
Model Selection-inspired Coefficients Optimization
for Polynomial-Kernel Graph Learning

Cheng Yang∗, Fen Wang†, Minxiang Ye†, Guangtao Zhai∗,
Xiao-Ping Zhang‡, Vladimir Stankovic§, and Lina Stankovic§

∗ Shanghai Jiao Tong University, Shanghai, China
E-mails: {bobcy,zhaiguangtao}@sjtu.edu.cn

† Zhejiang Lab, Hangzhou, China
E-mail: {fenwang,yemx}@zhejianglab.com
‡ Ryerson University, Toronto, Canada

E-mail: xzhang@ryerson.ca
§ University of Strathclyde, Glasgow, UK

E-mail: {vladimir.stankovic,lina.stankovic}@strath.ac.uk

Abstract—Graph learning has been extensively investigated for
over a decade, in which the graph structure can be learnt from
multiple graph signals (e.g., graphical Lasso) or node features
(e.g., graph metric learning). Given partial graph signals, existing
node feature-based graph learning approaches learn a pair-wise
distance metric with gradient descent, where the number of opti-
mization variables dramatically scale with the node feature size.
To address this issue, in this paper, we propose a low-complexity
model selection-inspired graph learning (MSGL) method with
very few optimization variables independent with feature size,
via leveraging on recent advances in graph spectral signal
processing (GSP). We achieve this by 1) interpreting a finite-
degree polynomial function of the graph Laplacian as a positive-
definite precision matrix, 2) formulating a convex optimization
problem with variables being the polynomial coefficients, 3)
replacing the positive-definite cone constraint for the precision
matrix with a set of linear constraints, and 4) solving efficiently
the objective using the Frank-Wolfe algorithm. Using binary
classification as an application example, our simulation results
show that our proposed MSGL method achieves competitive
performance with significant speed gains against existing node
feature-based graph learning methods.

Index Terms—Graph signal processing, graph learning, convex
optimization

I. INTRODUCTION

Recent years have witnessed the rise of cross-over research
between statistical machine learning [20] and graph spectral
signal processing (GSP) [17] with applications to data clas-
sification [36], social network management [17], regression-
based image quality assessment [33], image enhancement [5],
and clustering [24]. GSP focuses on processing the signals
defined on a graph with vertices that support the data and
weighted edges that represent the observation-pair similarity.
The crux of GSP with machine learning is to design a graph
that captures well the relationships among data observations,
and formulate a signal prior, e.g., a graph signal smoothness
(GSS) prior, to perform efficient filtering of graph signals,
e.g., to facilitate data classification via signal extrapolation
or label propagation [2]. The graph structure can be learned
either from: 1) collected raw data (e.g., time-series) [7], or 2)

features constructed from data samples. Since successful graph
filtering depends on how well the underlying graph models the
structure of the collected data, graph learning is fundamentally
important. Graph learning approaches can be categorized into
two tracks: 1) data-driven graph learning [11] that learns the
graph based on the collected raw data and 2) feature-enabled
graph learning that uses constructed features to learn the graph
[30], [31].

In the data-driven graph learning track, the focus is on mod-
elling relationships between multiple spatial and/or temporal
observations (graph signals) assigned to graph nodes. Authors
in [7], [11] learnt the graph structure (i.e., the graph Laplacian
matrix L) by modelling M -dimensional observations dis-
tributed on N nodes, X ∈ RM×N , as a Gaussian process with
a GSS prior, i.e., using the quadratic form Tr(X>LX). Re-
cently, [34] proposed a generalized smoothness prior of graph
signals defined by a similar quadratic function on a learnable
graph spectral kernel, which manipulates the spectrum of L
using a polynomial function. On the other hand, in the feature-
enabled graph learning track, graph structure is learnt from the
constructed features using a pre-defined / optimized metric
function that captures importance of each feature [30]. These
approaches reduce the complexity by optimising the metric
function using a GSS prior defined as x>Lx, where x ∈ RN
is a graph signal representing sample labels, each assigned to
one graph node. Similarly, [35] presented a semi-supervised
learning framework using a high-order regularizer x>LPx as
the graph signal prior.

