we propose a novel nearby-person
data augmentation scheme which takes advantage of the non-
extra human keypoint annotations to obtain the mask of whole
body rather than only body parts, other objects or noisy image
patches.

(a) (b) (c) (d)

Fig. 3: Three levels of mask (a) Orignal Image, (b) Box-level Mask,
(c) Cardboard-level Mask, (d) GrabCut-level Mask.

III. METHODOLOGY

As show in Fig. 2 is our proposed nearby-person occlusion
data augmentation method. Firstly, we utilize the keypoint-
level annotation to generate rough mask of human bodies
of each training sample to build a foreground human body
pool. Then, for each training image, one foreground human
body crop is randomly sampled and properly placed over
the training human body to synthesis nearby-person occlusion
training image.

A. Rough Mask Generation

In order to verify the effectiveness of the proposed data
augmentation method, we generate foreground human body
crops on three different levels of mask, providing more ac-
curate human masks in turn, shown in Fig. 3. The ablation
studies Sec. IV-C show that more precise human segmentation
will lead to better results.

1) Box-level Mask Generation: As show in (b) of Fig. 3,
with human body keypoint labels, we can obtain a compact
bounding boxes. Then a rough bounding box is cropped with
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TABLE I: Ablation studies. The performance of the visible and the occluded keypoints are listed in the parentheses (visible
result, occluded ressult). Here ”Box.”, ”Card.”, ”Crab.”, ”Smo.” and ”Res.” respectively indicate ”Box-level mask”, ”Cardboard-
level mask”, ”GrabCut-level mask”, ”Edge smoothing” and ”Occlusion rescaling”.

Method Box. Card. Crab. Smo. Res. Head Sho. Elb. Wri. Hip Knee Ank. PCKh@0.5

Simple [23] 96.4 95.3 89.0 83.2 88.4 84.0 79.6 88.5
(96.8, 0) (96.7, 89.2) (93.5, 71.2) (91.0, 57.5) (90.7, 81.2) (89.6, 64.2) (87.0, 57.2) (92.8, 70.8)

Simple
√ 96.8 95.6 89.7 84.1 89.5 85.3 80.6 89.3(+0.8)

(+0.4, 0) (+0.1, +1.2) (+0.9, -0.1) (+0.6, +1.9) (+1.0, +1.2) (+1.4, +0.9) (+1.0, +1.2) (+0.7, +1.1)

Simple
√ 96.7 95.8 89.3 84.4 89.0 84.8 80.9 89.2(+0.7)

(+0.4, 0) (+0.3, +1.3) (+0.4, -0.2) (+0.9, +2.2) (+0.6, +0.6) (+1.0, +0.5) (+0.6, +3.4) (+0.6, +1.3)

Simple
√ 96.8 95.5 89.6 84.3 88.8 84.3 79.6 89.0(+0.5)

(+0.5, 0) (-0.1, +0.9) (+0.8, -0.3) (+0.4, +3.2) (+0.6, -0.2) (+0.7, -0.9) (-0.4, +1.5) (+0.4, +0.7)

Simple
√ √ 97.1 95.8 89.5 84.7 89.3 84.8 80.0 89.3(+0.8)

(+0.7, 0) (+0.2, +1.4) (+0.8, -0.6) (+0.9, +3.8) (+1.0, +0.5) (+1.0, +0.6) (+0.2, +0.9) (+0.7, +1.1)

Simple
√ √ √ 96.8 95.9 90.0 84.4 89.2 85.5 80.3 89.4(+0.9)

(+0.4, 0) (+0.2, +1.9) (+0.8, +1.8) (+0.8, +2.6) (+0.7, +1.1) (+1.6, +1.1) (+0.2, +2.7) (+0.7, +1.8)

Simple
√ √ √ √ √ 96.8 95.6 89.4 84.6 89.2 84.9 80.5 89.3(+0.8)

(+0.4, 0) (+0.2, +0.7) (+0.7, -0.8) (+0.7, +4.0) (+0.9, +0.5) (+1.1, +0.2) (+0.5, +2.6) (+0.6, +1.2)

a proper scale expansion. The box-level mask crops contain
many background information of the bodies.

2) Cardboard-level Mask Generation: By utilizing the
cardboard model [29], we can crop each body part in the type
of bounding box, thus to get the whole body mask. As show
in (c) of Fig. 3, the cardboard-level mask crops contain less
background information, while may loss a small amount of
body information due to imprecise segmentation.

