
Feedback Quantization and Bit Allocation for
Networked Control Systems with Rate Limited

Channels
Kazuya Hanamoto∗ and Shuichi Ohno†
∗ J-QuAD DYNAMICS Inc., Aichi, Japan

E-mail: kazuya.hanamoto@j-quad.co.jp
† Department of Electrical and Information Engineering, Osaka City University, Osaka, Japan

E-mail: ohno@osaka-cu.ac.jp

Abstract—This paper considers feedback quantization and bit
allocation for networked control where observation signals are
transmitted through a wireless digital communication channel.
Since the channel can transmit only a limited number of bits
per unit time, bits have to be allocated to each observation
signal efficiently. To obtain reasonable performance at a relatively
low cost, we employ feedback quantizers to quantize continuous
signals. First, we express the mean squared error (MSE) of the
output of a networked control system due to quantization in terms
of allocated bits and feedback filters of quantizers. Then, since it
is hard to obtain the optimal bit allocation and feedback filters
that jointly minimize MSE, we propose a heuristic design that
iteratively optimizes bit allocation and feedback filters. The bits
are allocated by a greedy algorithm, whereas feedback filters
are designed by solving optimization problems. A numerical
example shows that our design exhibits better performance than
the conventional design.

I. INTRODUCTION

Wireless communication technology plays a greater role
also in networked control systems, where multiple sensors
at a controlled plant send their observation signals to a con-
troller and the controller transmits control signals to actuators
at the plant through communication channels (e.g. see [1],
[2] and the references therein). However, there still remain
some critical constraints on wireless communications, e.g. bit
rate limitations of communication channels, communication
delays, data packet losses, bit errors, asynchronicity, and so
on.

Although such constraints heavily affect the performance of
the networked control system, there have not been many works
on control taking account of the communication constraints.
Most of control laws have been developed under the ideal
assumption that the communication is perfect. For discrete-
time, linear and time-invariant (LTI) systems, stabilizability
over a rate limited communication channel has been studied
by using ideal quantization [3], [4]. On the other hand, some
of communication technologies have been developed without
paying much attention to applications over them. For example,
channel coding often treats each bit in a bit stream equally,
although bits may have different effects on the system perfor-
mance. A better performance can be obtained if one designs
the system considering the control and the communication

simultaneously. Indeed, a simple on-off error control coding
can improve the control quality [5].

In [6], joint optimization of wireless communication and
networked control has been considered by using conventional
uniform quantizers. A cross layer design for communication
and control of a networked control system has been presented
in [7] to achieve a better control accuracy with uniform
quantizers. In this paper, a cross layer design of quantization
for networked control over a rate limited communication
channel is presented.

When sensors transmit their observation signals to the
controller independently, we have to allocate the fixed bit
rate to communication links. TDMA-based allocation has been
proposed for sensor networks [8] and for a networked control
system having only one observation signal [9]. On the other
hand, to attain asymptotic stability of a networked control
system, quantization which adaptively changes its quatization
step-size has been provided in [10]. However, it works only
when the signal to be quantized converges to a certain value
and the limiting value is known a priori.

We design a feedback quantizer, which is composed of an
error feedback filter and a uniform quantizer (see Fig. 2 in Sec.
II), for a networked control system over a rate limited channel.
First, we evaluate the mean squared error (MSE) in the output
of the networked control system due to quantization. MSE is
expressed by assigned bits and feedback filters. Then, since it
is hard to obtain the optimal bit allocation and feedback filters
that jointly minimize MSE, we propose a heuristic design
that iteratively optimizes bit allocation and feedback filters.
The bits are allocated by a greedy algorithm [12], whereas
the feedback filters are designed by solving optimization
problems. A numerical example shows that our design exhibits
better performance than the conventional design.

II. NETWORKED CONTROL AND QUANTIZATION

Fig. 1 shows a control system, where the plant is a single
input and single output linear time-invariant (LTI) system. For
simplicity, we consider the discretized system with discrete-
time signals. The discretized plant is assumed to be reachable
and observable.
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Fig. 1. Control system and quantization.

This paper only considers the quantization for the commu-
nication from the plant to the controller. A similar result may
be obtained for the communication from the controller to the
plant.

At time k, the controller generates a control signal uk based
on the observation signals xk from the plant. For simplicity of
presentation, we assume that the n×1 state vector of the plant
is directly observed and xk is the state vector of the plant at
time k.

The state vector xk is transmitted over a wireless commu-
nication channel. Without loss of generality, we assume that
the ranges of the signals are symmetric such that |[xk]i| ≤ Li

for any k ∈ [1, n] where [xk]i is the ith entry of xk.
We quantize the entries of xk independently and adopt

feedback quantizers for quantization, since they exhibit bet-
ter performance than conventional uniform quantizers at the
expense of a relatively low cost. Feedback quantizers are
equivalent to linearized ∆Σ modulators [11], which are often
utilized for analog to digital (A/D) or digital to analog (D/A)
conversions.

