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Abstract—We propose a node clustering method for time-

varying graphs based on the assumption that the cluster labels are

changed smoothly over time. Clustering is one of the fundamental

tasks in machine learning, data mining, and signal processing.

Although most existing studies focus on the clustering of nodes in

static graphs, we often encounter time-varying graphs for time-

series data, e.g., social networks, brain functional connectivity,

and point clouds. In this paper, we formulate a clustering of

nodes in time-varying graphs as an optimization problem based

on spectral clustering, with a smoothness constraint of the node

labels. Experiments on synthetic and real-world time-varying

graphs are conducted to validate the effectiveness of the proposed

approach.

I. INTRODUCTION

Clustering is an important and fundamental technique in
signal processing, machine learning, and data mining, to name
a few [1]–[3]. Roughly speaking, clustering divides a chunk
of data into multiple communities and reveals their structure.
Features of the data points belonging to the same community
are expected to have similar characteristics and vice versa.
That is, the intra-community relationship is stronger than that
for the inter-community. Such a relationship is often given by a
graph, where nodes of the graph correspond to the data points,
and the relationships among the data points are given by edges.
Therefore, clustering nodes of the graph is an important and
widely studied problem.

Many methods have been proposed for clustering nodes of a
graph [4]–[9]. In this paper, we focus on unsupervised learning
where it is assumed that we have a graph, but we do not have
training data associated with it. The unsupervised node cluster-
ing of graphs can be classified into two approaches. One is the
node-domain approach, where the nodes are clustered based
on several node-wise features. Its examples include clustering
based on a goodness-of-partition metric called modularity [6].
The other is the spectral-domain approach, where the node
clustering is performed based on the spectral characteristics
of graphs, e.g., the polarities of eigenvector elements [10]. Its
representative method is the well-known spectral clustering
(SC) [11]. Note that the node- and spectral-domain approaches
are related to each other. For example, SC with normalized
graph Laplacian is an approximation of the minimum cut
problem [4], [5].

These previous node clustering methods are mostly designed
for static graphs. However, we often encounter time-varying
(TV) graphs, i.e., a set of graphs where each graph represents
a relationship between nodes at a certain time slot [12], [13].

Examples of TV graphs include social networks [14] and
brain functional connectivity [15]. The clustering of TV graphs
is a crucial problem since TV graphs are found in many
applications. However, there are few clustering methods for
clustering TV graphs, and most algorithm are designed in an
ad-hoc manner [16]–[20]. For example, existing methods have
a dependency on the initial clustering result or resulting cluster
labels often fluctuate.

In this paper, we propose a clustering method for TV graphs
for capturing smooth temporal evolution and noise robustness.
We realize this by using the assumption that cluster labels
in each node are TV but smoothly changed over time. Our
formulation is based on SC, and we add a regularization term
on the temporal variation of cluster labels. By solving the
optimization problem, the node features on each node are
estimated and utilized for clustering. Through experiments
with synthetic and real-world data, our proposed method
outperforms clustering for static graphs.

The rest of the paper is organized as follows. Section II
presents a brief review of spectral graph theory. Section III
describes related works for node clustering. The proposed
method is described in Section IV. Section V provides ex-
perimental results with synthetic and real-world data. Finally,
we conclude the paper in Section VI.

II. REVIEW OF SPECTRAL GRAPH THEORY

In this paper, we consider a weighted undirected graph G =
(V,E,W), where V := {v0, v1, . . . } is a set of nodes, E is a
set of edges, and W 2 RN⇥N is a weighted adjacency matrix.
The number of nodes is given by N = |V |. Each element of
the weighted adjacency matrix is defined as

[W]mn =

(
wmn if vm and vn are connected,
0 otherwise.

(1)

That is, wmn � 0 is the weight of the edge between vm and
vn. In addition, the degree of the ith node di is defined as

di =
NX

j=1

wij . (2)

D := diag(d0, d1, . . . ) is called a degree matrix. Using D and
W, a graph Laplacian is given by

L = D�W. (3)
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If we consider f 2 RN as a signal on a graph, i.e., features on
the nodes, the quadratic form of the graph Laplacian is given
by

f>Lf =
1

2

NX

m,n=1

wmn (fm � fn)
2 , (4)

where fm and fn are the signal values at vm and vn,
respectively. In fact, (4) represents the smoothness of the signal
f on G.

III. RELATED WORK

In this section, we review existing works for node clustering
of graphs.

A. Spectral Clustering

Here, we describe the formulation of SC for static graphs
[10]. Since the algorithm of SC can help understand our
formulation, we present its details.

The goal of clustering nodes in G is to divide them so that
they are strongly connected within the same cluster and are
weakly connected between different clusters.

