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Abstract—In this paper, we propose a method for estimating a
dense depth map of a scene by combining information acquired
from multiple ultrasonic sensors. In this method, the probabilities
of the presence of an object at each discretized point in the
scene are estimated based on the observed signals, and the
depth map is estimated from this probability map. We also show
that the depth map estimation can be stabilized by introducing
prior knowledge such as the sparsity of the 3D scene as a
regularization. Experiments on real and synthetic scenes confirm
that the proposed method can estimate the depth map.

I. INTRODUCTION

3D scene reconstruction using sensors such as cameras has
been widely researched and developed due to its wide range
of applications. In particular, various techniques for measuring
3D information using stereo cameras have been developed and
are widely used due to the low cost of cameras. In recent years,
methods such as LiDAR and ToF cameras are also widely
used to measure distances by projecting invisible light such
as infrared light onto an object and observing the reflected
light with a camera. However, these methods using optical
information work properly when proper observation is possible
in the scene, but they cannot obtain accurate information when
there is a medium in the scene that blocks the light, such as
fog or rain.

On the other hand, distance sensors that use ultrasonic
waves, i.e. ultrasonic sensors, are also widely used to acquire
distance information. These sensors can directly measure the
presence or absence of an object or the distance to an object by
irradiating ultrasonic waves toward the object and measuring
the reflected waves. It also has the advantage of being able to
obtain accurate information in rainy and foggy environments
and in the dark, which cameras are not good at. For this reason,
ultrasonic sensors are widely used in situations where it is
difficult to use a camera and where distance information to
the object is important.

However, distance measurement techniques using ultrasonic
sensors can only detect the approximate direction and distance
to objects in the surroundings, and cannot measure the exact
shape and size of the scene. Since the accurate scene infor-
mation that cannot be obtained by ultrasonic sensors is very
important for 3D information measurement, many systems use
ultrasonic sensors and other types of sensors such as cameras
to measure scene information by interpolating the obtained

information. However, sensors that use optical information,
such as cameras, have the aforementioned problems related
to fog and rain, and when they are used together, the final
measurement results are greatly affected by the environment
of the scene. Therefore, in this study, we propose a method for
estimating depth maps, such as those obtained by ToF cameras
and stereo cameras, using only the information obtained from
ultrasonic sensors. If such a method can be realized, it will
be possible to obtain scene information more stably even in
scenes where optical sensors such as cameras cannot be used.
We propose a method for estimating the distance between
a camera and a scene, which can be used both indoors and
outdoors.

II. RELATED WORKS

Ultrasonic sensors are mainly used to determine whether
there is an object in the vicinity of the sensor. However, since
ultrasonic sensors have advantages such as being unaffected
by changes in weather conditions such as fog and rain, and
being able to directly acquire 3D information, research is also
being conducted on how to use them for scene information
analysis. One of them is a method for estimating a 3D scene
by analyzing the information obtained from sensors using a
neural network[6], [3]. In these methods, the shapes in the
scene are represented by primitive 3D shapes such as cylinders
and cubes, and detailed shape estimation of the entire scene is
performed by detecting these shapes in the scene. In addition,
with the recent development of neural networks[1], a method
to obtain scene height information from ultrasonic sensor
information has been proposed[5]. However, these methods
use neural networks to analyze the patterns of information
reflected from the primitive shapes to detect shapes similar to
them, making it difficult to detect objects that do not match
these conditions.

In this research, we focus on the amplitude of the sound
wave information acquired by the ultrasonic sensors and aim
to measure the scene information directly by analyzing it. In
addition, we show how to calculate the probability that an
object exists at each point in space using multiple ultrasonic
sensors, and how to estimate the distance image of the space
from the probability distribution.
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Fig. 1. Phong model for ultrasonic amplitude

III. OBSERVATION MODEL

A. Phong Model

First, we consider the modeling of the signal observed by
the ultrasonic sensor. The observed signal is a measurement of
the reflected sound generated when the incident sound emitted
by the ultrasonic sensor is reflected by an object in front of
the sensor. Originally, the information of the measured sound
wave includes various information such as phase. In this study,
however, we will focus on the intensity of the sound wave.
Since the intensity of the reflected sound is represented by the
amplitude information of the sound wave, we will focus on
the amplitude information of the observation signal to obtain
the information of the target.

