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Abstract—This paper considers decentralized optimization
with application to machine learning on graphs. The growing
size of neural network (NN) models has motivated prior works
on decentralized stochastic gradient algorithms to incorporate
communication compression. On the other hand, recent works
have demonstrated the favorable convergence and generalization
properties of overparameterized NNs. In this work, we present an
empirical analysis on the performance of compressed decentral-
ized stochastic gradient (DSG) algorithms with overparameter-
ized NNs. Through simulations on an MPI network environment,
we observe that the convergence rates of popular compressed
DSG algorithms are robust to the size of NNs. Our findings
suggest a gap between theories and practice of the compressed
DSG algorithms in the existing literature.

Index Terms—decentralized optimization, communication effi-
ciency, overparameterized models

I. INTRODUCTION

A popular approach for enabling scalable machine learning
is applying decentralized algorithms to tackle the large-scale
optimization problem through collaboration between a group
of workers connected on a network/graph. Let N ∈ N be the
number of workers and d ∈ N be the problem’s dimension, we
consider the following unconstrained optimization problem:

min
θ∈Rd

J(θ) where J(θ) :=
1

N

N∑
i=1

Ji(θ), (1)

where Ji : Rd → R is a continuously differentiable function
representing the private data held by the ith worker. Further-
more, the N workers are connected on an undirected graph
denoted by G = (V,E), where V = [N ] = {1, ..., N} is the
set of workers and E ⊆ V × V is the set of edges of G
with self loops such that (i, i) ∈ E for all i ∈ V . Let G be a
connected graph, we note that (1) is equivalent to the consensus
optimization problem:

min
θi∈Rd,i∈V

N∑
i=1

Ji(θi) s.t. θi = θj , ∀ (i, j) ∈ E, (2)

where θi ∈ Rd is a private/local variable held by the ith worker.
The applications of (1) include decentralized regression, sensor
fusion for wireless sensor network [1], etc.

In this paper, we are concerned with the application of (1)
to machine learning (ML) tasks via training a neural network

(NN) model. Following the design of (1), our goal is to train a
common model θ at all workers. For example, if we consider
a supervised learning problem for classification, the ith private
function takes the form of the empirical risk:

Ji(θ) =
1

|Di|

|Di|∑
j=1

loss(f(xj ;θ); yj), (3)

where xj ∈ Rf and yj ∈ R are the jth feature and label known
by worker i, respectively, and |Di| is the number of samples
held by worker i. The loss function loss(·) can be taken as
the cross-entropy, or the quadratic loss. The nonlinear function
f(x;θ) is the output of a neural network, e.g., a two-layer
neural network with ReLU activation is given by

f(x;θ) =
1√
m

m∑
j=1

bj max{0, 〈x , θ(j)〉}, (4)

where bj is the jth output weight and we have defined the
parameters as θ = (θ(1), ...,θ(m)) ∈ Rmf such that d =
mf . Notice that despite its simplicity, the NN architecture (4)
exhibits good representation power provided that m→∞ [2].

To tackle (1) when only local communications are allowed,
decentralized first-order optimization algorithms have been
developed for over a decade [1], [3], [4]. The main idea behind
these algorithms is a simultaneous “consensus + optimize”
strategy where workers communicate with each other to reach
a common model θ (i.e., achieving consensus) while optimizing
their local models θi via gradient steps on the private functions.
For a non-convex optimization model, the convergence of
decentralized optimization algorithms has been analyzed in
[5]–[7] under the deterministic setting. Recent works have
also analyzed the extension to stochastic gradient (SG) based
methods [8]–[12]; also see [13] for a recent overview.

A major obstacle in applying the above algorithms to ML
tasks (3) lies in the communication overhead. Taking the
decentralized gradient (DGD) method from [3] as an example,
each training iteration requires workers to transmit the entire
d-dimensional local model. Notice that the state-of-the-art NN
models are typically large with d � 1, e.g., the VGG16
NN comprises of d ≈ 1.38 × 108 parameters [14]. When
applying the DGD method to train such a model, workers
would be required to send 526 MB of data over the network
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per-iteration; This may cause a significant slowdown to the
practical convergence of the algorithms.