First, let us define the strength of connection between
clusters. For a set of nodes A ⇢ V and Ā ⇢ V \ A, the
connection between A and Ā is defined as

c(A, Ā) :=
X

i2A,j2Ā

wij . (5)

For a given K, clustering should be performed by choosing a
partition of A1, ..., AK which minimizes

Cut (A1, . . . , AK) :=
1

2

KX

i=1

c
�
Ai, Āi

�
. (6)

We often need to balance the number of nodes in |Ai| to
avoid very small clusters. For this purpose, RatioCut [10], [21]
is proposed. Its cost function is defined as follows:

RatioCut (A1, . . . , AK) :=
kX

i=1

Cut
�
Ai, Āi

�

|Ai|
. (7)

Hereafter, we assume K = 2, i.e., the number of clusters
is two for simplicity. For RatioCut, the current problem to be
solved is formulated as follows:

min
A⇢V

RatioCut(A, Ā). (8)

This problem is combinatorial and NP-hard [22]. Therefore,
many relaxation methods to solve (8) have been considered
[23]–[25].

First, we define a vector c 2 RN as follows:

ci =

(p
|Ā|/|A| if vi 2 A,

�
p

|A|/|Ā| if vi 2 Ā.
(9)

If we can find c, clustering can be immediately done by using
the polarity of c. In fact, RatioCut can be represented using

the graph Laplacian of G based on (9). This is because the
Laplacian quadratic form (4) is represented as follows by c:

c>Lc =
1

2

NX

i,j=1

wij (ci � cj)
2

=
1

2

X

i2A,j2Ā

wij

 s
|Ā|
|A| +

s
|A|
|Ā|

!2

+
1

2

X

i2Ā,j2A

wij

 
�

s
|Ā|
|A| �

s
|A|
|Ā|

!2

=cut(A, Ā)

✓
|Ā|
|A| +

|A|
|Ā|

+ 2

◆

=cut(A, Ā)

✓
|A|+ |Ā|

|A| +
|A|+ |Ā|

|Ā|

◆

=|V | · RatioCut(A, Ā).

Note that c satisfies

NX

i=1

ci =
X

i2A

s
|Ā|
|A| �

X

i2Ā

s
|A|
|Ā|

= |A|

s
|Ā|
|A| � |Ā|

s
|A|
|Ā|

= 0 (10)

and

kck22 =
NX

i=1

c2i = |A| |Ā|
|A| + |Ā| |A|

|Ā|
= |Ā|+ |A| = N. (11)

These result in that c is orthogonal to 1 and kck22 = N .
As a result, (8) can be rewritten as follows:

min
c2RN

c>Lc

subject to c ? 1, ci in (9), kck22 = N.
(12)

However, it is still combinatorial and NP-hard because the
values in c are fixed as in (9). To approximately solve (12),
the condition on c is relaxed to have arbitrary values. This
leads to the following optimization problem.

min
c2RN

c>Lc subject to c ? 1, kck22 = N. (13)

It is well known that the solution of (13) is given by Fiedler
vector, the eigenvector corresponding to the second smallest
eigenvalue of L. After solving (13), the cluster labels can be
obtained by performing K-means clustering to c.

B. Clustering of TV Graphs
TV graph clustering can be classified into three main

categories [26]. The first method is to simply perform static
clustering at each time and the cluster labels obtained at time
t are arranged to correspond to the cluster labels obtained at
time t� 1 [16]. This does not take into account the temporal
evolution.

The second method is to iteratively compute the clusters
of the graph [17], [19], [20]. It computes the clusters at the
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current time by considering the clusters obtained at one or
more earlier time slots. This approach aims to reflect the
temporal dependency in clustering, however, the initial cluster
at t = 0 highly affects the resulting TV clusters.

The third method is to transform the TV graph into a single
network and then perform clustering for static graphs [18].
However, this does not properly reflect temporal evolution like
the first approach.

In contrast to existing approaches, our method obtains
clusters of the entire TV graphs by solving an optimization
problem.

IV. PROPOSED METHOD

In this section, we formulate node clustering of TV graphs
based on the label smoothness. First, we formulate a clustering
problem of TV graphs. Second, its optimization algorithm is
introduced.

A. Formulation
As mentioned previously, SC methods are mostly designed

for static graphs, therefore, it is difficult to perform node
clustering taking into account temporal relationships. To tackle
the problem, we reformulate node clustering for TV graphs.

First of all, we assume that the cluster labels change
smoothly over time. This is reasonable as long as the time-
series data are obtained with a sufficiently high sampling
frequency. Here, we assume that the number of clusters is
K = 2. It is relaxed later in Section IV-C.

Suppose that a set of graphs {Gt}Tt=1 and its associated
graph Laplacians {Lt} are given, where t is the time index.
Based on (13), clustering of nodes in {Gt} can be formulated
as the following problem:

min
ct2RN

c>t Ltct subject to ct ? 1, kctk22 = N. (14)

This is a straightforward extension of SC on static graphs.
However, (14) only considers variations of the node labels in
each time slot. This may lead to that node labels in Gt and Gt�1

are significantly different. However, they should be similar to
each other.