The amplitude of the observed signal depends on the normal
direction of the object surface where the incident sound is
reflected. In this paper, the amplitude of the observed signal
is approximated by the Phong model [4], which is used to
represent the reflection of light. The Phong model expresses
the intensity of specularly reflected light. In this study, it is
replaced by sound waves, and the amplitude I of the observed
signal is expressed as follows:

I = I0k cos
n θ = I0k(L ·N)n (1)

where θ is the angle between the half-vector of the incident
direction and the outgoing direction and the normal direction
N . When using an ultrasonic sensor, the incident and outgoing
directions are equal, so the half vector is equal to the incident
direction L. Also, n is called the smoothness coefficient, and it
represents the smoothness of the object’s surface. Furthermore,
I0 is the amplitude strength of the incident sound and k is the
reflectance. These relationships are summarized in Fig.1.

B. Observation Model for Single Sensor

Next, we consider the signal observed by the ultrasonic sen-
sor. If the speed of sound is 340m/s, the reflected sound wave
is received by the sensor after 2d/340 seconds. Assuming
that there is no interference between the sound waves, the
amplitude of the received observation signal is the sum of the
intensities of the sound waves reflected by objects on a sphere
of radius d centered on the ultrasonic sensor. Using a point

Xd on the sphere and the normal to that point N , we define
the following function δ as follows:

δ(X,N) =

{
1 when an object with normal N exists at point X
0 otherwise (2)

This function δ expresses whether or not an object with normal
N exists at a point X . Furthermore, if the Phong model can
represent the amplitude, the amplitude of the observed signal
I(d) corresponding to a certain distance d can be expressed
as follows:

I(d) =
∑
Xd

∑
N

δ(Xd,N)I0k(L ·N)n (3)

where I(d) is the amplitude of the observed signal correspond-
ing to a certain distance d, and Xd is the 3D point whose
distance from the ultrasonic sensor is d.

According to this model, 3D shape reconstruction from
ultrasonic sensor information is equivalent to estimating δ
from I(d). However, it is difficult to stably estimate a function
expressed in a discrete form as described above. Therefore,
we consider approximating this function using the probability
density function. The probability that an object exists at point
X and that the normal direction of the object’s surface is
N is expressed as P (X,N). Using this, we can rewrite the
equation (3) as follows:

I(d) =
∑
Xd

∑
N

P (X,N)I0k(L ·N)n (4)

Also, assuming that the probability of X and the probability of
N are independent, this equation can be rewritten as follows:

I(d) =
∑
Xd

∑
N

P (X)P (N)I0k(L ·N)n (5)

where P (X is the probability that an object exists at point
X and P (N) is the probability that the normal direction of
the surface of an object is N . If we assume that the normal
direction is uniformly distributed regardless of the 3D point,
then P (N) is constant regardless of X . In this case, the
equation (5) can be rewritten as follows:

I(d) = a
∑
Xd

P (X) (6)

where, a =
∑

N P (N)I0k(L ·N)n. Furthermore, the ampli-
tude of the sound wave reflected from all points on the sphere
is defined as follows:

Iall =
∑
Xd

a (7)

If the probability that an object exists at all points on a sphere
with distance d is uniform, then P (Xd) can be determined as
follows:

P (Xd) =
I(d)

Iall
(8)

From equation (8), we can calculate the probability that an
object exists at point Xd.
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C. Model for Multiple Sensors

Next, we consider a method for estimating the probability
of the existence of an object using multiple observation
signals obtained when multiple ultrasonic sensors are used.
For simplicity, we assume that there is only one object in
the scene and that the distance to the object is measured by
ultrasonic sensors placed at different locations. In this case,
the information obtained from a single ultrasonic sensor is the
probability that the object exists somewhere on the surface
of a sphere with a certain radius centered on the ultrasonic
sensor, and it is not possible to determine where on the sphere
the sound wave was reflected from based on this information
alone. When two ultrasonic sensors are used, it is possible to
limit the location to the circumference of the intersection of the
surfaces of the two hemispheres centered on each ultrasonic
sensor, but it is still not possible to obtain a unique location.
When three ultrasonic sensors are used, the intersection of the
surfaces of the three hemispheres becomes a point, and the
object can be determined to exist at that one point. Therefore,
at least three ultrasonic sensors are required to estimate the
position of an object accurately. Therefore, in this paper,
we use multiple ultrasonic sensors to achieve dense shape
estimation of the scene.

We assume that the probability of existence of a point
Xd observed by ultrasonic sensor k is Pk(Xd). Assuming
that the information obtained from each ultrasonic sensor is
independent, the existence probability Pm(Xd) at point Xd

can be defined as follows:

Pm(Xd) =
K∏

k=1

Pk(Xd) (9)

where K is the number of ultrasonic sensors. This allows us
to estimate the probability of existence at each point using the
information obtained from all ultrasonic sensors.

