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Abstract—Conventional studies on time-varying graph signal
recovery involve leveraging priors of both temporal and vertex
domains for effective estimations. However, these methods all
assume a static graph, in spite of the time-varying signals.
We believe that such assumption, a static graph signal model,
is insufficient to represent some cases where the underlying
graph is explicitly dynamic. In this paper, we propose a novel
recovering framework for dynamic graph signal models that
leverage both temporal and vertex-domain priors. To achieve
this, we introduce regularization terms in a convex optimization
problem that capture behaviors of graph signals in the two
domains, respectively, and integrate the dynamics of the dynamic
graph topology into the formulation. We compare the proposed
framework to the conventional framework through experiments
on synthetic datasets to show the advantageous results of our
method in numerous settings.

I. INTRODUCTION

The concept of graph signal, defined by signal values
observed on the vertex set V of a graph G, has been intensely
researched as an approach to represent data of irregular
structures. Conventional signal processing is based on spatially
or temporally regular structures, e.g. images and sounds, and
thus, the relations between signal values are also regular,
which provides no further information for us to leverage. On
the other hand, graph signal representations and graph signal
processing [1]–[3] explicitly represent relations between signal
values with vertices and weighed edges, which we can exploit
as priors in the vertex domain. Data of irregular structures such
as traffic and sensor network data, mesh data, and biomedical
data all benefit from such representation.

Following the history of conventional signal processing,
recovering the true graph signals from the often corrupted
observations is a necessity in processing the data for further
use. Many algorithms have been proposed to address the
problem, such as methods based on vertex [4]–[8] and spectral
domains [9]–[11]. However, these methods usually ignore the
temporal domain. In real-life scenarios, many of the above-
mentioned data can easily be sampled continuously to form
time-coherent data, and therefore, priors based on the temporal
domain should be effectively utilized to improve estimation
results.

As a step forward from these algorithms, several approaches
have been proposed to tackle time-varying graph signals.
The earlier studies involve filtering and Fourier transform

of product graphs [12] and visualization based on graph
wavelet theory [13]. The more recent studies include spectral
based approaches like Joint time-vertex Fourier transform
(JFT) [14]–[16] and vertex-domain based approaches that
leverages smoothness on the vertex and temporal domains
[17]. JFT jointly applies Fourier transform to both the temporal
direction and vertex direction to fully leverage priors of the
two domains. In [17], the formulation is based on leveraging
the smoothness of the temporal difference signal on the
underlying graph, which effectively utilizes both domains for
the estimation.

Although these methods succeed in improving the esti-
mation accuracy by leveraging temporal and vertex-domain
priors, they are all proposed under the assumption that the
underlying graph remains unchanged despite the time-varying
signals. We believe that this assumption is not adequate in
modeling some real-life scenarios.

In this paper, we propose a method to tackle a novel graph
signal recovery problem based on a dynamic graph signal
model, a model where the underlying graph is also time-
varying like the graph signals. As opposed to the static graph
signal model, where the graph remains unchanged, we believe
that the dynamic model is highly practical in applications
such as remote sensing using moving sensors. Sensor-loaded
drones, cars, smartphones, or any other mobile devices that
can form a dynamic network are very feasible and realistic
sensing methods.

The main contributions of this paper are as follows.

• We propose a novel problem setting (recovering a time-
varying graph signals observed on dynamic graphs).

• We propose an optimization based recovery method that
leverage priors of both vertex and temporal domains, and
integrate dynamic graph topology into the formulation.

In the following section II, we first propose our formulation
based on the dynamic graph signal model and also explain the
optimization algorithm in detail. In section III, we illustrate the
experimental results both quantitively and visually and discuss
the obtained results.
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II. PROPOSED METHOD

A. Problem Formulation
Consider the following graph signal observation model:

X = Φ(X) + nσ, (1)

where X = [x1,x2, ...,xp] ∈ Rn×p is the observation of
a n nodes × p time-slots time-varying graph signal, and
X ∈ Rn×p is the true signal. Φ(·) and nσ are a masking
operator and an additive white Gaussian noise of variance
σ2, respectively. Each graph signal xk is observed on a
corresponding graph Laplacian Lk at time t = k.