The smoothness of node labels can be cast into their small
variations, i.e., kct�ct�1k is small. Therefore, we add the `1
constraints of ct onto (14) as follows:

min
ct2RN

TX

t=1

c>t Ltct + ↵
TX

t=2

kct � ct�1k1

subject to ct ? 1, kctk22 = N,

(15)

where ↵ 2 R�0 is a parameter.
We further rewrite (15) by introducing the concatenated

label vector c = [c>1 , c
>
2 , . . . , c

>
T ]

>:

min
c2RNT

c>Lc+ ↵k�ck1 subject to ct ? 1, kctk22 = N,

(16)
where L := diag(L1, . . . ,LT ) and � is a linear operator
satisfying �c = c�ĉ, in which ĉ = [c>1 , c

>
1 , c

>
2 , . . . , c

>
T�1]

>.

In the following subsection, we present an algorithm to solve
(16).

B. Optimization

We consider to solve (16) based on the concept of the
primal-dual splitting (PDS) algorithm [27]. The PDS algorithm
solves a problem in the following form:

min
c

f1(c) + f2(c) + f3(Mc), (17)

where f1 is a differentiable convex function with the �-
Lipschitzian gradient rf1 for some � > 0; f2 and f3
are proper lower semicontinuous convex functions which are
proximable; and M is a linear operator.

To solve (16) using PDS, we transform (16) into its appli-
cable form. First, we rewrite (16) as follows by introducing
indicator functions:

min
c2RNT

1

2
c>Lc+↵k�ck1 +

TX

j=1

◆A1✏([c]j) + ◆BN ([c]j), (18)

where [c]j is the jth chunk in c. The indicator functions ◆A1✏

and ◆BN are defined as follows:

◆A1✏(x) =

(
0 if x 2 A1✏,

1 otherwise,
(19)

◆BN (x) =

(
0 if x 2 BN ,

1 otherwise,
(20)

where

A1✏ = {x 2 RN ||x>1|  ✏}, (21)
BN = {x 2 RN |kxk22 �N = 0}. (22)

Then, (18) is split into the following PDS-applicable forms:

f1(c) := c>Lc with � = �max(L),

f2(c) :=
TX

j=1

◆BN ([c]j),

f3(d) :=
TX

j=1

◆A1✏([d1]j) + ↵kd2k1,

M =


I
�

�
,

where �max(L) is the maximum eigenvalue of L, and d :=
Mc = [d>

1 ,d
>
2 ]

> is the dual variable.
The proximal operator of f2 is given by

prox�◆BN
([z]j) =

s
N

[z]>j [z]j
[z]j . (23)

Moreover, the proximal operator of f3 is calculated by dividing
it into two terms. The proximal operator of its first term,
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PT
j=1 ◆A1✏([d1]j), is given by

prox�◆A1✏
([z]j) =

8
>>><

>>>:

[z]j �
[z]>j 1�✏

[z]>j [z]j
if [z]>j 1 > ✏,

[z]j �
[z]>j 1+✏

[z]>j [z]j
if [z]>j 1 < �✏,

[z]j otherwise.

(24)

Furthermore, the proximal operator of k · k1 is known to be
the element-wise soft-thresholding operation [28]:

h
prox�k·k1

(z)
i

i
= sgn (zi)max {0, |zi|� �} . (25)

The details of the algorithm are shown in Algorithm 1 where
e is a small real value.

Algorithm 1 TV Clustering with Label Smoothness

Input: c(0),d(0)
1 ,d(0)

2

Output: c(i)

while kc(i+1) � c(i)k/kc(i)k > e do

c(i+1) = prox�1◆BN (·)
(c(i) � �1(Lc(i) +d(i)

1 +�>d(i)
2 ))

d(i+1)
1 = prox�2◆A1✏ (·)⇤

(d(i)
1 + �2(2c(i+1) � c(i)))

d(i+1)
2 = prox�2k·k⇤

1
(d(i)

2 + �2�(2c(i+1) � c(i)))
end while

Note that BN in (22) is a nonconvex set, and therefore, the
entire problem becomes nonconvex. Although we observed
the algorithm works well in practice, extending it to a convex
optimization is left for future work.

C. Extension to Arbitrary Number of Clusters

In the previous subsection, we assume K = 2. However, the
number of clusters is often greater than two. In this subsection,
we describe additional formulations for clustering graphs into
arbitrary K.

To split {Gt} into multiple clusters, we need to have (K�1)
ct’s. Suppose that {c(1)t , . . . , c(`�1)

t }, `� 1 < K, is obtained
before calculating the `th cluster vector c(`)t . With the spirit
of SC, we need to solve the following problem:

min
ct2RN

TX

t=1

c>t Ltct + ↵
TX

t=2

kct � ct�1k1

subject to ct ? 1, ct ? {c(1)t , . . . , c(`�1)
t }, kctk22 = N.