3) GrabCut-level Mask Generation: GrabCut [30] is
an efficient interactive foreground/background segmentation
method based on graph cuts. There are two steps to apply
GrabCut to generate body masks: (1) finding the smallest
bounding box of the human body region from the keypoint
annotation and (2) generating a body mask based on the
bounding box, clear foreground region (the keypoints and
corresponding connection) and clear background region (the
information outside of the bounding box). The result of
GrabCut is show in (d) of Fig. 3

B. Occlusion Overlay Strategy

To synthesis reasonable nearby-person occlusion training
image, the degree of occlusion needs to be appropriate. The
coverage can neither be occluded too severely nor too slightly.
Following the keypoint annotation distribution of MPII, we
set the following coverage rules: (1) Several keypoints are not
allowed to be covered, such as head, neck, etc. (2) The four
limbs (arms and legs) should be occluded at least one keypoint.

The occlusion overlay strategy is shown in Fig. 2. The red
point and yellow point indicate the center of target people body
and occlusion people body, respectively. For each training
image, the region between two dotted circles centered on the
center of the yellow point is the candidate region to place the
foreground nearby people. We set the radius of target people as
R which is half of the diagonal of the bounding box. Then, the
red point can be confirmed based on a random radius (1/3R
- R) and a random rotation angle (0◦ - 360◦).

IV. EXPERIMENTS

A. Dataset and Evaluation Protocol

We evaluate our method on a representative benchmark
Max Planck Institute for Informatics (MPII) human pose
dataset [16]. The MPII dataset includes around 25k images
with poses of 40k people annotated with 2D locations of
16 keypoints. Following [23], 2975 samples are taken as a
validation set. Our models are trained on a subset of MPII
training set and evaluate on the validation set. We have evalu-
ated our method on MPII dataset with the percentage of correct
keypoints (PCKh) which measures the localization accuracy of
the predicted keypoints. After measuring distance between the
groundtruth keypoints and predicted keypoints, PCKh counts
the number of keypoints that are within selected distance
thresholds normalized by head size. PCKh@0.5 indicates the
threshold of distance is 0.5 times head size.

B. Implementation Details

In order to show the effectiveness of our proposed data aug-
mentation method, we have set Simple [23] and HRNet [15] as
our baseline models. Both methods are top-down methods, and
the basic structure of both methods is widely used in human
pose estimation.

In case of Simple [23] , we adopt ResNet-50 and ResNet-
152 models and input image resolution of (256,256) for
MPII. We use data augmentations such as rescaling(30%),
rotation(40 degrees) and flip. Following [23] the Adam op-
timizer [31] is used. For training details, the base learning
rate is 1e-3. It drops to 1e-4 at 90 epochs and 1e-5 at 120
epochs. There are 140 epochs in total. Mini-batch size is 64.
The Simple is initialized with weight of pre-trained model on
public-released ImageNet [32].

In case of HRNet, we adopt the HRNet-w32 model and
input image resolution of (256,256) for MPII. Similarly, data
augmentations include random rescaling([0.65, 1.35]), random
rotation(±45◦) and flip. We employ the Adam optimizer [31].
The learning schedule follows the setting [15]. The base
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TABLE II: Comparisons on MPII val set. The visible and the occluded keypoints performance are listed in the parentheses
(visible result, occluded result).

Method Backbone Head Sho. Elb. Wri. Hip Knee Ank. PCKh@0.5

Simple [23] ResNet-50 96.4 95.3 89.0 83.2 88.4 84.0 79.6 88.5
(96.8, 0) (96.7, 89.2) (93.5, 71.2) (91.0, 57.5) (90.7, 81.2) (89.6, 64.2) (87.0, 57.2) (92.8, 70.8)

Simple+NODA ResNet-50 96.8 95.9 90.0 84.4 89.2 85.5 80.3 89.4(+0.9)
(+0.4, 0) (+0.2, +1.9) (+0.8, +1.8) (+0.8, +2.6) (+0.7, +1.1) (+1.6, +1.1) (+0.2, +2.7) (+0.7, +1.8)

Simple [23] ResNet-152 97.0 95.9 90.0 85.0 89.2 85.3 81.3 89.6
(97.0, 0.0) (97.2, 90.8) (94.3, 72.9) (92.1, 60.7) (91.7, 81.7) (89.9, 67.6) (87.8, 59.4) (93.5, 72.8)

Simple+NODA ResNet-152 97.0 95.8 90.2 85.1 89.8 86.1 82.4 90.0(+0.4)
(+0.0, 0) (-0.2, -0.3) (+0.1, +0.3) (+0.2, +0.2) (+0.4, +1.5) (+0.9, +0.5) (+1.3, +0.7) (+0.3, +0.5)