Note that the existing graph learning methods either update
every single graph node by solving systems of linear equations
(e.g., graphical Lasso [11], sparse graph learning [8], [10],
and low-dimensional space learning [13]) or learn a pair-
wise distance metric with gradient descent [28], [29], where
the number of optimization variables dramatically scale with
the number of data samples or feature dimension. In this
paper, motivated by the enriched signal prior used by data-
driven graph learning methods in a model selection framework
[34], we propose a model selection-inspired graph learning

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

344978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021

(MSGL) method with very few optimization variables. Our
main contribution is that, we extend the deterministic quadratic
GSS prior to a signal prior defined on a learnable kernel
function L =

∑P
i=1 βiL

i with the kernel parameters βββ where
L is a positive-definite, finite-degree polynomial function of
Laplacian matrix L for the graph computed from data features.
We optimise βββ by first interpreting L as a precision matrix (i.e.,
an inverse covariance matrix [9]) of the single-observation
data [30] and formulate a convex optimization problem. We
then constrain the positive-definiteness of L by a set of linear
constraints of βββ, such that the convex objective function can
be solved efficiently using a Frank-Wolfe method [15].

Unlike [30] that is restricted to optimizing sample-pair
feature distances within a graph kernel L chosen a priori,
our proposed MSGL optimizes the polynomial coefficients
βββ of L given L. Moreover, we differ from [34] in that,
our proposed MSGL method makes use of a feature-based
graph for precision matrix tuning instead of exploiting multi-
dimensional raw samples distributed across the graph nodes for
data prediction, and thus MSGL only focuses on the kernel
defined on the features that are in the input space (training),
rather than the ones in both the input and output space (training
and testing samples) [34]. Such fundamental difference leads
to a highly efficient optimization scheme with one-time eigen-
decomposition in our MSGL method, while [34] requires
repeated eigen-decomposition or Cholesky decomposition it-
eratively throughout the optimization process. Experimental
results for a binary classification problem shows that our
proposed MSGL method achieves competitive performance
with significant speed gains against existing feature-enabled
graph learning methods.

II. PRELIMINARIES

We consider an undirected graph G(V, E ,A) with |V| = N
nodes, edges (i, j) ∈ E and adjacency matrix A whose entries
Aij are positive edge weights defined by a Gaussian kernel:

Aij =

{
exp

{
−(fi − fj)

>M(fi − fj)
}
, if i 6= j

0, otherwise, (1)

where fi ∈ RJ denotes the feature vector corresponding to the
i-th data sample and assigned to node i, and M ∈ RJ×J is a
symmetric positive-definite metric matrix that could, for exam-
ple, be used to provide different weights to different features
(see, e.g., [31]). Aij captures the Mahalanobis distance [16]
between samples in node i and j in the feature space. Note
that, finding the optimal 1) M-defined feature distance w.r.t.
a graph and 2) Aij-defined sparsity structure of the graph are
out of scope of this paper, The reader can refer to [30] and
[9] for details.

Next we define a degree matrix D whose off-diagonals are
zeros and diagonals Dii =

∑
iAij . Then normalized graph

Laplacian matrix is:

L = D−1/2(D−A)D−1/2, (2)

with eigen-decomposition L = UΣU>. We use the normal-
ized Laplacian matrix since common graph kernel functions

can be easily approximated using polynomial functions [1],
[23], because of its eigenvalue property, that is, the eigenvalues
of L have the property that 0 ≤ λ1 < λ2 ≤ · · · ≤ λN ≤ 2,
and thus L � 0, i.e., L is positive semi-definite (PSD) [5],
[25].

Graph filters with kernel function f(x) are then defined
using eigenvectors U of L, by

H̄ = Uf†(Σ)U> (3)

where f†(Σ) = diag{f−1(λ1), · · · , f−1(λN)} and † is the
pseudo inverse computation [21]. The kernel function can be
the diffusion kernel f(x) = exp{σ2λ/2}, the p-step random
walk kernel f(x) = (a − λ)−p or Laplacian regularization
f(x) = 1 + σ2λ [21]. However, H̄ requires explicit eigen-
decomposition of L, which is intractable for large graphs.
To reduce the computation burden, in the graph kernel and
regularization literature [26], one typically adopts polynomial
functions g(x) =

∑P
i=1 βix

i to approximate the function
f−1(x) such that graph filter H̄ can be approximated by
another filter with a following finite-degree polynomial graph
kernel [23], [34]:

L = Udiag{
P∑
i=1

βiλ
i
1, · · · ,

P∑
i=1

βiλ
i
N}U> =

P∑
i=1

βiL
i (4)

which does not require the explicit eigen-decomposition.