In light of the above, previous works have been motivated
to develop communication efficient variants of decentralized
SG algorithms. To list a few examples, [15], [16] proposed the
CHOCO-SGD algorithm which compresses incremental vectors
at the workers prior to transmission; also see its generalization
in [17]; [18] proposed the ECD-PSGD algorithm based on
an extrapolation technique. It is worth noting that the above
algorithms share similarities with the compression techniques
proposed for distributed SG such as [19].

On the other hand, recent works have studied the global
convergence of centralized SG algorithms for training overpa-
rameterized NN models [20] via the non-convex optimization
(1), (3). Particularly, these works consider simple architectures
such as (4) and show that the optimal weights θ? to (1) can
be found using SG algorithms when m→∞, e.g., [21], [22].
Interestingly, it is demonstrated that the convergence rate for
the L2 function distance will be independent of m, implying
that there is no loss in iteration complexity (for centralized
learning) when deploying overparameterized NNs.

The above observation illustrates a dilemma when deciding
the NN architecture to be used for decentralized training:
on one hand, it is desired to adopt a compact NN model
to reduce communication cost, on the other hand, using an
overparameterized NN model provides enticing theoretical
convergence properties and higher representation power. The
aim of this paper is to empirically study the effects of
overparameterization on the performance of (communication
efficient) decentralized SG algorithms. Particularly, we verify
the claim that decentralized SG algorithms are practical (in
terms of overall communication efficiency), even for training
overparameterized NNs. Our contributions are as follows:
• In Section II, we highlight the pitfalls of existing theories

for training NNs with communication-efficient decen-
tralized SG algorithms by showing that the curse of
dimensionality persists. We argue that the latter can be an
artifact of the analysis as it does not exploit the structure
of the NN training problems.

• To support our claim, in Section III, we concentrate on
the CHOCO-SGD algorithm [16] and experiment with
this algorithm in various setting, providing the first set of
experiments that highlights on the effects of an increasing
NN width m in the model (4). We show that, when the
amount of information transmitted per iteration is fixed,
the algorithm achieves a lower training loss / testing error
at the same speed (or even faster) as the NN’s width is
increased.

In addition, we discuss the intuitive reason behind the current
gap in the theories and suggest potential solutions to fix it.

II. DECENTRALIZED LEARNING: ALGORITHMS AND
COMMUNICATION EFFICIENCY

In this section, we discuss the algorithms for decentralized
learning/training and their communication efficient variants.
Furthermore, we will review the convergence guarantees of

these algorithms and discuss how they may fail to yield
meaningful insights for training overparameterized NNs.

To fix ideas, we define the doubly stochastic mixing matrix
W ∈ RN×N+ satisfying the row/column sum condition W1 =
W>1 = 1; it respects the graph topology such that Wij =
Wji = 0 whenever (i, j) /∈ E; moreover, it satisfies the fast
mixing condition of a Markov chain such that

‖W − 11>/N‖ ≤ 1− ρ, (5)

where ρ ∈ (0, 1] is the spectral gap. Notice that such matrix
exists for any connected graph G.

With the above mixing matrix, the DGD (or its stochastic
variant, DSGD) algorithm [3], [8] is given by: starting with
any θ(0)

i ∈ Rd. i ∈ V , we have

θ
(t+1)
i =

N∑
j=1

Wijθ
(t)
j − ηtg

(t)
i , ∀ i ∈ V, ∀ t ≥ 0, (6)

where ηt > 0 is the step size and g(t)
i is the local stochastic

gradient which is an unbiased estimate of ∇Ji(θ(t)
i ). The

algorithm (6) operates through a “consensus-then-optimize”
strategy. At each iteration, the worker i first calculates an
average of the local models held by the neighboring workers
(
∑N
j=1Wijθ

(t)
j ), then a stochastic gradient step w.r.t. the private

function (−ηtg(t)
i ) is performed.

