
Integrated spectral kurtosis analysis
Arvid Trapp∗ and Peter Wolfsteiner∗

∗Munich University of Applied Sciences, Munich, Germany
E-mail: arvid.trapp@hm.edu

Abstract—Spectral kurtosis (SK) analysis is a popular sig-
nal processing technique to locate harmonics, transients and
repetitive impulses in the frequency domain. As a fourth-order
frequency-domain technique the SK belongs to the wide range
of higher-order spectral analysis and commonly finds application
for the pre-processing of band-limited envelope analyses. We
propose a novel definition of the SK, whereby SK estimates are
fully resolved in time using the technique of filtering-averaging.
Hereby, SK estimates are defined as the average of the full
time resolution of trispectral estimates, while the latter can
be processed to carry out envelope analyses directly on these
estimates. Conjoining SK and envelope analysis specifies an
integrated SK analysis, providing insight into the generating
mechanisms of its estimates. It further differentiates from the
popular short-time Fourier transform (STFT) estimator in a facil-
itated handling, (a) requiring less parameters, (b) circumventing
the quasi-stationary assumption of the STFT, and (c) providing
the frequency bandwidth with a clear meaning.

I. INTRODUCTION

A fundamental task of signal processing is to acquire
meaningful information from physical recordings subjected to
noise. Spectral kurtosis (SK) analysis is applied to identify
the location of transients and impulsive components in the
spectral domain. This commonly functions as a pre-processing
technique for subsequent comprehensive analysis in the cor-
responding frequency bands. As such, the SK is popularly
employed for selecting frequency bands in order to diagnose
rolling element bearing damages by band-limited envelope
analyses [1], [2].

The fundamental mechanism of the SK is to relate fourth- to
second-order averages resolved for frequency bands. Hereby,
stationary Gaussian noise is fully defined by the second-
order (power) spectral density (PSD). Contrasting second- with
fourth-order band-limited spectral estimates enables locating
frequency bands that contain components distinct from sta-
tionary Gaussian noise, i.e. transients, significant harmonic
components or repetitive impulsive characteristics (cyclo-
stationarity). The SK originates from a heuristically introduced
proposal based on the short-time Fourier transform (STFT)
that was named frequency-domain kurtosis [3]. Antoni sig-
nificantly contributed to today’s popularity by a profound
formalization [4]. He adapted the STFT estimation scheme and
the name spectral kurtosis [5], which has lend its denotation to
the algorithms that are nowadays implemented in commercial
tools.

From higher-order spectral (HOS) analysis [6] it is well
known, that the kurtosis is a function of three arguments in
the frequency domain. It represents the normalized spectral
decomposition of the fourth-order central moment — the

trispectrum. Hereby, the SK defines a subset of the normalized
cumulant trispectrum that encompasses all estimates for which
the three frequency arguments refer exclusively to a single
frequency band. Consequently, the SK drastically reduces the
complexity of HOS analysis, which can certainly be identified
as a central facet for the SK’s popularity.

For tracing varying components in the spectral domain,
inherently linked to stationarity, the SK has commonly been
estimated by short-time Fourier or wavelet analysis. By
choosing an appropriate segmentation, these segment-wise
stationary techniques allow to observe a fluctuating spectral
decomposition along their evolution in time. This is processed
by SK analysis to calculate frequency-selective averages of
different orders. A recently published estimator for HOS
[7] bypasses the segmentation in time adopting frequency-
domain smoothing to obtain stable HOS estimates. Since these
estimates are fully resolved in time this estimator enables
direct envelope analysis on its estimates, enabling an integrated
SK analysis.

II. STATISTICAL SIGNAL PROCESSING

According to the central limit theorem (CLT), random
processes X(t) that are influenced by a large set of individual,
i.e. statistically independent, variables follow the Gaussian
probability density,

pg(x) =
1√
2πσ

e
−
1

2

(
x− µ

σ

)2

(1)

fully defined by mean µ and variance σ2. As a consequence
of the CLT such processes have a random phase information
φ(f) with a statistically independent frequency-domain char-
acteristic. Spectral analysis (E[·] — expected value)

Sn(f1, ..., fn−1) =

lim
T→∞

1

T
E[XT (f1) ... XT (fn−1)XT (−f1 − ...− fn−1)]