IV. DEPTH PREDICTION

A. Probability Model

Next, we assume that the target space is sampled by a
set of voxels, and consider a method to calculate distance
information from the existence probability at each point. Here,
we assume that multiple ultrasonic sensors are placed on
a certain plane, and consider a method for estimating the
distance image from that plane.

The probability of the presence of an object in each voxel
can be obtained from the equation (9). Assuming that sound
waves do not pass through objects, there is only one voxel
that exists on the straight line connecting a point and a sensor.
Therefore, if we determine the position of the object on this
line, we can obtain the dense 3D shape of the scene. If we
assume that an object exists independently on each line, we can
determine that the object exists in the voxel with the maximum
probability of existence on each line. Therefore, the depth from
the plane where the multiple ultrasonic sensors are installed
to the object can be obtained as follows:

d̂(x, y) = argmaxdPm(Xd(x, y)) (10)

where, d̂(x, y) is the depth of a straight line from a point
(x, y) on the plane perpendicular to the plane. Also, Xd(x, y)
denotes a point on the same line whose depth is z. By
performing these operations for all points on the plane, we can
estimate the distance image based on the information obtained
from multiple ultrasonic sensors.

B. Smoothness Constraint
In the method of depth estimation described above, the

distance image is estimated by assuming that all the points on
the line exist independently. However, they are not independent
by nature but are continuous with each other. Therefore, in this
section, we assume that the shape change of the 3D scene to
be estimated is smooth, and investigate how to estimate the
3D shape stably using this assumption.

First, we describe the regularization based on the smooth-
ness constraint. In general, it is known that in our 3D scenes,
the depth of the image does not fluctuate rapidly, and the
fluctuation is smooth. Therefore, we can assume that the
spatial changes in the estimated 3D scene will occur smoothly
as well. Therefore, if the spatial smoothness constraint is
satisfied, the following evaluation equation becomes small.

Ez =
∑
x,y

( ∥d(x, y)− d(x+ 1, y)∥2

+∥d(x, y)− d(x, y + 1)∥2) (11)

where D(X,Y ) is the depth at point (X,Y ).
Therefore, the distance to the object is such that it satisfies

the regularization term expressed as equation (11) and max-
imizes the probability of the object’s presence. This can be
thought of as maximizing the following evaluation equation.

E′ =
∏
x,y

Pm(Xd(x, y))− w′
rEz (12)

where w′
r is the weight for regularization. This equation can

be replaced by the problem of minimizing the following
evaluation equation by calculating the logarithm of the first
term.

E =
∑
x,y

logPm(Xd(x, y)) + wrEz (13)

By minimizing such an evaluation equation, we can estimate
the distance image taking into account the smoothness of the
space.

C. Distribution Approximation by Gaussian Distribution
It is possible to obtain an appropriate shape by minimizing

the equation (13), but when Pm can take any probability
distribution, a large amount of calculation is required for its
minimization. However, when Pm can take any probability
distribution, the minimization of Pm requires a large amount
of calculation. Therefore, in this study, the probability distri-
bution on each line is approximated by a normal distribution
to simplify the calculation. In this case, the equation (13) can
be rewritten as follows:

E =
∑
x,y

∥d(x, y)− µ(x, y)

σ(x, y)
∥2 + wrEz (14)
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(a) Target object
(b) Sensors
arrangement

Fig. 2. Arrangement of the target and the sensors.

where µ(x, y) and σ(x, y) are the mean and standard de-
viation at point (x, y), respectively, and are obtained from
P (X(x, y)). Since the newly defined evaluation equation
can be minimized by the general least-squares method, the
optimal depth can be obtained with a limited number of
calculations. This makes it possible to efficiently estimate the
depth information including the regularization term based on
the smoothness constraint.

V. EXPERIMENTAL RESULTS

A. Environment

We experimented to confirm the effectiveness of the distance
image estimation from ultrasonic sensor information proposed
in this paper. First, we describe the environment used in this
experiment. In this experiment, three ultrasonic sensors were
placed on the same plane, and a rectangular plate with a length
of 30 cm and a width of 40 cm was placed 90 cm in front
of the ultrasonic sensors as shown in Figure 2(a). The three
ultrasonic sensors were installed as shown in Figure 2(b). The
three ultrasonic sensors were set up as shown in Fig. 2(b),
and we adjusted the orientation of the sensors to increase
the common range of the sound waves emitted by the three
sensors. In order to suppress the reflection of sound from the
object to be restored, we placed a thick cloth that absorbs
sound waves and reduces the reflection of sound on the table.