HRNet [15] HRNet-w32 97.1 95.8 90.3 85.0 89.0 87.0 83.1 90.0
(97.1, 0.0) (97.1, 90.4) (94.6, 73.0) (92.9, 58.2) (91.5, 81.8) (91.2, 70.7) (89.6, 61.5) (93.9, 73.1)

HRNet+NODA HRNet-w32 97.4 96.3 91.6 86.9 89.6 87.4 83.8 90.9(+0.9)
(+0.3, 0.0) (+0.4, +1.4) (+0.9, +3.4) (+0.8, +5.7) (+0.5, +0.7) (+0.1, +1.6) (-0.2, +3.4) (+0.4, +2.7)

learning rate is set as 1e-3, and is dropped to 1e-4 and 1e-
5 at the 170th and 200th epochs, respectively. The training
process is terminated within 210 epochs. Mini-batch size is
64. The HRNet is initialized with weight of pre-trained model
on public-released ImageNet [32].

C. Ablation Studies

In order to verify the effectiveness of different hyper-
parameters in the method, we employ Simple [23] with
ResNet-50 as backbone to do ablation studies. Half of training
samples are randomly occluded with our data augmentation
method. Both the PCKh of the visible and the occluded
keypoints are are shown.

1) Mask type comparison: First of all, we evaluate the
performance of three types of mask. Note only the occlu-
sion overlay strategy is used. The occlusion people mask is
rescaled as 1.0 to the target people. As shown in Table I,
the performance of the visible and the occluded keypoints
are listed in the parentheses. All three types of occlusion
data augmentation are helpful to improve the performance,
especially the occlusion accuracy. The box-level mask contains
more background information may lead to more realistic
occlusion. The cardboard-level and GrabCut-level mask show
more influence on the keypoints at the end of limbs such as
wrist and ankle.

2) Edge smoothing comparison: In order to generate more
realistic occlusion, we reduce the opacity of the GrabCut-level
mask along the border for smoother blending [17]. The results
of GrabCut-level mask in Table I are all improved with edge
smoothing.

3) Occlusion rescale comparison: We randomly rescale
the occlusion human body size in the range of (0.8-1.2) to
provide more diversified occlusion. The ablation experiment
is done on smoothed GrabCut-level mask shown in Table I
with improvement.

4) NODA: Combine all three types of mask, edge smooth-
ing, occlusion rescaling, the model reports 89.3% less than the
model trained only with CrabCut-level mask. The additional
background information and unreal human edges may not help
to the results. Therefore, the NODA includes GrabCut-level
mask overlay, edge smoothing, occlusion rescaling.

D. Results

The performance of proposed method on MPII val set are
listed in Table II. With ResNet-50 as backbone model, the
improvement is around 0.9% PCKh@0.5 by using NODA.
Deeper baseline with ResNet-152 still brings 0.4% improve-
ment with NODA. Based on HRNet-w32, our model with
NODA achieves 0.5% increase. The main improvement comes
from the increasing of the occlusion point estimation accuracy.
In particular, the occlusion keypoints subset show considerable
improvement especially on wrist, knee and ankle which are
considered as the most challenging keypoints. The consis-
tency in performance improvement proves both the universal
effectiveness of the proposed nearby-person occlusion data
augmentation method.

E. Qualitative Results

Fig. 4 visualizes some estimated results to qualitatively
showcase the efficiency of the proposed method. From left to
right are ground truths, estimated results by HRNet-w32 [15]
and estimated results with NODA. The yellow circles marks
the wrong prediction. We can observe that the predictions of
HRNet-w32 are confused by occlusion. By applying NODA
to augment training images, we improves the performance of
the original HRNet-w32 in the occluded challenging cases,
providing more reasonable results.

V. CONCLUSIONS

In this paper, we propose a novel nearby-person occlusion
data augmentation (NODA) approach to synthesize training
images for human pose estimation. First, we generate rough
mask of human body with keypoints annotation to build a
foreground human body pool. Then, one foreground human
body crop is randomly sampled and properly placed over
the training human body to synthesis nearby-person occlusion
training images. Without using any extra annotations, we com-
prehensively evaluate our method on benchmark dataset MPII
with Simple and HRNet as backbone models demonstrating
the effectiveness of our method.
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Fig. 4: Visualization of results. From left to right are ground truths, original estimated results and estimated results with NODA.
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