(2)

processes the amplitude and the phase information of the
(finite) Fourier transform XT (f). Its only exception is the
second-order (n = 2) PSD S2(f), which is restricted to the
amplitudes and hence phase-blind. A process tests positive for
stationary Gaussian noise, if statistically independent phases,
i.e. conformance with the CLT, are identified by applying
higher-order (n > 2) spectra [8], [9]. As this hypothesis
comprises considerable effort in practice, stationary Gaussian
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noise is often assessed by a simplification using the scalar-
valued central moments

µn = E
[
(X(t)− E[X(t)])n

]
=

∫ ∞

−∞
(x− µ)n p(x) dx (3)

Therefore, the kurtosis

β =
µ4

σ4
=

µ4

(µ2)2
(4)

functions as a central indicator relating the fourth- to the
second-order central moment. Since the fourth-order moment
of a stationary Gaussian process is specified by µ4,g = 3µ2

2,
the kurtosis can indicate deviations from a stationary Gaussian
process whose value is βg = 3. A popular alternative are
cumulants cn (c2 = µ2; c4 = µ4 − 3µ2

2; [10]), complementing
the kurtosis with the excess kurtosis

γ =
c4

(c2)2
=

µ4 − 3µ2
2

(µ2)2
= β − 3 (5)

Higher-order cumulants enjoy the property of being zero
for stationary Gaussian processes, hence γg = 0. HOS
Sn(f1, ..., fn−1) and Cn(f1, ..., fn−1) are the spectral decom-
position of central moments resp. of cumulants

µn =

∫ ∞

−∞
...

∫ ∞

−∞
Sn(f1, ..., fn−1) df1...dfn−1

cn =

∫ ∞

−∞
...

∫ ∞

−∞
Cn(f1, ..., fn−1) df1...dfn−1

(6)

From Eqs. (4) and (6) follows that the kurtosis is a function
of three arguments in the frequency domain [11]

B(f1, f2, f3) =
S4(f1, f2, f3)√

S2(f1)S2(f2)S2(f3)S2(−f1 − f2 − f3)
(7)

The kurtosis function B(f1, f2, f3) is the normalized represen-
tation of the trispectrum S4(f1, f2, f3) which — as a fourth-
order spectrum — measures cross-frequency correlation of up
to four frequencies f1, ..., f4, whereby f4 = −(f1 + f2 +
f3). The SK follows this frequency-decomposition principle.
Hereby, it considers a subset of the full fourth-order set, which
is spanned up between the Nyquist frequency fNy in Fig. 1
(−fNy ≤ f ≤ fNy). The SK is defined as the subset of
the normalized cumulant trispectrum (replacing S4(f1, f2, f3)
with C4(f1, f2, f3) in Eq. 7) that encompasses all estimates
relating to a unique frequency (red in Fig. 1):

{f1 = f2 = −f3, f1 = −f2 = f3, f1 = −f2 = −f3} (8)

Each of these subsets is the intersection of two combinations
of the set [12], [13],

{f1 + f2 = 0, f2 + f3 = 0, f3 + f1 = 0} (9)

locating the so-named normal manifolds in the trispectral set
(Fig. 1). In the following, those subsets relating exclusively to
a unique frequency are denoted single-frequency moments

µ4(f)=̂(∆f)3ℜ[S4(f, f,−f)]; µ2(f)=̂∆f S2(f) (10)

by inserting one of set (8) into the trispectrum, e.g.
S4(f, f,−f). Defining the fourth-order single-frequency mo-
ment µ4(f) by the real part comes from the complex-
conjugated (Hermitian) symmetry at the origin characteristic
for all spectra, e.g.

S4(f1, f2, f3) + S4(−f1,−f2,−f3) =

2ℜ[S4(f1, f2, f3)] = 2ℜ[S4(−f1,−f2,−f3)]
(11)

Consequently, specifying µ4(f) as a one-sided, i.e. positive,
frequency decomposition, the trispectral set contains six sym-
metric subsets with the redundant information of µ4(f).

