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Abstract—This paper proposes an approach to predicting
the onsets of notes in music from electroencephalogram (EEG)
signals. Participants listened to 45 kinds of single-tone melodies
produced by piano sounds set on the same tempo. Training labels
(onset or not-onset) were given by 100 ms using the scores of
the melodies. An EEG while listening music was divided into
segments with a window width of 500 ms and an overlap of
100 ms. Then, we solve the classification problems using logistic
regression (LR) or support vector machine (SVM). We report that
five out of fourteen participants’ areas under the curve (AUC)
indicated more than 0.7. Furthermore, when the predicted onset
sequence was used to predict the musical stimulus being listened
to, the maximum classification accuracy was 91.7%. These results
suggest that each note can be decoded from brain response. The
proposed approach can measure brain responses to each note or
adapted for brain-computer interface (BCI) using natural music.

I. INTRODUCTION

The music consists of complex structures such as rhythm,
tempo, timbre, and so on. When people are listening to music,
they utilize cognitive processes such as perception, multi-
modal integration, learning, memory, syntactic processing,
and processing of meaning information [1]. Many researchers
studied event-related potentials (ERP) in numerous contexts
in the music and speech domains to understand the auditory
mechanisms. However, ERPs, usually obtained from averaging
over trials, are suitable for isolated stimuli due to the low
signal-to-noise ratio of EEG. Therefore, decoding technologies
were needed to study brain response to continuous stimuli such
as speech, music, or environmental sounds [2].

Decoding methods on EEG signals are pretty standard in the
domain of BCI research. For instance, Schaefer et al. reported
that seven types of 3-s music-fragment could be classified from
EEG [3]. O’Sullivan et al. proposed a speech-reconstruction
model for decoding attentional selection in a multi-speaker
environment [4].

In addition to this, decoding techniques might enable us to
solve the mechanism of music perception, apply music therapy,
and train music learners. Thus, researchers are focusing on the
relationship between EEG and musical components. Cong et
al. have reported that there are some links between musical
components and EEG [5]. Recently, Vinay et al. [6] have
predicted the onset sequence from an 1-s EEG using a deep
neural network (DNN). To our knowledge, however, there is
no research to decode each music component one by one from
EEG.

In this paper, we proposed a novel approach to decoding
each onset of the note from EEG. The EEG signal for each trial
was divided into 500-ms windows as features and classified by
LR or SVM. We set the tempo of music stimuli to 2.5 Hz, and
the lowest note was the sixteenth note. Hence, we annotated
the training labels by each sixteenth note using digital scores
of the melodies.

The remaining part of the paper proceeds as follows: In
Section II, we review past research for the brain response while
listening to music. Section III describes the dataset we used,
the preprocessing of the data, and the classification model. In
Section IV, we present the results and discussion. In Section
V, conclusions are drawn.

II. RELATED WORK

The brain response while listening to music has been studied
using ERP for a long time. For rhythm perception, it has been
known that P1, N1, and P2 components were relevant [7]. As
for music syntax, previous studies have used deviant speech
sounds [8], rhythmic sequences [9], and melodies [10] to elicit
the mismatch negativity.

ERPs have also been used for BCI. For example, Treder
et al. proposed a novel simulation approach for BCI using
polyphonic music [11]. In their analysis, P300 was measured,
and the attended instrument can be classified offline with a
mean accuracy of 91%.

As for BCI research, the auditory decoding method has also
been studied. In the past decade, several studies have sought to
determine the relationship between components of music and
EEG to utilize BCI. For instance, Schaefer et al. classified
3s-fragment music from seven kinds of music using EEG [3].
Cong et al. applied independent component analysis (ICA)
to extract EEG components and reported that the ICA-related
components correlate with rhythm components [5]. Nowadays,
new approaches to decode auditory stimuli from EEG are
studying. For instance, Cheveigné et al. proposed an approach
based on Canonical Correlation Analysis that finds the optimal
transform to apply to both the stimulus and response. [2].

Recently, researchers have focused on cortical entertainment
because entrainment reflects the rhythmic structure of stimuli.
Specifically, cortical entrainment to beat, meter, rhythm, and
even the envelope of melody has been demonstrated [12], [13],
[14], [15].