III. MODEL SELECTION-INSPIRED GRAPH LEARNING

It is clear that the above polynomial graph kernel in Eq.
(4) is linearly defined by parameters βββ. Given a dataset D =
{(fi, yi)}Ni=1 with feature vectors fi’s and scalars yi’s (e.g.,
binary class labels), we propose to learn the parameters βββ in
Eq. (4) via the following objective:

min
βββ
g(βββ) = min

βββ
y>L(βββ)y + log det(L−1(βββ))

s.t.
{
L � 0
βi ∈ [−a, a], a ∈ R+,∀i,

(5)

where the left term denotes a data-fit term [20] that is lower
bounded by 0 and is widely used in the machine learning
literature, and the right term denotes a model complexity
penalty term that is generally adopted for model selection
in the graph learning [11] and machine learning literature
[20]. The second, box constraint on βββ ensures that the model
complexity penalty term does not reach minus infinity. Since
L is PSD, we define L ← L + µI throughout this paper to
ensure L is invertible and the computation of the second term
is valid, where µ is a very small constant and I is an identity
matrix with proper dimensions.

We give a short proof of the convexity of the objective func-
tion Eq. (5). First, since parameters βββ have linear constraints,
βββ lie in a convex set. Second, the data-fit term is both convex
and concave due to the fact that its Hessian matrix has all-
zero entries. Third, the model complexity penalty term can be

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

345

written as:

log det(L−1) = log

N∏
k=1

(
P∑
i=1

βiλ
i
k

)−1
= −

N∑
k=1

log

(
P∑
i=1

βiλ
i
k

)
,

(6)
which consists of an affine function

∑P
i=1(·), log function

log(·), and another affine function
∑N
k=1(·). Since

∑P
i=1(·),

log(·) and
∑N
k=1(·) are all convex functions, such function

composition preserves the convexity [3], and thus the objective
in Eq. (5) is convex.

IV. ALGORITHM DEVELOPMENT

Since g(βββ) is convex, we can simply set ∇g(βββ) = 0:

∇g(βββ) =


y>Ly −

N∑
k=1

λk∑P
i=1 βiλ

i
k + µ

...

y>LPy −
N∑
k=1

λPk∑P
i=1 βiλ

i
k + µ


= 0. (7)

Therefore,

∇g(βββ)�

β1...
βP

 =


y>β1Ly −

N∑
k=1

β1λk∑P
i=1 βiλ

i
k + µ

...

y>βPL
Py −

N∑
k=1

βPλ
P
k∑P

i=1 βiλ
i
k + µ


= 0,

(8)

where � denotes element-wise product. Taking the summation
of all entries of Eq. (8), we observe that

y>(

P∑
i=1

βiL
i)y −

N∑
k=1

∑P
i=1 βiλ

i
k∑P

i=1 βiλ
i
k + µ

= 0. (9)

Therefore, the global minimum of Eq. (5) occurs when

y>Ly =

N∑
k=1

∑P
i=1 βiλ

i
k∑P

i=1 βiλ
i
k + µ

≈
N∑
k=1

1 = N. (10)

We note that Eq. (10) is a necessary but not sufficient condition
of Eq. (7), i.e., we solve the original problem in Eq. (5)
via relaxation by Eq. (10) that enlarges the solution search
space compared to the optimality condition in Eq. (7). We
also observe that the PD-cone constraint L � 0 is equivalent
to: 

∑P
i=1 βiλ

i
1 + µ > 0
...∑P

i=1 βiλ
i
N + µ > 0.