B. Depthmap Estimated Results

In this environment, we show the results of distance image
estimation from the information of multiple ultrasonic sensors.
First, the observation signals obtained from the three ultrasonic
sensors used in this experiment are shown in Figure 3. The
RGB image obtained from the camera placed at the same
location as the ultrasonic sensor 1 is shown in Figure 2(a). The
result of estimating the distance image from the observation
signal shown in Figure 3 is shown in Figure 4. From this result,
we can see that the object is estimated as a distance closer to
the lower left than to the other regions. This is consistent with
the fact that the object to be estimated is located in the lower-
left corner of the correct scene. The distance to the object is
estimated to be about 80cm, which means that the distance is
estimated with an error of about 10cm.

Fig. 3. Observation signals from three ultrasonic sensors.

Fig. 4. 3D scene in real environment experiment

However, while the shape of the object is rectangular, the
estimated distance image does not show the rectangular shape
of the object. This indicates that it is difficult to estimate
the detailed shape of the object using only the information
obtained from the three ultrasonic sensors, especially for the
edge regions of the object. The reason for this is that the
direction of the reflected wave and the normal direction of the
object are shallow in these edge regions, and the reflected
wave is measured weakly. This problem can be improved
by increasing the number of ultrasonic sensors used in the
experiment and increasing the amount of information obtained
from the 3D scene to be estimated.

C. Evaluation

Next, we evaluated the accuracy of the estimation results
of a dense 3D scene in a real environment experiment. In
order to evaluate the accuracy, we placed the target object
in front of the three ultrasonic sensors on the same plane,
and measured it while moving this position to check whether
appropriate distance measurement was possible. The object
was a rectangular plate, and we moved the object from 60
cm in front of the ultrasonic sensor to 90 cm in front at 10
cm intervals. The observation signals acquired by the three
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sensor1 sensor2 sensor3
(a) Distance to the object is 60cm

sensor1 sensor2 sensor3
(b) Distance to the object is 70cm

sensor1 sensor2 sensor3
(c) Distance to the object is 80cm

sensor1 sensor2 sensor3
(d) Distance to the object is 90cm

Fig. 5. Observation signal for each distance

ultrasonic sensors in each scene are shown in Figure 5. The
observed images and estimated distance images for each scene
are shown in Figure 6. Furthermore, the average distance error
in each scene is shown in Table I. From these results, we can
see that the position of the object is generally estimated, but
the distance to the object is shifted forward from the original
distance. This is probably due to the strong reflection from
the desk on which the object is placed in the real environment
experiment, which caused the estimated distance to be shifted
forward. Note that, although the wall behind the object cannot
be measured properly, this is due to the limitation of the sensor.
The sensor utilized in this experiment is mainly designed to
measure the distance to the object placed at a short distance, so
it is not able to measure the distance to the far wall properly.
This problem can be easily solved by using sensors that can
measure a long distance.

D. Evaluation in Synthesized Environment

Next, we show the results of evaluating the proposed method
by simulation experiments. In this experiment, we especially

(a) 60cm

(b) 70cm

(c) 80cm

(d) 90cm

Fig. 6. Observed and recovered distance images for each distance

TABLE I
AVERAGE DISTANCE ERROR FROM THE CORRECT 3D SCENE IN

REAL-WORLD EXPERIMENTS

distance Average error(cm)
60cm 18.0
70cm 11.7
80cm 22.3
90cm 18.4

evaluated the effect of the regularization term. To create the
simulation data, we used the NYU Depth Dataset V2[2],
which contains RGB images and distance images captured
by Microsoft Kinect. From this data, we created observation
signals acquired by ultrasonic sensors and used them as input
to reconstruct the shape of the scene. We confirmed the effect
of regularization by varying the regularization weights during
the reconstruction process.