On the other hand, some researchers have focused on decod-
ing onsets of music because estimating audio onsets must be

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

400978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021



fundamental for decoding more complex musical components
from EEG. Sturm et al. proposed a multivariate regression-
based method to extract onset-related brain responses from
EEG [16]. The brain response resembles canonical onset-
related ERPs, such as the N1-P2 complex. This EEG pro-
jection was then utilized to determine the Cortico-Acoustic
Correlation (CACor), a synchronization measure between EEG
signal and stimulus. Their results showed significant CACor
in an individual listener’s EEG of a single presentation of
a full-length complex naturalistic music stimulus. Vinay et
al. conducted a feasibility study for decoding onset in music
from EEG using an open dataset called “NMED-T” [17]. The
dataset does not provide onset data for the music stimuli as
training data; thus, they annotated the onset using MADMOM
library [18]. Then, the recurrent neural network model was
trained by the 1-s window of EEG to decode onset sequences.
As a result, F1-socre of their model achieved 0.54 assessed
with mir eval toolkit’s onset evaluation method [19].

The limitation of previous studies was that onset labels were
annotated, and the prediction was based on the onset of a
specific interval, not the prediction of the brain’s response to
each sound. A new approach is therefore needed for future
research to predict onsets one by one from EEG.

III. MATERIALS AND METHODS

A. Dataset

The EEG data used in this study were collected in our
previous work [20]. We used a subset of the data (control task
conditions) to classify the note’s onset. A brief description of
the dataset follows.

1) Participants: Fifteen males (mean age 23.1 ± 1.11;
range 21–25 years old) who had no professional music ed-
ucation participated in this experiment. All participants were
healthy; none reported any history of hearing impairment or
neurological disorders. They signed written informed consent
forms, and the study was approved by the Human Research
Ethics Committee of the Tokyo University of Agriculture and
Technology.

2) EEG: EEGs were measured using an EEG gel head cap
with 64 scalp electrodes (Twente Medical Systems Interna-
tional (TMSi), Oldenzaal, The Netherlands) following the in-
ternational 10–10 placement system. For patient grounding, a
wetted TMSi wristband was used. To measure eye movement,
we recorded an electrooculogram (EOG) with two bipolar
electrodes at the corner of the right eye (referenced to the
right ear) and above the right eye (referenced to the left ear).
All channels were amplified using a Refa 72-channel amplifier
(TMSi) against the average of all connected inputs. The signals
were sampled at a sampling rate of 2,048 Hz, and they were
recorded with TMSi Polybench. At the same time, we recorded
the audio signals to validate the onset timing of the presented
musical stimuli.

3) Musical stimuli: We used musical stimuli (MIDI) syn-
thesized by Sibelius (Avid Technology, USA), a music com-
putation and notation program. We created forty-five pieces
that consisted of melodies produced by piano sounds without

harmony. The sound intensities of all of the generated musical
pieces were identical. The length of each musical piece was
34 s, with the tempo set to 150 beats per minute (bpm) (i.e.,
the frequency of a quarter of a note was 2.5 Hz). The sampling
frequency was set to 44,100 Hz.

4) Tasks: We used only data from the control task including
thirty trials. In each task, a 34-s-long musical stimulus was
presented 1 s after the onset of the trial. Participants were
instructed to focus on the musical stimulus while fixating on
the screen. The order of the stimuli was random across the
subjects.

B. Data Representation

We hypothesized that the brain responds to each note onset.
Based on previous studies, musical tones elicit ERP such as
N1-P2 complex and P300. Therefore, we classified “onset” or
“not-onset” from the 500-ms window of EEG.

1) Onset Labels: In this paper, we used the 30 s musical
pieces with the frequency of a quarter of a note was 2.5
Hz. The minimum length of note as a sixteen note was
100 ms. Therefore, we gave labels (onset/not-onset) to EEG
segments every 100 ms, so that each stimulus has 296 labels.
We excluded five musical stimuli since they included triplet,
which cannot be divided. The total number of musical stimuli
was forty pieces, as shown in Table I. We labeled “onset” if
the 100 ms-segment includes a note onset, and “not-onset”
if the 100 ms-segment includes a sustained note or rest. A
visual representation of the music label generation is shown
in Fig. 1, and the number of onset labels was shown in the
third columns of the Table I. Music label generation was
implemented through a custom-written Python program that
operated on an XML file generated in Sibelius.