Fig. 2 illustrates a feedback quantizer for the ith entry of
xk, where Q(·) is a uniform quantizer whose saturation levels
are ±1, [xk]i is the ith entry of xk, [xQ,k]i is the output of ith
quantizer, and [wk]i is the quantization error of the uniform
quantizer Q(·).

To avoid the overloading, the input to the uniform quantizer
is scaled by the factor 1/ci for ci > 0. The output of the
uniform quantizer is re-scaled by the factor of ci.

The round-off error of the uniform quantizer is filtered by an
error feedback filter Fi[z]−1 and is fed back to the input. The
feedback filter Fi[z]−1 is strictly proper, that is, Fi[∞] = 1. It
should be remarked that when Fi[z] = 1, there is no feedback
and the quantizer becomes a uniform quantizer.

We assign bi bits to the ith entry of xk. Then, the required
bit rate B is given by

B =

n∑
i=1

bi. (1)
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Fig. 2. Feedback quantizer.

On the other hand, the quantization interval di for the uniform
quantizer is given by

di =
1

2bi−1
. (2)

We assume that the quantization error of a uniform quantizer
is uniformly distributed white random noise with zero mean.
Then, the variance of the round-off error is given by

σ2
i =

1

3

(
di
2

)2

=
1

3 · 22bi
. (3)

In general, this whiteness assumption on the quantization
error does not hold true for feedback quantizers unless there
is no overflow, the quantization interval is sufficiently small
and the number bi is sufficiently large. However, we adopt it,
since it can simplify the design of bit allocation and feedback
quantizers to obtain better performance than the conventional
uniform quantizers.

Let us denote the L2 norm of G[z] as ∥G[z]∥, which is
defined as

∥G[z]∥ =

(
1

2π

∫ π

−π

G∗[ejω]G[ejω]dω

) 1
2

(4)

where c∗ is the complex conjugate of c. If the impulse response
of the feedback filter Fi[z]− 1 is not sparse, the output of the
feedback filter may be approximated as a Gaussian random
variable whose variance is given by

σ2
ηi

:= ∥Fi[z]− 1∥2c2iσ2
i . (5)

To avoid overflow (or equivalently overloading), we have
to regulate the feedback signal. Suppose that the probability
of overflow should be less than 1− P for 0 < P ≤ 1. If the
feedback signal is Gaussian, we can find a value cP so that
the probability of the absolute value of the feedback signal
being less than cPσηi

is P . Then, if we put

ci = Li + cPσηi (6)

the probability of overflows is less than 1− P . From (5) and
(6), we have

ci =
1

1− cP ∥Fi[z]− 1∥σi
Li (7)
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which necessitates ∥Fi[z]− 1∥ ≤ 1/(cPσi).
We have to use the quantized state vector xQ,k in place of

xk. Let us employ a state feedback control and generate the
control signal by

uk = K(rk − xQ,k) (8)

where rk is a reference for the state vector xk and K =
[k1, k2, ..., kn] is the feedback gain which is determined by
a control law, e.g. an optimal control.

The input to the plant can be expressed as uk = K(rk −
xk) +Kek, where ek := xQ,k − xk is the quantization error
of the feedback quantizer at time k. It is noted that the term
K(rk −xk) is the control signal when there is no error, while
the term Kek is due to quantization errors.

Let the discrete-time transfer function from the input uk of
the plant to the output yk of the plant be G[z]. Then, the z
transform of yk can be expressed as

Y [z] = G[z]K(R[z]−X[z]) +G[z]

n∑
i=1

kiFi[z]Wi[z] (9)

where R[z], X[z], and Wi[z] are z transforms of rk, xk, and
[wk]i, respectively.

Assuming that each entry of the quantization error w of the
uniform quantizer is not correlated with each other, the mean
squared error (MSE) due to the quantization is given by

MSE =

n∑
i=1

∥G[z]Fi[z]∥2k2i c2iσ2
i . (10)

Substituting (2) and (7) into (10), we finally have

MSE =

n∑
i=1

∥G[z]Fi[z]∥2k2iL2
i(

1− cP ∥Fi[z]−1∥√
32bi

)2

1

3 · 22bi
(11)

Our objective is to find bit allocation and feedback filters
that minimize MSE when the total number of bits is fixed as
in (1), for given system G[z], feedback gain K and input range
Li for i = 1, . . . , n. Unlike [6] that considers the allocation of
communication resources for uniform quantizers, we design
feedback filters to obtain better performance.