We now consider implementing algorithm (6) for decen-
tralized training of an NN model such as (4). As the latter
is parameterized by the weights θ ∈ Rmf , the workers are
required to transmit mf real numbers to the neighbors on
the network/graph at each iteration. For m � 1, this poses
a significant challenge due to the limited communication
bandwidth. A natural remedy is to compress information before
transmitting.

However, directly compressing the local parameters θ(t)
i

in (6) can result in a non-convergent algorithm since the
compression operation can lead to unrecoverable information
loss. A better idea is to exploit smoothness and focus on
compressing the differences in the iterates. In particular, [15]
proposed the CHOCO-SGD algorithm for communication
efficient decentalized training, as summarized in Algorithm 1.

We observe that step 8 in the algorithm is the only step of
CHOCO-SGD involving peer-to-peer communication between
the workers. To understand the algorithm better, we observe
that when the compression operator is an identity operator,
i.e., Q(θ) = θ for any θ ∈ Rd, together with the consensus
parameter γ = 1, the CHOCO-SGD algorithm is reduced into:

θ
(t+1)
i =

N∑
j=1

Wij{θ(t)
j − ηtg

(t)
j }, (7)

which resembles the classical DSGD algorithm with a swapped
order for the ‘optimize’ and ‘consensus’ steps.

In general, the communication step depends on a compres-
sion operator Q : Rd → Rd which reduces the amount of
information transmitted. Furthermore, we are compressing
the difference between the successive iterates with the local
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Algorithm 1 CHOCO-SGD Algorithm [15]

1: INPUT: initial weights {θ(0)
i }Ni=1, max. no. of iterations

T , consensus parameter γ ∈ (0, 1), step sizes {ηt}t≥0.
2: Set the auxilliary variables θ̂(0)

i,j = 0, j ∈ Ni, i ∈ [N ].
3: Draw the stopping iteration number T ∼ U{0, ..., T}.
4: for t = 0, 1, ...,T do
5: for i = 1, ..., N do //Local SGD step//
6: Compute the local SGD:

θ
(t+ 1

2 )
i = θ

(t)
i − ηtg

(t)
i ,

where g(t)
i is the stochastic estimate of ∇Ji(θ(t)

i ).
7: end for
8: For each worker i = 1, ..., N , broadcast the compressed

difference vector Q(θ
(t+ 1

2 )
i −θ̂(t)

i,i ) to the neighbors, where
Q(·) is a compression operator satisfying (8).

9: for i = 1, ..., N do //Combination step//
10: Update the auxiliary variable:

θ̂
(t+1)
i,j = θ̂

(t)
i,j +Q(θ

(t+ 1
2 )

j − θ̂(t)
j,j), ∀ j ∈ Ni.

11: Update the local NN weights:

θ
(t+1)
i = θ

(t+ 1
2 )

i + γ
∑
j∈Ni

Wij{θ̂(t+1)
i,j − θ̂(t+1)

i,i }.

12: end for
13: end for
14: OUTPUT: trained weights {θ(T)

i }Ni=1.

stochastic gradient. Common communication compression tech-
niques include gradient quantization and gradient sparsification.
Broadly, these communication compression methods can be
classified into biased and unbiased operators. For the CHOCO-
SGD algorithm, it is assumed that the compression operator is
a random operator satisfying

EΩ

[
||Q(θ; Ω)− θ||2

]
≤ (1− δ)||θ||2, ∀ θ ∈ Rd, (8)

where Ω is the implicit random state of the compression
operator, and δ ∈ (0, 1] is a parameter characterizing the
expected error resulted from the compression. Intuitively,
with the condition (8), the CHOCO-SGD algorithm behaves
similarly as the DSGD algorithm as only the differences
between successive iterates are compressed.

Examples of unbiased Q(·) satisfying (8) include [19] which
quantizes a rescaled vector; [23] which sparsifies the vectors
by setting a random subset of d − k co-ordinates to zero.
Concretely, let Ω ⊆ {1, ..., d}, |Ω| = k be the selected random
subset, we set the operator as randk : Rd → Rd with:

[
randk(θ; Ω)

]
i

=

{
[θ]i i ∈ Ω,

0 i /∈ Ω,
(9)

where [θ]i denotes the ith element of the vector θ. We observe
that randk(θ; Ω) is a vector with at most k non-zero elements.
Notice that for the randk compression operator, condition (8)
is satisfied with δ = k

d [15].