Fig. 1. SK estimates (red) and estimates (grey) containing normal manifolds
(bold planes) of bandwidth ∆f as subsets of the trispectral set

Defining the single-frequency fourth-order cumulant c4(f)
involves the cumulant trispectrum C4(f, f,−f), which re-
quires segregating the normal manifolds of the set (9) from
the trispectrum. These manifolds refer to the second-order
spectrum S2(f) = C2(f) [13]. Integrating the spectral density
of each manifold results in µ2

2. Since two normal manifolds
intersect at the single-frequency subset (8) of the trispectrum,
they are accordingly eliminated by subtracting µ2

2(f) twice

c4(f)=̂(∆f)3ℜ[C4(f, f,−f)] = µ4(f)− 2µ2
2(f) (12)

Consequently, the spectral kurtosis SK(f) is defined by

SK(f) =
c4(f)

c22(f)
=

µ4(f)

µ2
2(f)

− 2 (13)

A. Estimating the spectral kurtosis (SK)

Modeling transients and varying components in the fre-
quency domain obligates an extension of the classic Fourier
representation, which is fundamentally bound to stationarity.
The most intuitive extensions are the evolutionary spectrum
(ES) proposed by Priestley [14] and the Wold-Cramer de-
composition (WCD) by Antoni [4]. The former extends the
complex exponentials of the Fourier integral to amplitude-
modulated complex exponentials. The latter couples a time-
variant filter to a stationary white noise process. To process the
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resulting data in the frequency domain requires adjustments
to the Fourier analysis procedure. One form is the STFT
analysis loosening the hypothesis of stationarity from the full
data set to the unique segments s′. Consequently, the spectral
decomposition can be observed in time.

For estimating the SK, the STFT-based
estimator processes second- and fourth-order
averages

(
|X̃w[k′]|n = 1

S′

∑S′

s′ |X̃w[k
′, s′]|n =

1
S′

∑S′

s′ (X̃w[k
′, s′]X̃w[−k′, s′])

n
2 ; for even n

)
of the

windowed STFT X̃w[k
′, s′] for frequencies1 k′ [4]

S̃KSTFT [k
′]=̂

|X̃w[k′]|4(
|X̃w[k′]|2

)2 − 2 (14)

The estimating scheme is analogous to the STFT-estimator for
HOS [6], [15]. It introduces a set of parameters relating to the
segmentation, which includes the segment length Sw (defining
the estimates resolution ∆fk′ = 2fNy/Sw), the segment
overlap, and the corresponding windowing function to reduce
spectral leakage. Since foremost the segment length can have a
substantial impact on the SK results the estimator is commonly
applied for a set of different configurations visualized as the
kurtogram [16].

III. FILTERING-AVERAGING (FA) ESTIMATOR FOR THE SK
While the STFT approach is intuitive in its nature to

detect non-stationary components, there are further options
particularly considering that HOS analysis allows to identify
a varying spectral decomposition under the hypothesis of the
introduced models (e.g. ES, WCD). This leads to an alternative
approach for estimating the SK provided by filtering averaging
(FA) [17], [7].

Following the ES, non-stationary data is the result of a
stationary Gaussian process Xg(t) modulated by a frequency-
selective function in time a(f, t). This defines a(f, t) as a
frequency-variant envelope operating on the underlying sta-
tionary Gaussian data xg(t). Imposed as a multiplication in the
time domain, the frequency-domain equivalent is the circular
convolution X(f) = Xg(f) ∗ A(f, f ′) of the latter’s Fourier
transform Xg(f) with the Fourier transform A(f, f ′) of the
modulating envelope (t c sf ′). If xg(t) is subjected to a
varying envelope (i.e. A(f, f ′) ̸= 0 for f > 0) this introduces
a phase structure into the former statistically independent
phases, i.e. generates cross-frequency correlation. Applying
HOS analysis to assess such a phase structure indicates that
the resulting process X(f) lost its conformance with the CLT.

What qualifies the SK subset for assessing such cross-
frequency correlation is when A(f, f ′) has a low-frequent
evolution in f ′, i.e. a(f, t) varies slowly in time t. If so, the
modulation (circular convolution) generates cross-frequency
correlation between X(f) and X(f ± f ′) that are decisively

1Contrasting the fully-resolved sampling in time s and frequency k, the
apostrophe indicates smoothed sampling s′, k′, i.e. 1

fs
= ∆ts < ∆ts′ ,

1
T

= ∆fk < ∆fk′ (sampling frequency fs, samples S, signal duration
T = S∆ts). Further, k stands implicitly for discrete frequencies and its
bandwidth ∆fk , with the latter being dropped in the notations.

localized2 in the spectral domain. These cross-frequency con-
tributions to the fourth-order moment resp. cumulant (Eq. 6)
are captured by the SK subset, if the contrasting frequency
bandwidth ∆f of the estimates is ∆f > 2f ′. In practice this
largely proves to be valid, since smoothing, i.e. a significant
large ∆f , is a fundamental principle of spectral estimation, as
a premise for making the estimation of the multi-dimensional
HOS computational feasible and the resulting spectral densi-
ties meaningful.