2) Preprocessing: We classified note’s onset from the 500-
ms segment of EEG. One participant (s5ka) was excluded from
the analysis because, due to technical difficulties, the audio
signals related to this participant could not be recorded. First,
a zero-phase second-order infinite impulse response notch
digital filter (50 Hz) and a zero-phase fifth-order Butterworth
digital highpass filter (1 Hz) were applied to the recorded
EEG. Second, the trials contaminated with a large number
of artifacts were removed by visual inspection. Third, to
remove artifacts caused by EOG, we applied a blind source
separation algorithm called second-order blind identification to
the recorded EEGs [21], [22], [23]. We then re-referenced the
filtered EEGs from the average reference to the average of ear
references (M1 and M2) and extracted seven channels (FC5,
FC1, FC2, FC6, C3, Cz, C4) for classification. Moreover, the
re-referenced EEGs were resampled to 400 Hz, and a zero-
phase 25th-order Butterworth digital lowpass filter (40 Hz)
was applied. We utilized the 30-s EEG data, from 4 s to 34 s
after onset, the same as our previous study [20]. The filtered
EEGs were divided into segments with a width of 500 ms
and an overlap of 100 ms. Finally, each segment was baseline
corrected (using the average EEG from −100 ms to 0 ms)
and was downsampled to 80 Hz. The number of trials across
participants and onset rates is shown in Table II. The last
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TABLE I
MUSIC FOR THE AUDIO STIMULI. FORTY SEGMENTS WERE EXTRACTED BASED ON THE MUSIC MENTIONED IN THIS TABLE. THE THIRD COLUMN SHOWS

THE RATE OF ONSET.

Composer Title Onset Rate [%]
L. v. Beethoven Symphony “Ode to Joy” 24.7
G. Bizet Carmen “Toreador Song” 26.7
J. Brahms Hungarian Dances No.5 40.9
S. E. W. Elgar Pomp and Circumstance Marches 17.3
E. H. Grieg In the Hall of the Mountain King 39.5
G. F. Handel Messiah “Hallelujah” 32.7
G. Holst Planets “Mercury” 31.6
W. A. Mozart Eine Kline Nachtmusik 33.2
W. A. Mozart Piano Sonata No.11–3 “Turkish March” 65.5
H. Necke Csikos Post 33.8
J. Offenbach Orpheus in the Underworld 36.9
J. Pachelbel Canon 38.1
S. S. Prokofiev Romeo and Juliet “Montagues and Capulets” 41.8
G. A. Rossini William Tell Overture 58.2
E. A. L. Satie Gymnopedie No.1 15.0
E. A. L. Satie Je te veux 14.4
J. Strauss Voices of Spring Waltz 23.0
P. I. Tchaikovsky Swan Lake “Scene” 29.8
I. Albeniz Piano Sonata Op.82 34.7
L. v. Beethoven Piano Sonata Op.14–1 23.3
A. Diabelli Sonatina Op.151–2 38.6
A. Dvorak Waltz 32.2
A. Dvorak Serenade for Strings Op. 22–3 “Scherzo” 70.3
A. Dvorak Serenade for Strings Op. 22–5 “Finale” 37.1
G. U. Faure Dolly Suite Op. 56 “Kitty-valse” 31.0
E. H. Grieg Lyric Pieces Op.47–6 “Spring dance” 47.1
F. J. Haydn Piano Sonata No.12 44.9
F. J. Haydn Piano Sonata No.28 39.3
F. J. Haydn Piano Sonata No.33 52.3
F. Kuhlau Sonatina Op.55–1 40.1
T. Leschetizky Humoresque 38.4
J. L. F. Mendelssohn Bartholdy Songs Without Words Op.19–1 22.9
W. A. Mozart Piano Sonata KV309 31.8
S. S. Prokofiev 10 Pieces Op.12–2 Gavotte 33.8
S. S. Prokofiev 10 Pieces Op.12–3 Rigaudon 33.2
F. P. Schubert Piano Sonata No.4 Scherzo 23.9
F. P. Schubert Piano Sonata No.6–3 20.1
F. P. Schubert String Quartet No.2 27.3
F. P. Schubert String Quartet No.3 63.7
W. R. Wagner Piano Sonata Op. 1 26.7

q
44&## œ ™ œj œ œ œ œ œ ™ ‰ Œ œ
● ▲ ▲▲ ▲ ● ● ● ● ● ●▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲▲ ▲ ▲ ▲▲ ▲ ▲ ▲ ▲▲●▲

=150

●

▲

onset

not-onset

Fig. 1. Example of labels. Circles indicate “onset”, and rectangles indicate “not-onset”.

column shows the mean and standard deviation of the onset
rate across participants.