Meanwhile, biased compression operators Q(·) are also
widely adopted. For example, the sign compression [24] and
topk sparsification which retains the top-k coordinates in the
d-dimensional vector with the highest magnitude [23], [25],
[26]. Notably, the k sparsification satisfies (8) with δ = k

d since
the latter compressor always yield an error lower than that of
the randk sparsifier.

A. Convergence Guarantee and Its Pitfalls

We discuss the convergence guarantees of the CHOCO-SGD
algorithm and highlights on its pitfalls in decentralized training
of overparameterized NNs.

We describe the assumptions used. First, we assume that each
private function is smooth, i.e., the gradient map is Lipschitz
continuous:

Assumption 1 For any i ∈ [N ], there exists L ≥ 0 such that

‖∇Ji(θ)−∇Ji(θ′)‖ ≤ L‖θ − θ′‖, ∀ θ,θ′ ∈ Rd. (10)

Next, we specify conditions on the stochastic gradient estimates.
Denote Ft as the filtration generated by the random variables
{θ(τ)

i : i ∈ V, 0 ≤ τ ≤ t}. We assume that:

Assumption 2 There exists σ,G ≥ 0 such that for any i ∈ [N ],
t ≥ 0, the stochastic gradient g(t)

i satisfies

E[g
(t)
i |Ft] = ∇Ji(θ(t)

i ), E[‖g(t)
i ‖

2|Ft] ≤ G2,

E[‖g(t)
i −∇Ji(θ

(t)
i )‖2|Ft] ≤ σ2.

(11)

Notice that the first condition is satisfied by a uniform sampler
for the (mini-batch) stochastic gradient, e.g., when g(t)

i =

∇θ loss(f(xjt ;θ
(t)
i ); yjt) such that jt is selected uniformly at

random from {1, ..., |Di|}. We have also assumed that the
stochastic gradients have bounded second order moments.

We observe the following result that is borrowed from [16,
Theorem 4.1] on the CHOCO-SGD algorithm:

Theorem 1 Under Assumptions 1, 2 and suppose that the
compressor satisfies (8). There exists η, γ > 0 such that if we
consider a constant step size with ηt ≡ η, then for any T ≥ 1,
the output generated by Algorithm 1 satisfy:

E[‖∇J(θ
(T)

)‖2] = O

(√
Lσ2J0

NT
+

(
LGJ0

ρ2δT

) 2
3

)
,

where the expectation is taken over T and the stochastic
quantities in the algorithm, δ was defined in (8), ρ ∈ (0, 1] is
the spectral gap of W defined in (5), θ

(t)
=
∑N
i=1 θ

(t)
i /N is

the network average iterate, and J0 = J(θ
(0)

)−minθ J(θ).

The theorem suggests that the CHOCO-SGD algorithm finds
an O(1/

√
T )-stationary solution to (1) in at most T iterations

as we note that T ≤ T .

Convergence for Overparameterized Models. We concen-
trate on the performance of CHOCO-SGD when d � 1, for
example, when training an overparameterized NN such as (4)
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(a) topk sparsification.
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(b) randk sparsification

Fig. 1. Converged training losses for large-width NNs compressed with biased topk 1(a) and unbiased randk 1(b) sparsification on CIFAR-10. Reported
accuracies averaged over 5 independent trials with error bars indicating 99% confidence interval over the 5 trials. For k = 20 with randk sparsification,
divergence is observed in the case of 2048-layer and 1024-layer NNs on all 5 trials.

with m� 1 neurons. Furthermore, to control the bandwidth
usage, we choose the randk sparsifier or topk sparsifier as the
compressor. Now, we fix the number of iterations as T , and
the number of coordinates sent per iteration at k, i.e., we fix
the amount of data transmitted in the CHOCO-SGD algorithm.
In this setting, we have