The prior passage provides the SK with a clear meaning.
Under the assumption of an underlying stationary Gaussian
process, SK estimates about a center frequency f capture all
contributions to the fourth-order cumulant that result from a
varying envelope composed of frequencies up to f ′ < ∆f/2.
Note that the divisor ’two’ can be interpreted as the analogue to
how the STFT estimator requires a segmentation according to
the Shannon sampling theorem to capture quasi-stationary fre-
quency components. Estimating the SK via filtering-averaging
is consequently defined by (also comp. note1)

ŜKFA[k
′] =

µ̂4[k
′]

(µ̂2[k′])2
− 2 =

(∆fk′)3ℜ
[
Ŝ4[k

′, k′,−k′]
]

(∆fk′ Ŝ2[k′])2
− 2

(15)
Hereby, the HOS estimates are given by,

µ̂4[k
′] = ℜ

[
1

S

S∑
s

x[s]x[s, k′]︸ ︷︷ ︸
=µ̂2[k′]=∆fk′ Ŝ2[k′]

x[s, k′]x∗[s, k′]

]
(16)

whereby x[s, k′] =
∑

k Hk′ [k − k′]X[k]ei2πks are analytic
signals, which are extracted by the one-sided band-limited
filter function Hk′ [k − k′] for k′ [7] (e.g. ideal bandpass
Hk′ [k − k′] = 1 ∀k ∈ k′, else 0).

A. Envelope analysis on SK estimates

In contrast to the STFT estimator (Eq. 14) filtering-
averaging provides the SK estimates with its full time-
resolution (complex-valued)

µ̂4[k
′, s] = (∆fk′)3Ŝ4[k

′, k′,−k′, s] =

= x[s]x[s, k′]x[s, k′]x∗[s, k′]
(17)

Depending on the nature of the data under investigation this
time-resolution may be investigated to observe the precise
location of the corresponding transients in the time-domain.
Likewise, the full time resolution may also be processed
by envelope analysis to identify whether an SK estimate is
subjected to a cyclic modulation. In other words — whether
its corresponding envelope a(f, t) tends to be random or
deterministic (cyclo-stationary). If a(f, t) provides a cyclic
envelope, the envelope analysis reveals its characteristic fre-
quencies, e.g. the damage signature of a defect rolling element
bearing.

2Exemplary, cross-correlation between X(f)X(−f + f ′)X(f +
ε)X(−f − f ′ − ε) would be captured by the fourth-order trispectrum
(
∑

f1,...,4
= 0; ε representing an infinitesimal frequency).
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As a final note — carrying out band-limited analysis
produces time-domain leakage. Hereby, the filter function
Hk′ [k−k′] defines the leakage that affects the time resolution
due to frequency-domain segmentation [18].

IV. APPLICATION OF THE INTEGRATED SK ANALYSIS

Fig. 2. Exemplary realization — broadband noise with a frequency-selective,
amplitude-modulated interval f = [100 110] Hz

This section introduces a simple example to illustrate the FA
estimation scheme and envelope analysis, but also to provide a
brief comparison to the STFT estimation procedure. Therefore,
Fig. 2 shows a realization of unit-variance, evenly-distributed
noise. While the example is constructed to represent stationary
Gaussian noise for most of its spectral decomposition, the
frequency interval f = [100, 110] Hz is subjected to a sine-
modulation varying about one (Fig. 2). The sine’s amplitude
1/

√
3 is chosen so that the expected value (calculated via

a(f, t)4/a(f, t)2
2
) is SK(f) = 1 for the non-stationary band

(f = [100, 110] Hz), while being nil SK(f) = 0 for the
remaining stationary components. Fig. 2 further includes the
time-frequency visualization (spectrogram) and the average
PSD. A numerical study based on 500 realizations that were
generated accordingly was carried out to compare the STFT
and FA estimation techniques for a set of different config-
urations (Tab. I). For each configuration the mean and the
standard deviation of the individual estimates were calculated
to investigate the error.

Exemplary, Fig. 3 shows a comparison of the SK estimated
via STFT- (Hanning window of length Sw = 128 and overlap
of 75%) and the FA scheme (ideal band-pass of bandwidth
∆fk′ = fs

Sw
Hz resp. 2fs

Sw
Hz). The properties of STFT estimates

significantly rely on tapered windows and a significant overlap.
Implying such a configuration, the STFT estimator is less
subjected to error noise but shows a larger bias than the FA
estimator, considering the same bandwidth ∆fk′ . Doubling
the bandwidth of FA estimates reduces the error variance to a
similar level but retains a smaller bias (Fig. 3).