(11)

Therefore, solving Eq. (5) essentially boils down to itera-
tively solving the following problem:

min
βββ
h(βββ) = min

βββ
−

N∑
k=1

log

(
P∑
i=1

βiλ
i
k

)

s.t.



∑P
i=1 βiλ

i
1 + µ > 0
...∑P

i=1 βiλ
i
N + µ > 0

βi ∈ [−a, a], a ∈ R+,∀i
y>
(∑P

i=1 βiL
i
)
y = N.

(12)

Since all constraints in Eq. (12) are linear, one can solve this
problem by projected gradient descent [4] with convergence
rate O(1/t) but at the cost of projection after each gradient
descent step. Here, we instead solve this optimisation problem
via a projection-free Frank-Wolfe method with the same
convergence rate as the projected gradient descent [15] as
follows. Let the convex set defined by the linear constraints
in Eq. (12) be H. At Frank-Wolfe iteration t, we compute the
gradient of the objective ∇h(βββ), and then solve the following
direction-finding subproblem:

min
s

s>∇h(βββt−1)

s.t. s ∈ H,
(13)

where βββt−1 denotes the previous solution of (13) and
s>∇h(βββ) is the first-order approximation of h(βββ) at βββ. Eq.
(13) is a linear program that can be efficiently solved using
simplex [18] or interior-point method [4]. Next, we choose a
step size αt that solves the following optimization problem:

αt = arg min
α∈[0,1]

h(α), (14)

where h(α) = h(βββt−1 + α(st − βββt−1)). Since Eq. (14) is
twice differentiable, it can be solved efficiently via a Newton-
Raphson method [19]:

αt = αt−1 − ∂h(α)

∂α
/
∂2h(α)

∂α2
, (15)

where

∂h(α)

∂α
= y>

(
P∑
i=1

(sti − βt−1i)Li

)
y −

N∑
k=1

∑P
i=1(sti − β

t−1
i)λik∑P

i=1 β
t
iλ
i
k + µ

∂2h(α)

∂α2
=

N∑
k=1

(
∑P
i=1(sti − β

t−1
i)λik)2

(
∑P
i=1 β

t
iλ
i
k + µ)2

. (16)

We iteratively solve Eq. (13) and Eq. (14) until convergence.
We summarize our proposed MSGL method in Algorithm 1.
Together with a one-time eigen-decomposition of L to calcu-
late U and λ1, ..., λN , our algorithm has a time complexity
O(N3 + lPN) with a P -degree polynomial graph spectral
kernel and l iterations of Eq. (13).

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

346

Algorithm 1 The proposed MSGL
Input: D = {(fi, yi)}Ni=1, µ, P .
Output: βββ∗.

1: Construct L using f via Eqs. (1) and (2).
2: Get eigenpairs U and λ1, ..., λN of L via eigen-decomposition.
3: Construct L with U, λ1, ..., λN , µ, P , and randomly initialized
βββ via Eq. (4).

4: while not converged do:
5: Solve Eq. (13) for st via interior-point.
6: while not converged do:
7: Solve Eq. (14) for αt via a Newton-Raphson method.
8: end while
9: βββt = βββt−1 + αt(st − βββt−1).

10: end while

V. EXPERIMENTAL RESULTS

We implemented our MSGL graph learning scheme in Mat-
lab R2020b1, and evaluated it in terms of average classification
error rate and running time. Let L = [Lll Llu;Lul Luu],
where Lll denotes the submatrix of L that corresponds to
the data samples with known labels, Luu corresponds to the
data samples with predicted labels, and Lul corresponds to
the data samples with predicted labels row-wise and data
samples with known labels column-wise. We compared our
algorithm against the following graph learning schemes: i)
PDcone: standard gradient descent of the convex objective
ŷ>Lll(M)ŷ with projection of M in Eq. (1) onto a PD
cone, where ŷ denotes the known labels (the training set),
2) HBNB: a recent convex graph learning scheme of the
objective ŷ>Lll(M)ŷ using block coordinate descent with
proximal gradient and adopting restricted search spaces that
are intersections of half spaces, boxes and norm balls for
M [14], 3) PGML: a convex graph learning scheme of the
objective ŷ>Lll(M)ŷ that is based on Gershgorin disc perfect
alignment [30] within a positive graph metric space for M
[32], 4) SGML: a convex graph learning scheme of the
objective ŷ>Lll(M)ŷ similar to 3) but within a balanced
signed graph metric space for M [30], and 5) Cholesky: a non-
convex approach of the objective ŷ>Lll(QQ>)ŷ via gradient
descent, where Q denotes a lower-triangular matrix [12] and
QQ> has the same functionality as M that defines the pair-
wise feature distance in Eq. (1). See Table I for the objective
functions, optimization variables and time complexities of
the competing schemes. Note that the objectives for PDcone,
HBNB, PGML, SGML, and Cholesky only consist of the Lll
and ŷ that correspond to the data samples with known labels,
which is the standard setting to learn a metric M or QQ>