E[‖∇J(θ
(T)

)‖2] = O
(√Lσ2J0

NT
+ d

2
3

(LGJ0

ρ2kT

) 2
3
)
. (12)

Furthermore, applying Theorem 1 shows that to reach an ε-
stationary solution (i.e., E[‖∇J(θ

(T)
)‖2] ≤ ε), the number of

CHOCO-SGD iterations required grows in the order:

T = Ω

(
LJ0 ·max

{
σ2

Nε2
,
d

k

G

ρ2ε1.5

})
. (13)

As the amount of data transmitted per iteration is constant
(i.e., k real numbers), the above calculation indicates that the
CHOCO-SGD algorithm may require a higher communication
complexity as the NN model becomes inncreasingly overpa-
rameterized (i.e., when d� 1), in order to maintain the same
performance level, despite the compression being applied at
each iteration. In fact, for any 1 ≤ k ≤ n, it is predicted
from (13) that the number of real numbers transmitted is
Ω(max{kσ2/(Nε2), dG/(ρ2ε3/2)}) when the topk or randk
sparsifier is used as the compressor in CHOCO-SGD. We
notice that similar dependence on the problem dimension d
is also observed in other compressed DSGD methods, e.g.,
[17]–[19].

The observations in (12), (13) indicate a pitfall in the existing
theories when applying compressed DSGD methods such
as CHOCO-SGD to overparameterized NNs. Particularly, it
suggests that although the compression scheme can reduce
the communication cost per iteration, the number of itera-
tions required would be increased. In the next section, we
conduct an extensive set of numerical experiments to test the
above observation. Interestingly, we show that in most cases,
increasing the degree of overparameterization can lead to a
better performance for the trained NN without increasing the

communication cost during training, which is in contrast to
the said observation. We conjecture that such phenomena is a
consequence of an artifact in the existing analysis and discuss
the possible fix for the observation.

III. EMPIRICAL STUDIES

In this section, we perform numerical experiments to examine
the performance of compressed DSGD method when applied to
training overparameterized NNs. We concentrate on the effects
of the number of parameters on the communication complexity
using the CHOCO-SGD method [16] [cf. Algorithm 1]. For
simplicity, we consider a two-layer NN with ReLU activation
described in (4) and adjust the width, m, of the NN.

We consider the task of training a classifier with the CIFAR-
10 dataset [27] that contains 50K (resp. 10K) training (resp. test)
samples. Each sample consists of a 32 × 32 RGB image
which can be represented as a 3072-dimensional vector, and
is associated with a label selected from 10 image classes. To
simulate the decentralized training environment, samples from
the 10 image classes are uniformly split among N workers
and shuffled at every epoch – as in [16], [28]. To establish a
challenging generalization task, we test the trained models on
CIFAR-10.1 [29].

For the CHOCO-SGD method, we use a minibatch size of
ξ = 128 for every iteration. Our chosen mode of communica-
tion compression is topk and randomk with a fixed number of
co-ordinates k allowed to be communicated between workers.
We choose a constant consensus parameter γ = 0.0375 in
Algorithm 1 and an SGD stepsize η = 0.1 which is decreased
by a factor of 10 on epochs 100, 150, 200. Our topk and
randomk simulations are run on N = 8 nodes of a ring
topology. The decentralized training environment is simulated
on an MPI-based [30] network where we assign an independent
CPU process to each worker.

Our first empirical example aims at comparing the quality of
solution found by CHOCO-SGD after performing 300 epochs
of iterations against the number of parameters of the trained
NN (d). Notice that as k is fixed in the compressor design, the
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Fig. 2. Training loss with cumulative communication cost in (MB) for
large-width NNs of varying widths constrained with a constant sparsification
coordinate k = 100. While convergence rate of all models is invariant to
layer width, overparameterized models (d ≥ 2 × 106 parameters) converge to
a solution of lower training loss with identical cumulative data usage.

communication complexity (i.e., number of bits transmitted
over the network) is fixed. Our results are presented in Fig. 1(a)
and 1(b). From the figures, we observe that the training
loss decreases with d, especially when the topk sparsifier
is used. Notice that the above is actually in contrast to the
observations made in (12) based on Theorem 1, which predicts
that the solution quality decreases as the problem dimension
increases. In Table I we compare the converged test accuracy
evaluated on CIFAR10.1 with different widths for the NN,
where similar observations are obtained as in Fig. 1. Lastly, we
plot the trajectory of the training loss against the cumulative
communication cost (in MB) in Fig. 2. Again, we observe that
increasing model dimension (overparameterization) leads to
faster convergence with respect to the communication cost.