III. A HEURISTIC DESIGN

In general, MSE is not a convex function in our design
variables. To obtain reasonable bit allocation and feedback
filters, we propose a heuristic method that iterates the bit
allocation and the design of feedback filters.

First, we start the uniform quantization, that is, the case
where Fi[z] = 1 for all i ∈ [1, n] in (11). The MSE can be
expressed as

MSE =
∥G[z]∥2

3

n∑
i=1

k2iL
2
i

22bi
. (12)

In this case, the MSE is a sum of convex and strictly
decreasing functions in bi. Thus, the optimal bit allocation
can be obtained by a greedy algorithm [13].

We assign one bit at a time to one of the quantizers that
reduces the MSE most. We repeat this until all B bits are
assigned. The greedy algorithm for our bit allocation can be
summarized in the following steps:

1) Allocate one bit from the remaining bits to the entry that
gives the largest decrease of the MSE.

2) Reduce the number of remaining bits by one.
3) If the number of remaining bits is zero, exits, and if not,

return to 1.
Next, for the fixed bit allocation, we design feedback filters

to minimize MSE. All we have to do is to find the filter that
minimizes

g(Fi[z]) :=
∥G[z]Fi[z]∥2(

1− cP ∥Fi[z]−1∥√
32bi

)2 (13)

for each i = 1, 2, . . . , n. However, it is not that easy to
analytically find the optimal Fi[z]. Here, we numerically
evaluate g(Fi[z]) as follows.

For a fixed γηi
:= ∥Fi[z] − 1∥, we find the minimum of

∥G[z]Fi[z]∥ by solving the following optimization problem:

min
R[z]∈RH∞,γϵ

γϵ (14)

subject to R[∞] = 1,

∥G[z]Fi[z]∥ ≤ γϵ (15)
∥Fi[z]− 1∥ ≤ γηi

(16)

where RH∞ is the set of stable proper rational functions
with real coefficients. This problem can be cast into a convex
optimization problem [14], which can be solved numerically
and efficiently by using a numerical solver like CVX[15].

Once the optimal filters are obtained, we find the bit allo-
cation again. We resort to the greedy algorithm to obtain our
bit allocation, although the optimality of the greedy algorithm
is not guaranteed unlike the uniform quantizers. Then, for the
given bit allocation, we find the optimal filters that minimize
(13).

We repeat the successive bit allocation and filter design
described above until a convergence criterion is satisfied. Since
our algorithm monotonically decreases MSE, its convergence
is assured but its limiting point is not optimal in general. It
is noted that the convergence speed does not matter so much,
since the bit allocation and feedback filters are supposed to be
designed offline.

IV. A DESIGN EXAMPLE

Due to the lack of space, we can show only one design
example of a rotary inverted pendulum detailed in [16].
We remark that similar improvements of MSE have been
confirmed in other examples.

In continuous-time, the state of the rotary inverted pendulum
is

xT (t) = [ϕ(t), θ(t), ϕ̇(t), θ̇(t)],

where θ(t) is the yaw angle of the arm and ϕ(t) is the pitch
angle of the the pendulum. The torque u(t) is applied to
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Fig. 3. Empirical MSEs for different numbers of total bits.
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Fig. 4. Empirical and theoretical MSEs.

actuate the pendulum. If ϕ(t) = 0, then the pendulum is
balanced in the inverted position.

The linearized continuous system is discretized with the
sampling period 0.01. The state feedback control with gain
is set to be

[k1, k2, k3, k4] = [57.2598, 6.0910, 6.2562, 3.4953].

The angle of the pendulum and the angle of the arm is phys-
ically limited. On the other hand, the angular velocity of the
pendulum and the angular velocity of the arm depend on the
control law. We evaluate their maximum values by numerical
simulations without quantization. To avoid overflows, doubles
of them are used. Then, the saturation levels are set to be

[π/2, π, 3.3492, 5.4236].

Fig. 3 compares empirical MSEs of feedback quantizers
and uniform quantizers for different numbers of total bits. For
the optimal bit allocation for uniform quantizers, we design
feedback quantizers and find bit allocation based on the greedy

algorithm. After the first iteration, the feedback quantizers
exhibit better MSE performance than the uniform quantizers.
After the 4th iteration, we could not find any significant
improvement in MSE.

Fig. 4 compares the empirical MSE after the 4th iteration
with its corresponding theoretical MSE. Although the white-
ness assumption does not hold true, the empirical MSE is
similar to the theoretical MSE, which justifies our design.

V. CONCLUSIONS

We have proposed a heuristic design that iteratively opti-
mizes bit allocation and feedback filters of feedback quantiz-
ers. A numerical example shows that our design exhibits better
performance than the conventional design.
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