[30]. Our proposed MSGL first requires the full set of labels
y = [ŷ y∗u] where y∗u is predicted with a graph-based classifier
[31] given by y∗u = −L†uuLulŷ, then optimizes βββ using the
full L together with y via Eq. (12), so that the optimized βββ
ensures that L � 0.

We set the maximum number of main iterations, conver-
gence thresholds and the degree of polynomial function L for
all evaluated schemes to 100, 0.01, and P = 3, respectively.

1The code is available at https://github.com/bobchengyang/MSGL.

TABLE I: The objective functions, optimization variables and
time complexities of the proposed and competing schemes. l
denotes the number of iterations of any components. J denotes
the per-sample feature size. c denotes the number of non-zero
entries in M. N denotes the data size. P denotes the degree
of the polynomial function.

method objective var. time complexity
PDcone

ŷ>Lll(M)ŷ M

O(lJ3)
HBNB O(l(lJ + l(lc+ J − 1)))
PGML O(l(lc+ J(J + 1)/2))
SGML O(lc+ (J2 + 5J)/2− 1)

Cholesky ŷ>Lll(QQ>)ŷ Q O(lJ(J + 1)/2)
MSGL Eq. (12) βββ O(N3 + lPN)

TABLE II: Experimental datasets.

dataset (N, J)
Australian (690,14)

Breast-cancer (683,10)
Diabetes (768,8)
Fourclass (862,2)
German (1000,24)

Haberman (306,3)
Heart (270,13)
ILPD (583,10)

Liver-disorders (145,5)
Monk1 (556,6)
Pima (768,8)

Planning (182,12)
Voting (435,16)
WDBC (569,30)
Sonar (208,60)

Madelon (2000,500)
Colon-cancer (62,2000)

Finding the optimal gradient descent step size based on Lip-
schitz constant for datasets with large per-sample feature size
is computationally infeasible on a consumer-level machine.
Therefore, as in [27], [30], the step size of gradient descent for
PDcone, HBNB and Cholesky was heuristically initialized to
0.1/N , increased by 1% if GD yielded a better objective value,
and decreased by half otherwise. We chose these settings since
smaller convergence thresholds and larger number of iterations
would cause PDcone, HBNB, PGML, SGML, and Cholesky to
be significantly slower to converge. Without loss of generality,
we set M = I during graph construction using Eq. (1) in our
method. We heuristically set µ = 10−8, a = 100 when solving
Eq. (12) throughout the experiments. We used default settings
for the remaining parameters of all schemes. All computations
were carried out in Matlab R2020b on a Windows 10 64bit
PC with AMD RyzenThreadripper 3960X 24-core processor
3.80 GHz and 128GB of RAM.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

347

pl
an

ni
ng

so
na

r
liv

er
-d

is
or

de
rs

he
ar

t
ha

be
rm

an
vo

tin
g

m
on

k1
W

D
B

C
IL

PD
au

st
ra

lia
n

di
ab

et
es

pi
m

a
fo

ur
cl

as
s

ge
rm

an
br

ea
st

-c
an

ce
r

av
g.

5

10

15

20

25

30
er

ro
r

ra
te

 (
%

)

no learning
PDcone
HBNB
PGML
SGML
Cholesky
MSGL

av
g.