We propose the following optimization problem to estimate
the true graph signal in the above model:

min
Y∈Rn×p

p∑
k=1

y>k Lkyk + λR(D (Y))

s.t.‖Φ(Y)−X‖2 ≤ ε,
(2)

where Y = [y1,y2, ...,yp] ∈ Rn×p is the estimated graph
signal, Lk ∈ Rn×n is the graph Laplacian at time k, and λ is
the positive regularization parameter. ‖ · ‖F is the Frobenius-
norm of a matrix.

The first regularization term enforces the smoothness of the
graph signal yk over Lk by penalizing the graph Laplacian
quadratic form, an often-used measure of graph signal smooth-
ness [18]. The second term penalizes the temporal difference
signal:

D(Y) = [y2 − y1,y3 − y2, ...,yp − yp−1], (3)

where D(·) is a temporal difference operator, to leverage
signal smoothness in the temporal domain. We consider R(·)
to be either ‖ · ‖1 or ‖ · ‖2F depending on the nature of the
observed signal.

The key idea of the formulation is the integration of the
time-varying graph Laplacian. Previous works on time-varying
graph signal recovery all assume a static graph Laplacian,
which we believe is inappropriate for applications where the
underlying graph Laplacian is rapidly changing.

B. Algorithm
1) `1 Regularization: When R(·) is ‖·‖1, we use a primal-

dual splitting method (PDS) [19] to solve (2). PDS can solve
optimization problems in the form of:

min
u
f1(u) + f2(u) + f3(Au), (4)

where f1 is a differentiable convex function with the β-
Lipschitzian gradient ∇f1 for some β > 0, proximal operators
for f2 and f3 are efficiently computable (proximable), and A
is a matrix. The problem is solved by the algorithm:

u(n+1) = proxγ1f2 [u
(n) − γ1(∇f1(u(n)) +A>v(n))],

v(n+1) = proxγ2f∗
3
[v(n) + γ2A(2u(n+1) − u(n)],

where f∗3 is the Fenchel-Rockafellar conjugate function1 of
f3, γ1, γ2 > 0 satisfy 1

γ1
− γ2λ1(A>A) ≥ β

2 (λ1(·) is the

1The proximity operator of f∗ can be stated as proxγf∗ (x) = x −
γ proxγ−1f (γ

−1x).

maximum eigenvalue of ·). The sequence (u(k))k∈N converges
to a solution of (4) under some conditions on f2, f3, and A.

By vectorizing X and using indicator function2 ιBx,ε
where:

Φz ∈ Bx,ε := {z ∈ Rnp | ‖z− x‖2 ≤ ε},

we can reformulate (2) as:

min
vec (Y)∈Rn×p

p∑
k=1

y>k Lkyk + λ‖D vec (Y)‖1

+ιBvec (X),ε
(Φ vec (Y)),

(5)

Matrices D ∈ Rn(p−1)×np and Φ ∈ Rnp×np are the tem-
poral linear difference and masking operators for vectorized
variables, respectively. By defining u := vec (Y) ∈ Rnp, and
v := [v>1 v>2 ]

> (v1 ∈ Rp−1,v2 ∈ Rnp), and f1, f2, f3,A as:

f1(u) :=

p∑
k=1

y>k Lkyk,

f2(u) := 0,

f3(v) := λ‖v1‖1 + ιBvec (X),ε
(v2),

A :=

[
D
Φ

]
,

(6)

(5) is reduced to (4), which can be solved by PDS.
The ∇f1 is given by:

∇f1(vec (U)) = 2[L1u
>
1 L2u

>
2 ... Lpu

>
p ]>,

where U = [u1,u2, ...,up].
Proximity operator for f3 can be represented by proximity

operators for each term. The proximity operator of ‖ · ‖1 is
equivalent to the soft-thresholding operation:

[proxγ‖·‖1(z)]i := [ST (z, γ)]i = sgn (zi)max {0, ‖zi‖ − γ},

and the proximity operator for ιBX,ε
is given by:

proxγιBx,ε
(z) = PBx,ε

(z) =

{
z, if z ∈ Bx,ε,

x+ ε(z−x)
‖z−x‖2 , otherwise,

where, PBx,ε
(z) is the projection to the `2-norm ball Bx,ε.