Tab. I further includes a configuration of the FA estimator
that applies a Hanning window in the frequency-domain.
Incorporating a windowing function (frequency-domain) to
the FA scheme trades variance against less bias. Further,
establishing an overlapping scheme into the frequency dis-
cretization does not change the variance (only affected by
bandwidth) but may change the bias properties, due to a more
adequate center frequency. However, STFT and FA belong to
the same family of periodogram estimators [7]. It can therefore
be concluded, that in practice they rather differentiate by
their handling than by their estimator properties. Hereby, FA

Fig. 3. Spectral Kurtosis via STFT and FA estimator

TABLE I
NUMERICAL STUDY FOR ESTIMATOR PROPERTIES

Sw [-] 256 128 64
∆fk′ [Hz] 1.5625 3.125 6.25

FA
boxcar

Var 3.02e-03 1.51e-03 7.41e-04
Bias2 2.35e-03 4.31e-03 1.01e-02
MSE 5.37e-03 5.82e-03 1.08e-02

FA
Hanning

Var 4.82e-03 2.42e-03 1.20e-03
Bias2 1.47e-03 2.72e-03 6.82e-03
MSE 6.29e-03 5.14e-03 8.02e-03

STFT
boxcar
0% overlap

Var 3.79e-03 1.81e-03 8.33e-04
Bias2 5.66e-03 1.52e-02 2.30e-02
MSE 9.46e-03 1.70e-02 2.38e-02

STFT
boxcar
75% overlap

Var 1.76e-03 8.42e-04 3.87e-04
Bias2 5.71e-03 1.52e-02 2.29e-02
MSE 7.48e-03 1.61e-02 2.33e-02

STFT
Hanning
0% overlap

Var 3.83e-03 1.85e-03 8.34e-04
Bias2 5.92e-03 1.49e-02 2.24e-02
MSE 9.75e-03 1.67e-02 2.33e-02

STFT
Hanning
75% overlap

Var 1.52e-03 7.07e-04 3.19e-04
Bias2 5.95e-03 1.50e-02 2.26e-02
MSE 7.46e-03 1.57e-02 2.29e-02

uniquely provides an SK estimate with its full time-resolution.
Exemplary, Fig. 4 illustrates the full time-resolution (equal
sampling as realization) of two SK estimates by comparing a
modulated (red) and a non-modulated (black) band. It further
includes their cumulated sum of the fourth-order cumulants
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(c4[k′, S′] = 1/S
∑S′

s c4[k
′, s]; Eq. 12) on the second y-

axis. This shows how the envelope of the modulated band
accumulates fourth-order moment in time (red) and how the
stationary band varies about zero. Lastly, Fig. 4 shows the
periodogram of the modulated band’s envelope (|µ4[k

′, s]|,
red). In contrast, the black periodogram shows the spectrum
of the squared envelope, which is the result of defining
the envelope directly on the fourth-order |µ4[k

′, s]| without
normalization (square root).

Fig. 4. Time-domain resolution and envelope analysis of SK estimates

V. CONCLUSION

In this paper the spectral kurtosis (SK) is introduced from
the perspective of higher-order spectral (HOS) analysis. This
complements the SK with additional insight regarding its
normalization and its real-valued nature. Foremost, the tie to
HOS makes existing research on HOS estimation accessible.
Hereby, a new estimating scheme for the SK utilizing filtering-
averaging is introduced. It bypasses the segmentation, which
the popular STFT scheme is based upon, and provides the full
time-resolution of SK estimates. This offers the potential to
improve the bias properties, foremost for transient events that
are significantly shorter than the STFT segment length. Stable
estimates are obtained on the basis of a single parameter —
the frequency bandwidth about a frequency of interest, which
can directly be related to the spectral composition of its time
envelope. The time resolution of SK estimates can further be
processed to localize random transients in the estimate’s time
evolution or by analyzing the spectral decomposition of the
envelope to identify whether the SK’s value originates from
a periodic modulation (cyclostationary). This integrated SK
analysis may further be extended to the proposal of [19],
in which the kurtosis is decomposed into a two-dimensional
frequency-domain decomposition. In this form it can assess
whether frequency bands, i.e. SK estimates, are subjected to a

synchronous modulation and it can directly be related to full
fourth-order central moment of the underlying process.
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