(26)
The indicator function ◆A1✏(·) in (19) is redefined as follows
so that it can be computed for any vectors:

◆Av✏(x) =

(
0 if x 2 Av✏,

1 otherwise,
(27)

where
Av✏ = {x 2 RN ||x>v|  ✏}.

The proximal operator of ◆A1✏(·) is given by

prox�◆Av✏
([z]j) =

8
>>><

>>>:

[z]j �
[z]>j v�✏

[z]>j [z]j
if [z]>j v > ✏,

[z]j �
[z]>j v+✏

[z]>j [z]j
if [z]>j v < �✏,

[z]j otherwise.

(28)

The algorithm to solve (26) is similar to Algorithm 1. We
first determine {c(1)t } by Algorithm 1, and the other {c(`)t }’s
are sequentially computed.

V. EXPERIMENTS

In this section, we evaluate the performance of the proposed
method through experiments using synthetic and real-world
data.

A. Synthetic Data
We synthesize TV graphs based on the stochastic block

model (SBM) [29]. SBM is a random graph model where the
intra- and inter-cluster edges are generated randomly according
to the predefined edge probabilities. The intra-cluster edge
probability is usually larger than that for inter-clusters.

In this experiment, the number of clusters and that of frames
are set to K = 3 and T = 100, respectively. Each cluster
has 50 nodes at t = 1. In short, the number of all nodes
N = 150. For all t, the inter- and intra-cluster edge connection
probabilities are set to 0.5 and 0.3, respectively. For every 10
frame, clusters of all nodes are reassigned with a probability
of 5%.

1) Accuracy Measure: For calculating the clustering accu-
racy, we employ the method in [30]. First, we create a matrix
P 2 RN⇥N that indicates clusters as follows:

[P]mn =

(
1 if vm and vn belong to the same cluster,
0 otherwise.

(29)
Second, by comparing P of the ground-truth graph and its
estimation, we calculate the ratio of the correct classification
as follows:

accuracy =

PN
i,j=1 countij �N

N2 �N
, (30)

countij =

(
1 if [P]ij = [P̃]ij ,

0 otherwise,
(31)

where P̃ is the same as (29) but is created from the estimated
clusters.

2) Results: We compare the experimental results of the
proposed method with SC for static graphs. Fig. 1 shows the
clustering results where node colors indicate the cluster labels.
Fig. 2 also compares the accuracy of clustering in (30) as
functions of t.

As shown in Figs. 1(c) and 1(g), SC for static graphs fails to
extract accurate clusters because edge connection probabilities
of intra- and inter-clusters are close to each other. In contrast,
the proposed method estimates the correct clusters because of
the constraint of the temporal label evolution.
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(a) Graph at t = 1 (b) Ground Truth (c) SC for static graph (d) Proposed

(e) Graph at t = 50 (f) Ground Truth (g) SC for static graph (h) Proposed

Fig. 1. Experimental results of the synthetic data. Top row: t = 1. Bottom row: t = 50.

Fig. 2. Clustering accuracy according to t.

In Fig. 2, the accuracy of the proposed method is consis-
tently higher than that of the SC for static graphs. These results
indicate that the regularization of the temporal evolution of
cluster labels is effective for TV graph clustering.

B. Real-World Data

For an experiment using real-world data, we perform clus-
tering of dynamic point clouds. We use a dynamic point cloud
in the dataset of [31]. Its examples are shown in Figs. 3(a)
and (e). First, it is randomly downsampled to N = 251
points and we use T = 200 consecutive frames in it. Then,
the graph is constructed by k-nearest neighbor with k = 9.
For the experiment, random edges are added between nodes
for studying robustness against incorrect edges. At t = 1,
no random edges are added and the probability of random
edges increases by 10�4 per frame until t = 100, and then it
decreases by 10�4 from t = 101 to t = 200. The number of
clusters is set to K = 5.

Fig. 3 shows the experimental results for the dynamic point

clouds. Similar to the synthetic data, the node color indicates
a cluster label.

As shown in Figs. 3(d) and (h), nodes within the same body
parts are estimated as one cluster by the proposed method
even in noisy situation. In contrast, SC for static graphs
“mixes” several body parts in one cluster. This results in
the effectiveness of the proposed method against the static
clustering approach.

VI. CONCLUSIONS

In this paper, we propose a node clustering method for
TV graphs. Our method assumes that the node labels are
smoothly changed over time. We formulate an optimization
problem based on SC with a regularization term for the label
temporal evolution. Through the experiments, it is observed
that the proposed method extracts more accurate clusters than
clustering for static graphs, even in noisy situations.
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