2) Frobenius Regularization: Similarly, when R(·) is ‖·‖2F ,
we also use PDS to solve (2). In this case, f1, f3 and A are
redefined as follows:

f1(u) :=

p∑
k=1

y>k Lkyk + λ‖D vec (Y)‖22,

f3(v) := ιBvec (X),ε
(v),

A := Φ,

(7)

where v ∈ Rnp.
The ∇f1 is now given by:

∇f1(vec (U)) = 2[L1u
>
1 L2u

>
2 ... Lpu

>
p ]> + 2λD>D vec (U).

Refer to algorithm (2) for details.

2The indicator function of a given nonempty closed convex set C is defined
by ιC(x) := 0, if x ∈ C;∞, otherwise.
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Algorithm 1 Algorithm for solving ‖ · ‖1 version of (2)
Input: Input signal X, graph Laplacian Lk(k = 1, 2, ..., p)
Output: Output signal Y(n)

Initialization: Y(0) = X ∈ Rn×p
1: while A stopping criterion is not satisfied do
2: vec (Y)

(n+1)
= vec (Y)

(n) − γ1(∇f1(vec (Y)
(n)

) +
D>v1 +Φ>v2)

v1
(n) ← v1

(n) + γ2D(2 vec (Y)
(n+1) − vec (Y)

(n)
)

v2
(n) ← v2

(n) + γ2Φ(2 vec (Y)
(n+1) − vec (Y)

(n)
)

v
(n+1)
1 = v

(n)
1 − γ2 ST ( 1

γ2
v
(n)
1 , λγ2 )

v
(n+1)
2 = v

(n)
2 + γ2PBvec (X),ε

( 1
γ2
v
(n)
2 )

n← n+ 1
3: end while
4: return Y(n)

Algorithm 2 Algorithm for solving ‖ · ‖2F version of (2)
Input: Input signal X, graph Laplacian Lk(k = 1, 2, ..., p)
Output: Output signal Y(n)

Initialization: Y(0) = X ∈ Rn×p
1: while A stopping criterion is not satisfied do
2: vec (Y)

(n+1)
= vec (Y)

(n) − γ1(∇f1(vec (Y)
(n)

) +
Φ>v)

v(n) = v(n) + γ2Φ(2 vec (Y)
(n+1) − vec (Y)

(n)
)

v(n+1) = v(n) + γ2PBvec (X),ε
( 1
γ2
v(n))

n← n+ 1
3: end while
4: return Y(n)

III. EXPERIMENTS

A. Experimental Settings

In the experiments, we evaluate our method on a synthetic
dataset. Regarding the implementation for both Algorithm 1
and 2, the stopping criterion is set to ‖y(k)−y(k−1)‖ ≤ 1.0×
10−5. The regularization parameter λ is tuned prior to the
following experiments. The performance of the methods is
measured in PSNR [dB] = 20 × log10

MAXX

‖X−Y‖F
, (MAXX =

1).
We compare the proposed methods (Methods (H) and (J)

in table I) to other methods (Methods (A) ∼ (J)). For the
temporal domain, we use either ‖D(Y)‖1 or ‖D(Y)‖2F , and
for the vertex domain, we use Tr (Y>LY) or

∑p−1
k=1 y

>
k Lkyk.

The trace of a matrix is denoted by Tr (·). For Tr (Y>LY),
where it uses only one graph Laplacian, we input L1, the first
graph constructed at t = 1.

Method (E) is a method proposed in [17], which enforces
the smoothness of the temporal difference signal D(Y) over
the graph by penalizing Tr ((D (Y))>L(D (Y))). It leverages
priors of both vertex and temporal domains but is based
on a static graph model. Thus, to evaluate the effectiveness
of the dynamic graph model, we also reimplement Method
(E) by altering the regularization term to

∑p−1
k=1(yk+1 −

yk))
>Lk(yk+1 − yk) (Method (F)). In Method (F), the

smoothness term is considered separately for each time-slot,

TABLE I
THE METHODS

Method Regularization
Vertex domain Temporal domain

(A) - ‖D(Y)‖1
(B) - ‖D(Y)‖2F
(C) [18] Tr (Y>LY) -
(D)

∑p−1
k=1 y

>
k Lkyk -

(E) [17] Tr ((D (Y))>L(D (Y)))

(F)
∑p−1
k=1(yk+1 − yk)

>Lk(yk+1 − yk)

(G) Tr (Y>LY) ‖D(Y)‖1
(H) Ours

∑p−1
k=1 y

>
k Lkyk ‖D(Y)‖1

(I) Tr (Y>LY) ‖D(Y)‖2F
(J) Ours

∑p−1
k=1 y

>
k Lkyk ‖D(Y)‖2F

thus can leverage the dynamics of the time-varying graph
Laplacian.