19.5

20

20.5

21

21.5

22

22.5

pl
an

ni
ng

so
na

r
liv

er
-d

is
or

de
rs

he
ar

t
ha

be
rm

an
vo

tin
g

m
on

k1
W

D
B

C
IL

PD
au

st
ra

lia
n

di
ab

et
es

pi
m

a
fo

ur
cl

as
s

ge
rm

an
br

ea
st

-c
an

ce
r

av
g.

102

103

104

105

ru
nt

im
e

(m
s)

PDcone
HBNB
PGML
SGML
Cholesky
MSGL

Fig. 1: Error rate (upper) and runtime (lower) on 15 datasets.

15 20 10
0

20
0

10
00

20
00

data size

101

102

103

104

ru
nt

im
e

(m
s)

PGML
MSGL

15 20 10
0

20
0

10
00

20
00

per-sample feature size

102

104

ru
nt

im
e

(m
s)

PGML
MSGL

Fig. 2: Runtime for Madelon (upper) and Colon-cancer
(lower) with various data and feature sizes, respectively.

As shown in Table II, we adopted 17 binary datasets that
are freely available in UCI2 and LibSVM3 databases. We
conducted two sets of experiments as follows. For the first
set of experiments, we created 10 instances of 60% training-
40% test split with random seeds 0-9 [22] for the first 15 out
of 17 datasets, and evaluated each graph learning scheme via
averaged classification accuracy and runtime. Given a learnt
L (defined by a learnt M for PDcone, HBNB, PGML and
SGML, a learnt Q for Cholesky, and a learnt βββ for our pro-
posed MSGL), we used the same graph-based classifier [31]
y∗u = −L†uuLulŷ for classification of all evaluated schemes,
where yu denotes the predicted labels. For the second set of
experiments, we focus on the evaluation of runtime. Specif-
ically, we evaluated the fastest competitor PGML and our
proposed MSGL with various data sizes using the 16th dataset
Madelon and evaluated these two methods with various per-
sample feature sizes using the 17th dataset Colon-cancer.
For both sets, we applied the data normalization scheme of
[6] for the training/test data, which first subtracts the mean
and divides by the feature-wise standard deviation, and then
normalizes to unit length sample-wise. We added Gaussian
noise with variance 10−12 noise to the dataset to avoid NaN’s

2https://archive.ics.uci.edu/ml/datasets.php
3https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/binary.html

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

348

due to data normalization on small samples.
Fig. 1 shows classification error rates and runtime (in log

scale) for the first 15 out of 17 datasets in Table II, respectively.
The horisontal axis of each plot denotes the datasets in
ascending order of the runtime of our proposed MSGL. Each
point in the plots denotes the average of 10 runs. Fig. 2 shows
runtime versus data size N on Madelon and runtime versus
per-sample feature size J on Colon-cancer, respectively.
We did not execute PDcone, HBNB, SGML or Cholesky in
Fig. 2 since PGML is the fastest competitor to MSGL.

In terms of classification error rate, PGML, SGML,
Cholesky, PDcone and HBNB had relatively larger error rates:
22.64%, 21.16%, 20.44%, 20.13% and 20.08%, respectively.
PGML is even worse than direct classification without learning
of M or βββ (i.e., M = I and βββ = 1), which is due to the fact
that positive graph search space is much more restricted than
the other schemes. SGML occasionally performs worse than
direct classification, e.g., Monk1, which is due to a restricted,
balanced signed graph search space. Due to the non-convexity
of Cholesky graph learning scheme, it occasionally converges
at a bad local minimum, and thus performs worse than direct
classification, e.g., for liver-disorders dataset. MSGL
achieved the lowest 19.42% classification error rate among
all schemes. This shows that, with the polynomial coefficients
βββ being the only optimization variables, MSGL successfully
extracts the data similarity without learning the pairwise
distance metric M directly.