Our second empirical example examines the consensus error
in the converged solution after 300 epochs of CHOCO-SGD
with N = 8 workers. We aim at studying the consensus error of
the converged solutions and the effects of problem dimension.
Here, the normalized consensus error is defined as:

Υ =
1

N

N∑
i=1

||θTi − θ
T ||2

‖θT ‖2
, (14)

where θTi denotes the CHOCO-SGD solution after 300 epochs.
The above metric is compared against the width of the hidden
layer, m, in the NN in Fig. 3. Naturally, we observe that the
consensus error increases when the number of coordinates
kept in the sparsifier k decreases. Moreover, an intriguing
observation is that the consensus error increases when the
width of the NN increases from m = 1024 to m = 2048.
We recall from Fig. 1, Table I that the training loss/testing
accuracy actually decreases with this change in the number
of parameters. This suggests that a consensual solution may
not be necessary for achieving a lower training loss in the
overparameterized setting.

Our third empirical example examines the effects of graph
topology on the converged training loss after 300 epochs
of CHOCO-SGD iterations. In this experiment, we fix the
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5 × 10 5

6 × 10 5

7 × 10 5

8 × 10 5

=
1 N
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1||

T i
T ||

2

||
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~100 Co-Ordinates Retained
~200 Co-ordinates Retained

Fig. 3. Converged, normalized consensus distance between N = 8
workers for different NN layer widths. Overparameterized models enjoy
significantly greater consensus among workers with only marginal dependence
on sparsification co-ordinate bandwidth for larger models.

Layer Width
Normalized Consensus Distance [cf. (14)]

Epoch = 200 Epoch = 100 Epoch = 50

2048 5.499 × 10−5 9.8206 × 10−3 1.3977 × 10−2

1024 4.980 × 10−5 1.0346 × 10−2 1.5307 × 10−2

512 5.349 × 10−5 1.0026 × 10−3 1.3478 × 10−2

256 5.694 × 10−5 8.7639 × 10−3 1.2423 × 10−2

128 8.098 × 10−5 7.3181 × 10−3 9.2698 × 10−3

Table II. Converged consensus distances at intermediate training epoch
numbers. Overparameterized models converge to better-consensus solutions

at a slower rate compared to low-width NNs
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Fig. 4. Converged training loss versus number of workers with different graph
topologies. Error bars indicate 95% confidence interval over 5 independent
trials.

number of hidden neurons at m = 256 and use a topk
sparsifier with k = 51. We experiment with common graph
topologies such as ring (degring = 2), torus (degtorus = 4),
and Watts–Strogatz (small-world) graphs [31], and for different
numbers of connected neighbors. Notice that the spectral gap
parameter ρ decreases with the number of workers N , especially
for the ring topology. The result is presented against the number
of workers in Fig. 4. As observed in the figure, for all topology
settings, the training loss increases with the number of workers
N . The deterioration in performance is the most severe with the
ring topology. Unlike the previous example, we notice that the
observed behavior is consistent with the theory in Theorem 1,
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# Neurons
# Coordinates k topk sparsifier randk sparsifier