Note that although the original implementation of [17]
enforces signal fidelity by an additive regularization, Method
(E) and Method (F) are enforced by a fidelity constraint
‖Φ(Y) − X‖2 ≤ ε, like the rest of the methods (A) ∼ (J).
This is to avoid parameter tuning in cases where the noise
intensity is known a priori, and in our experiments, ε is set to
ε = 0.9σ

√
n. All of the methods are implemented by either

PDS or FISTA [20] depending on whether the formulation
includes a non-differentiable term or not.

B. Synthetic Dataset

To test the methods on a dynamic graph signal model, we
designed a dataset that simulates observations from moving
sensors. In a 2D-plane, 64 vertices are generated randomly
from a uniform distribution. Each vertex represents a sensor,
which observes a signal value give by an underlying smooth
distribution, in this case, a combination of several multivari-
ate normal distributions (Fig. 1 (a)). The signal values are
calculated by inputting the coordinates of the points to the
distribution. The graph is constructed by k-nearest neighbors
algorithm, where k = 4 in our implementation, to capture
the geographical adjacency of the vertices. The vertices move
across the 2D-plane at random degrees and a pre-set velocity
v, and the signal values and the graph Laplacian are calculated
at each time-slot to generate a 64 × 100 time-varying graph
signal X and the corresponding graph Laplacians. After X is
scaled to [0, 1], it is masked by Φ(·) at a masking probability
of P , and corrupted with an additive white Gaussian noise
of variance σ2 : nσ . We also constructed a piece-wise flat
alternative (Fig. 1 (b)).

C. Results and Discussion

1) Dynamic vs Static Graph Laplacian: From table II,
the formulations integrated with a time-varying graph Lapla-
cian (Methods (D), (F), (H), (J)) performed better than their
counterparts that only consider a static graph (Methods (C),
(E), (G), (I)). Especially looking at Methods (C) and (D),
a pure comparison between static and dynamic graph based
regularization, the dynamic regularization is almost always
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(a) (b)

(c) (d)
Fig. 1. (a): The smooth distribution constructed by a combination of several multivariate normal distributions. (b): A piece-wise flat version of (a). (c): A
time-varying signal values of a random vertex, observed by moving across (a) at velocity v. (d): A time-varying signal values of a random vertex, observed
by moving across (c) at velocity v.

better than the static counterpart by 2 ∼ 3dB. In fact,
comparing Methods (G) and (I) to Methods (A) and (B),
the static based vertex domain even seems to be hindering
the overall recovery performance. Using L1, an inaccurate
representation of the graph at time t, for every time-slot
should clearly be discouraged. Furthermore, performance gaps
between the static and dynamic graph based methods get larger
as the velocity gets larger. This is most likely because the faster
the points are moving, the more different graph gets as the time
progresses, which enlarges the difference between L1 and Lt
at time t. Thus, a larger velocity leads to a more inaccurate
graph Laplacian being used at each time-slot, resulting in
worse performance for the static methods.

2) Vertex vs Temporal Domain Priors: Comparing Methods
(A) and (B) to Methods (C) and (D), a comparison between
vertex and temporal domain regularizations, leveraging the
temporal prior is much more effective than leveraging the
vertex-domain prior. This can also be observed from the

relatively small performance gains between Methods (A), (B)
and Methods (H), (J). However, Methods (A) and (B) rely on
the assumption that the time-varying graph signals are smooth
in the temporal domain. Thus, as the velocity gets higher and
the signals get less smooth (refer Fig. 1: (c) and (d)), Methods
(A) and (B) drops its performance, whereas Methods (C) and
(D) remain unchanged. Likewise, the performance differences
between Methods (H), (J) and (A), (B) get larger as the
velocity gets higher. This indicates how the proposed Methods
(H) and (J) are robust to various types of graph signals.