In terms of runtime, PGML was competitive to MSGL,
but MSGL significantly outperformed the other competing
schemes on average. As shown in Fig. 1, the speed gains
are 91.47x, 16.85x, 15.84x and 14.38x for MSGL vs HBNB,
PDcone, SGML and Cholesky, respectively. As shown in the
upper sub-figure in Fig. 2, the runtime of both PGML and
our proposed MSGL increase dramatically as the data size
increases with a 500 per-sample feature size on Madelon.
This is due to the graph construction with a large data size
is generally time-consuming. However, as shown in the lower
sub-figure in Fig. 2, the runtime of MSGL remains similar
across various per-sample feature sizes with a 62 data size
on Colon-cancer, whereas the runtime of PGML again
increases dramatically as per-sample feature size increases.
This means that, with a small data size, the speed gain of
our MSGL increased as per-sample feature size increased.
The reason for our significant speed gain is the very few
optimization variables βββ that correspond to the polynomial
function L. For PDcone, HBNB, PGML, SGML and Cholesky,
the number of optimization variables in M or U scales
dramatically with the per-sample feature size.

VI. CONCLUSION

Inspired by recent advances in GSP, we proposed a model
selection-inspired graph learning (MSGL) method that learns
the parameters βββ of a polynomial function L =

∑P
i=1 βiL

i �
0. We first formulate a convex optimization problem that
consists of a graph Laplacian regularizer with L and a log
determinant term with the covariance L−1. Then, by replacing

the positive-definite cone constraint for L with a set of linear
constraints for βββ, we employ the Frank-Wolfe method and
iteratively solve a linearized objective efficiently. Our algo-
rithm requires eigen-decomposition of a given graph Laplacian
L only once. Experimental results confirms the competitive
performance of the proposed MSGL against state-of-the-art
graph learning methods, both in classification accuracy and
speed. In practice, it is always desirable to construct a graph
with properly defined feature distance and sparsity stricture
prior to employing the proposed method. Future work will
focus on 1) the combination of the proposed method and find-
ing the optimal M-defined feature distance w.r.t. a graph and
Aij-defined sparsity structure of the graph, 2) improvement
of the model scalability in terms of data size, and 3) a wider
range of applications beyond classification, such as regression,
clustering and low-level image processing.

REFERENCES

[1] A. Anis, A. El Gamal, A. S. Avestimehr, and A. Ortega, “A sampling
theory perspective of graph-based semi-supervised learning,” IEEE
Transactions on Information Theory, vol. 65, no. 4, pp. 2322–2342,
Apr. 2019.

[2] M. Belkin, I. Matveeva, and P. Niyogi, “Regularization and semisu-
pervised learning on large graphs,” in Shawe-Taylor J., Singer Y. (eds)
Learning Theory, COLT 2004, Lecture Notes in Computer Science, vol.
3120, 2004, pp. 624–638.

[3] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, 2004.
[4] ——, Convex Optimization. Cambridge University Press, 2009.
[5] G. Cheung, E. Magli, Y. Tanaka, and M. Ng, “Graph spectral image

processing,” in Proceedings of the IEEE, vol. 106, no.5, May 2018, pp.
907–930.

[6] M. Dong, Y. Wang, X. Yang, and J. Xue, “Learning local metrics
and influential regions for classification,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 42, no. 6, pp. 1522–1529, June
2020.

[7] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs
from data: A signal representation perspective,” IEEE Signal Processing
Magazine, vol. 36, no. 3, pp. 44–63, May 2019.

[8] F. Dornaika and Y. El Traboulsi, “Joint sparse graph and flexible
embedding for graph-based semi-supervised learning,” Neural Networks,
vol. 114, pp. 91–95, 2019.

[9] H. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data under
laplacian and structural constraints,” in IEEE Journal of Selected Topics
in Signal Processing, vol. 11, no.6, July 2017, pp. 825–841.

[10] X. Fang, Y. Xu, X. Li, Z. Lai, and W. K. Wong, “Learning a nonneg-
ative sparse graph for linear regression,” IEEE Transactions on Image
Processing, vol. 24, no. 9, pp. 2760–2771, 2015.

[11] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance
estimation with the graphical lasso,” in Biostatistics, vol. 9, no.3, 2008,
pp. 432–441.

[12] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. The
Johns Hopkins University Press, 1996.

[13] X. Han, P. Liu, L. Wang, and D. Li, “Unsupervised feature selection
via graph matrix learning and the low-dimensional space learning
for classification,” Engineering Applications of Artificial Intelligence,
vol. 87, p. 103283, 2020.