The 3D scene shown in Figure 7 was used as the experimen-
tal data. Three ultrasonic sensors were placed on this distance
image at intervals of 50 cm as shown in Figure 8, as in the real
environment experiment, and we calculated the observation
signals acquired by each ultrasonic sensor. We assumed that
the camera is placed at the same position as the ultrasonic
sensor 1, and the correct 3D scene is the distance image at
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Fig. 7. Target scene

(a) Arrangement of three
sensors

(b) Arrangement of five
sensors

Fig. 8. Arrangement of ultrasonic sensors

that camera position. The observation signal was calculated
assuming that the sound emitted from the ultrasonic sensor
does not attenuate and that the sound hits all pixels in the
scene. The amplitude of the reflected wave was assumed to
be equal to the magnitude of the incident wave. This dataset
contains distance images of distant objects. However, in this
experiment, we assumed that the measurable range of the
sensor was 300cm, and excluded such data, and conducted the
experiment with 178 data consisting of objects within 300cm.
The temperature in the room was assumed to be 14 degrees
Celsius, and we assumed the speed of sound to be 340 meters
per second. In order to investigate the change in estimation
accuracy depending on the number of sensors, we calculated
the observed signals for the case where five ultrasonic sensors
were used in the same way. The observation signals acquired
by each sensor are shown in Figure 9.

E. Evaluation of the number of ultrasonic sensors

The results of the distance image estimated by three ul-
trasonic sensors and the distance image estimated by five
sensors are shown in Figure 10. The results show that the

Fig. 9. Observed signals

(a) Results by three sensors (b) Results by five sensors
Fig. 10. Predicted depth map

TABLE II
MEAN ABSOLUTE ERRROR

# of sensors MAE (cm)
3 27.5
5 22.8

object on the right side of the scene can be estimated as
a short distance object in both cases. In particular, when
five sensors are used, the proposed method can estimate the
distance more accurately. This result indicates that the more
ultrasonic sensors are used, the more accurately the method
can estimate the object’s shape in the 3D scene. The average
distance error from the correct 3D scene for all scene is shown
in Table II. This result also shows that our proposed method
can estimate the correct 3D scene using five ultrasonic sensors.
This indicates that by increasing the number of sensors, it
is possible to obtain more information about the scene and
improve the accuracy of the distance image estimation.

F. Evaluation with Smoothness Reguralization

Next, to evaluate the regularization based on the spatial
smoothness constraint, we examined the change in the ac-
curacy of 3D scene estimation with and without the reg-
ularization based on the spatial smoothness constraint. The
results for the case with three ultrasonic sensors and the
case with five ultrasonic sensors are shown in Figure 11.
The results for the case with three ultrasonic sensors and
the case with five ultrasonic sensors are shown in Fig. 11.
The results show that the overall estimation is smoother than
the case without regularization. It can also be confirmed that
the lower right part of the image is closer to the sensor as
in the case without regularization. It can be seen that the
regularization term based on the spatial smoothness constraint
is a more natural representation of the 3D scene. The average
distance error between the correct 3D scene with/without
regularization is shown in Table III. The results show that the
average distance error without spatial regularization is smaller
than the average distance error with spatial regularization,
confirming that the estimation accuracy is better with spatial
regularization. Therefore, it is confirmed that the regularization
of the shape is effective in the proposed method.

VI. CONCLUSIONS

In this paper, we proposed a method for estimating the
distance image using only the information obtained from
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(a) with regularization (b) without regularization
(i) by three sensors

(c) with regularization (d) without regularization
(ii) by five sensors

Fig. 11. Effect of regularization

TABLE III
MEAN ABSOLUTE ERRORS

MAE (cm)
w/o regularization (three) 27.5
with regularization (three) 27.1
w/o regularization (five) 22.8
with regularization (five) 22.6

multiple ultrasonic sensors. For this purpose, we modeled the
observation signals acquired by ultrasonic sensors based on
the Phong model. We showed that the amplitude information
of the modeled observation signals can be expressed based on
probability. The amplitude information of the modeled signals
can be expressed based on probability. Using the amplitude
information expressed based on probability, we showed how
to derive the probability that an object exists at a certain point
in 3D space when multiple ultrasonic sensors are used. Then,
a method for estimating a dense 3D scene using the derived
probability of the existence of an object is presented. We also
introduced smoothness constraints as prior knowledge of the
3D scene to be estimated, and showed an optimization method
that includes the smoothness constraints as regularization
terms. Finally, a method for estimating a dense 3D scene based
on the existence probability of an object is implemented in real
space and shown to be feasible in practice. Furthermore, we
conducted an evaluation experiment to determine the validity
of the regularization term based on the smoothness constraint,
and evaluated the regularization term based on the smoothness
constraint.

In the future, we would like to develop a method for estimat-
ing the 3D scene by adding a regularization term related to the
normal direction, because the observation signals acquired by
ultrasonic sensors are easily affected by the normal direction
of the object surface in the 3D scene.
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