3) Smooth and Piece-wise Flat Signals: For the methods
that leverage the temporal prior, we expected methods that
use ‖D(Y)‖2F to perform better on the smooth dataset, and
the methods that use ‖D(Y)‖1 to perform better on piece-
wise flat dataset. However, for some cases with higher noise
intensities and higher velocities, ‖D(Y)‖2F performed better
even for the piece-wise flat dataset. Looking at how methods
performed as expected in lower noise intensity settings, we
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TABLE II
THE AVERAGE RECOVERY PERFORMANCE MEASURED IN PSNR [dB]

Method Noise σ
Smooth Piece-wise Flat

P = 0
v = 0.1 v = 0.3 v = 0.5 v = 0.1 v = 0.3 v = 0.5

(A)

0.1

28.81 25.23 23.63 27.92 24.72 23.31
(B) 30.38 26.61 24.66 26.95 24.65 23.54
(C) [18] 19.74 19.48 19.46 19.52 19.37 19.38
(D) 22.35 22.40 22.35 21.76 21.75 21.79
(E) [17] 26.84 23.78 22.61 24.94 22.94 22.04
(F) 26.63 23.92 22.74 24.93 22.92 22.09
(G) 29.23 25.36 23.69 27.78 24.71 23.32
(H) Ours 30.30 26.13 24.79 28.00 25.19 24.10
(I) 29.94 26.52 24.64 26.90 24.63 23.53
(J) Ours 30.62 27.12 25.38 27.07 24.92 24.02
Observ. 19.98 20.00 20.00 19.99 20.00 19.99

(A)

0.2

24.37 21.73 20.16 23.11 20.81 19.49
(B) 25.23 22.69 20.89 23.43 21.43 20.07
(C) [18] 16.10 15.84 15.70 15.80 15.51 15.45
(D) 18.64 18.73 18.69 18.19 18.16 18.20
(E) [17] 22.39 19.86 18.57 21.24 19.10 18.04
(F) 22.22 19.95 18.80 21.22 19.22 18.31
(G) 24.46 21.81 20.24 23.15 20.87 19.55
(H) Ours 25.28 23.22 21.92 23.70 21.90 20.92
(I) 25.13 22.66 20.90 23.42 21.43 20.08
(J) Ours 26.00 23.85 22.32 23.93 22.23 21.19
Ovserv. 13.96 14.01 13.98 13.97 13.96 13.96

TABLE III
THE AVERAGE RECOVERY PERFORMANCE MEASURED IN PSNR [dB] WITH THE MASKED OBSERVATIONS

Method Noise σ
Smooth Piece-wise Flat

P = 0 P = 0.25 P = 0.5 P = 0 P = 0.25 P = 0.5
v = 0.3

(A)

0.1

25.23 22.48 19.20 24.72 21.91 18.72
(B) 26.61 23.45 19.74 24.65 22.55 19.27
(C) [18] 19.48 16.57 14.87 19.37 16.12 14.22
(D) 22.40 20.06 17.50 21.75 19.52 16.92
(E) [17] 23.78 21.38 18.39 22.94 20.65 17.81
(F) 23.92 21.36 17.66 22.92 20.69 17.24
(G) 25.36 21.57 18.77 24.71 21.02 18.17
(H) Ours 26.13 23.36 20.05 25.19 22.71 19.54
(I) 26.52 23.40 19.75 24.63 22.52 19.26
(J) Ours 27.12 24.07 20.43 24.92 23.03 19.88
Observ. 20.00 13.10 10.50 20.00 12.87 10.33

(A)

0.2

21.73 18.76 15.34 20.81 18.43 15.00
(B) 22.69 19.34 15.43 21.43 19.03 15.14
(C) [18] 15.84 14.69 14.16 15.51 14.29 13.48
(D) 18.73 16.93 14.39 18.16 16.55 14.16
(E) [17] 19.86 17.64 14.41 19.10 17.28 14.26
(F) 19.95 17.18 13.37 19.22 17.04 13.26
(G) 21.81 18.39 15.41 20.87 17.94 15.05
(H) Ours 23.22 19.94 15.75 21.90 19.55 15.55
(I) 22.66 19.37 15.51 21.43 19.04 15.22
(J) Ours 28.85 20.34 15.82 22.23 19.90 15.63
Observ. 14.01 11.45 9.79 13.96 11.30 9.70
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Smooth

n = 64

σ = 0.20, v = 0.3
PSNR = 14.01

Obsevation

PSNR = 21.84

Method (A)