[14] W. Hu, X. Gao, G. Cheung, and Z. Guo, “Feature graph learning for
3D point cloud denoising,” IEEE Transactions on Signal Processing,
vol. 68, pp. 2841–2856, 2020.

[15] M. Jaggi, “Revisiting Frank-Wolfe: Projection-free sparse convex opti-
mization,” in International Conference on Machine Learning, Jun 2013,
pp. 427–435.

[16] P. C. Mahalanobis, “On the generalized distance in statistics,” Proceed-
ings of the National Institute of Sciences of India, vol. 2, no. 1, pp.
49–55, April 1936.

[17] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and P. Van-
dergheynst, “Graph signal processing: Overview, challenges, and ap-
plications,” in Proceedings of the IEEE, vol. 106, no.5, May 2018, pp.
808–828.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

349

[18] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization. Dover
Publications, Inc, 1998.

[19] J. Raphson, Analysis aequationum universalis, London, 1690.
[20] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine

Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005.

[21] D. Romero, M. Ma, and G. B. Giannakis, “Kernel-based reconstruction
of graph signals,” IEEE Transactions on Signal Processing, vol. 65,
no. 3, pp. 764–778, Feb. 2017.

[22] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
3rd ed. USA: Prentice Hall Press, 2009.

[23] A. Sakiyama, Y. Tanaka, T. Tanaka, and A. Ortega,
“Eigendecomposition-free sampling set selection for graph signals,”
IEEE Transactions on Signal Processing, vol. 67, no. 10, pp. 2679–2692,
May 2019.

[24] S. E. Schaeffer, “Survey: Graph clustering,” Computer Science Review,
vol. 1, no. 1, p. 27–64, Aug. 2007.

[25] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Van-
dergheynst, “The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular
domains,” in IEEE Signal Processing Magazine, vol. 30, no.3, May
2013, pp. 83–98.

[26] A. J. Smola and R. Kondor, “Kernels and regularization on graphs,”
in Learning Theory and Kernel Machines, B. Schölkopf and M. K.
Warmuth, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003,
pp. 144–158.

[27] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large
margin nearest neighbor classification,” Journal of Machine Learning
Research, vol. 10, no. 2, pp. 207–244, Feb. 2009.

[28] X. Wu, L. Zhao, and L. Akoglu, “A quest for structure: Jointly
learning the graph structure and semi-supervised classification,” ACM
International Conference on Information and Knowledge Management,
2018.

[29] E. P. Xing, M. I. Jordan, S. J. Russell, and A. Y. Ng, “Distance metric
learning with application to clustering with side-information,” in Annual
Conference on Neural Information Processing Systems, Dec. 2003, pp.
521–528.

[30] C. Yang, G. Cheung, and W. Hu, “Signed graph metric learning via
gershgorin disc perfect alignment,” arXiv, 2021.

[31] C. Yang, G. Cheung, and V. Stankovic, “Alternating binary classifier
and graph learning from partial labels,” in Asia-Pacific Signal and
Information Processing Association Annual Summit and Conference,
Nov. 2018, pp. 1137–1140.

[32] C. Yang, G. Cheung, and W. Hu, “Graph metric learning via Gershgorin
disc alignment,” in IEEE International Conference on Acoustics, Speech
and Signal Processing, May 2020.

[33] G. Zhai and X. Min, “Perceptual image quality assessment: a survey,”
Science China Information Sciences, vol. 63, no. 211301, pp. 1–52, Nov.
2020.

[34] Y.-C. Zhi, Y. Ng, and X. Dong, “Gaussian processes on graphs via
spectral kernel learning,” arXiv, 2020.

[35] X. Zhou and M. Belkin, “Semi-supervised learning by higher order
regularization,” in International Conference on Artificial Intelligence and
Statistics, JMLR Workshop and Conference Proceedings, Apr. 2011, pp.
892–900.

[36] X. Zhu, Z. Ghahramani, and J. Lafferty, “Semi-supervised learning using
Gaussian fields and harmonic functions,” in International Conference on
Machine Learning, Aug. 2003, pp. 912–919.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

350