20 100 128 200 100 128 200
m = 2048 46.481 ± 0.767 46.837 ± 0.354 46.663 ± 1.544 46.711 ± 0.755 46.919 ± 1.401 43.288 ± 0.769 46.365 ± 1.1
m = 1024 46.776 ± 0.423 46.184 ± 0.937 46.688 ± 1.05 47.156 ± 0.999 48.245 ± 0.855 47.135 ± 1.103 47.309 ± 0.984
m = 512 45.651 ± 2.219 46.266 ± 0.902 45.787 ± 1.111 46.292 ± 0.584 46.497 ± 0.653 46.47 ± 0.401 45.505 ± 0.81
n = 256 45.286 ± 0.413 45.148 ± 1.103 45.051 ± 0.802 45.123 ± 0.855 45.707 ± 0.751 44.928 ± 0.846 44.733 ± 0.616
m = 128 44.59 ± 0.984 43.967 ± 0.851 42.778 ± 0.45 N/A 43.288 ± 1.435 43.568 ± 1.282 N/A

comm. cost per iteration (MB) 0.482 2.410 3.012 4.820 2.410 3.012 4.820

Table I. Generalization performance of CHOCO-SGD to CIFAR-10.1 with overparameterized models. Contrary to convergence performance,
large-width NNs trained with topk and randk sparsification exhibit marginal dependance to model dimension at test-time (average accuracy disparity of

2.39% between 2048 and 128 unit models). Test results averaged over 5 independent trials with altered seeds on a ring-topology communication graph with 8
nodes. CHOCO-SGD diverges when parameters are compressed with randk sparsification of k = 20 co-ordinates.

which predicts a slower convergence when the graph topology
has a smaller ρ.

Lastly, we study a case of decentralized training with
heterogeneous data. Particularly, we allocate samples from
a single class to each of the N = 8 workers. We evaluate
the training loss with global data using the local model
θTi obtained by CHOCO-SGD with topk sparsifier after 300
epochs; compared to the averaged model (1/N)

∑N
i=1 θ

T
i . The

simulation result is shown in Fig. 5. We observe that a similar
trend as Fig. 1 holds as the training loss decreases with the
hidden layer width m given that the algorithms are run with a
similar communication budget. Furthermore, we note that the
training loss is higher with the local model.

Discussions. The above numerical examples demonstrate a
consistent discrepancy between existing theories on compressed
DSGD methods and their practical performances when training
overparameterized NN models. In particular, we show that
with the same communication cost allowed, the performance
of the CHOCO-SGD trained NN improves with the number of
neurons m employed in the NN, contrary to (12).

The careful readers may notice that the poor dependence
on dimension d in the convergence bounds (12) can be seen
as a direct consequence of the worst-case analysis of the
compression error in (8). This is because one is forced to
take δ = d/k to account for the condition that holds for all
x ∈ Rd in case of the topk/randk sparsifier. Furthermore, we
remark that the existing theories are developed for general
distributed optimization problems, assuming only high level
properties such as smoothness of the objective function.

On the other hand, recent works on overparameterized
models [20]–[22] have shown that the training of such models
with SGD shall be compared to the learning of a kernel model
in the RKHS. Among others, a key innovation therein is that
the optimality gap is measured in terms of the distance in
the (infinite-dimensional) function space, where the rate of
convergence is shown to be independent of m even as m→∞.
We believe that extending these results to a decentralized
setting such as the CHOCO-SGD method can help break the
curse of dimensionality in the analysis. We remark that an
interesting observation was made in [32] on the stability of
overparameterized NN models with dropout, an operation that
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Fig. 5. Converged training loss versus model dimensionality for heteroge-
neously distributed data among N = 8 workers on a ring topology where each
worker’s private distribution contains labels from a single class. Top row (solid
line) indicates average performance of the local model on the complete training
dataset. Bottom row (dotted line) indicates performance of averaged model
(θ̄∗) on the complete training dataset. Error bars indicate 95% confidence
interval over 5 independent trials.

is akin to applying the sparsifier.

IV. CONCLUSIONS

This paper provides the first empirical study on the perfor-
mance of compressed DSGD methods on overparameterized
NN models. On the positive side, our result shows that utilizing
overparameterized NN models in a decentralized learning is
both practical and beneficial, contradicting existing theories
that suggest otherwise. Furthermore, we identify a gap in the
existing theories that attempt to analyze compressed DSGD
methods. We believe that our article will serve as a motivating
study to develop improved communication efficient algorithms
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for decentralized training of NNs.
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