PSNR = 22.79

Method (B)

PSNR = 15.68

Method (C) [18]

PSNR = 18.82

Method (D)

PSNR = 20.21

Method (E) [17]

PSNR = 20.02

Method (F)

PSNR = 21.91

Method (G)

PSNR = 23.34

Method (H) Ours

PSNR = 22.74

Method (I)

PSNR = 23.95

Method (J) Ours

Piece-wise
Flat

n = 64

σ = 0.10
PSNR = 20.00× 10−3

Observation

PSNR = 24.67

Method (A)

PSNR = 24.57

Method (B)

PSNR = 19.35

Method (C) [18]

PSNR = 21.65

Method (D)

PSNR = 23.01

Method (E) [17]

PSNR = 22.82

Method (F)

PSNR = 24.67

Method (G)

PSNR = 24.97

Method (H) Ours

PSNR = 24.59

Method (I)

PSNR = 24.80

Method (J) Ours

Fig. 2. Graph signal recovery results. Note that the colar range for the observations are clipped to [0,1] for a better illustrative comparison. The actual
observations are noisier than the figures show. The top two and bottom two rows are the results on the smooth and piece-wise flat datasets, respectively.

Smooth

n = 64

σ = 0.1, v = 0.3
PSNR = 10.49

Observation

PSNR = 19.39

Method (A)

PSNR = 19.95

Method (B)

PSNR = 14.53

Method (C) [18]

PSNR = 17.47

Method (D)

PSNR = 18.12

Method (E) [17]

PSNR = 17.79

Method (F)

PSNR = 18.66

Method (G)

PSNR = 20.07

Method (H) Ours

PSNR = 19.87× 10−3

Method (I)

PSNR = 20.53× 10−3

Method (J) Ours

Fig. 3. Graph signal recovery results for P = 0.5. Note that the color range for the observations are clipped to [0,1] for a better illustrative comparison. The
actual observations are noisier than the figures show.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

335



speculate that high noise intensity compromises the sparsity
of the temporal difference signal. For the same reason, higher
velocity diminishing the sparsity of the temporal difference
signal may have lead to the unexpected results.

Furthermore, looking at the visual results for the piece-wise
flat dataset (Fig. 2 bottom two rows), the outputs seem to lack
the piece-wise flatness they are supposed to have. This is most
likely because the formulations are based on a second-order
regularization in the vertex domain. We believe that a first-
order regularization, such as Graph-Total Variation [4], can
better estimate piece-wise flat graph signals. Although we did
not implement a such formulation, the dynamic graph model
should be applicable to Graph-Total Variation as well.

4) Masked vs Non-Masked: Although the performance
does drop compared to the non-masked setting, it shows
considerably good recovery results taking into account the
difficult setting. In terms of comparisons between methods
and parameters, the masked setting shows similar results to
that of the non-masked setting.

D. Summary

To summarize,
• The dynamic model based methods performed better

than the static counterpart, and our proposed method
performed better than the other methods in all situations.

• Temporal domain contributes more to the performance,
but was weak to the increasing velocity, reinforcing our
proposal as a method more robust to various signal types.

• The results for the piece-wise flat data would probably
improve by using a first-order regularization.

• We obtained similar results for the masked and non-
masked settings.

IV. CONCLUSIONS

In this paper, we proposed a novel time-varying graph signal
recovery problem based on a dynamic graph model, a model
that assumes the underlying graph to be time-variant like the
signals. We proposed a method to solve the problem that
effectively leverages the priors of both the vertex and temporal
domains, while also taking advantage of the dynamics of the
graph. Through experiments on synthetic data, we compared
our method to other methods based on regularization on the
vertex and temporal domains, and analyzed how the priors of
the two domains contribute to the recovery performance. We
believe that the proposed problem setting is realistic, especially
in situations like remote sensing using mobile sensors. Dy-
namic sensor networks are very feasible and practical sensing
methods, and we place our research as the first step in tackling
the problem and encourage further research on the problem.
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