C. Classification and Evaluation
Onset classification was achieved using three different meth-

ods, LR with L1 regularization (LR–L1), LR with L2 regular-
ization (LR–L2), and linear SVM (LSVM). These three mod-
els were utilized as implemented in the open-source machine
learning library scikit-learn [24]. The input feature of each
model was the preprocessed EEG data with vectorization (80
Hz × 0.5 s × 7 channels = 280 features per segment). Since
our dataset was imbalanced, we set the class weight parameter
of each model to “balanced”, and selected the parameter C

via a grid-search approach. Finally, we conducted five-fold
cross-validation with the parameters mentioned above. The
classification analysis was performed individually for each
participant.

In this paper, two different evaluations: segment-level and
music-level, were conducted. For the segment-level evaluation,
F1-score and area under the curve (AUC) were calculated for
each predicted result from a 500-ms segment. For music-level
evaluation, we predicted the musical stimulus being listened
to. Firstly, we predicted the onset sequence using 30 seconds
of EEG while listening to an entire musical stimulus. Secondly,
similarities between the predicted sequence and generated
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TABLE II
THE NUMBER OF TRIALS AND ONSET RATE ACROSS PARTICIPANTS IS
SHOWN. THE LAST COLUMN INDICATES THE MEAN AND STANDARD

DEVIATION OF THE ONSET RATE ACROSS PARTICIPANTS.

Participant Number of trials Rate of onset
s1ka 22 34.2 ± 11.4
s2ka 24 35.7 ± 14.7
s3ka 24 34.2 ± 13.5
s4ka 26 34.9 ± 14.4
s6ka 25 35.5 ± 13.1
s7ka 22 36.0 ± 11.2
s8ka 26 30.9 ± 9.9
s9ka 26 38.8 ± 11.9

s10ka 27 37.2 ± 14.2
s11ka 23 36.1 ± 13.5
s12ka 27 34.8 ± 13.9
s13ka 24 36.6 ± 15.0
s14ka 26 35.3 ± 14.7
s15ka 24 33.5 ± 11.3
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Fig. 2. Grand average ERP from channel Cz (n = 14) is shown. The red line
indicates onset, and the black dashed line indicates not-onset.

sequence of each musical stimuli participants listened to in the
control task were calculated with all combinations. The simi-
larities were assessed with correlation coefficient (Pearson’s r)
or hamming distance. Then, the indexes of the musical stimuli
were ordered by degree of similarity. Finally, top-1 and top-3
accuracy were calculated based on the degree of similarity.

To confirm the chance level of music-level evaluation,
we conducted an additional experiment below. Firstly, as a
prediction of each musical stimuli, onset sequences were
calculated using a uniform distribution. Secondly, similarities
were calculated between the predicted sequences and gener-
ated sequences of musical stimuli. Then, the indexes of the
musical stimuli were ordered by degree of similarity, and
top-1 and top-3 accuracy were extracted. Lastly, we repeated
the process 10,000 times and averaged accuracies across the
process.

IV. RESULTS AND DISCUSSION

The purpose of our experiment was to predict onset or not-
onset from the 500-ms segment of EEG. Firstly, we compared
ERP responses between onset and not-onset. Fig. 2 shows

TABLE III
A SUMMARY OF THE RESULTS OF THE SEGMENT-LEVEL EVALUATION IS

SHOWN. F1-SCORE AND AUC WERE CALCULATED AS THE
CLASSIFICATION ACCURACY OF LR–L1, LR–L2, AND LSVM.

model F1-score AUC
mean min max mean min max

LR–L1 0.546 0.496 0.594 0.673 0.607 0.729
LR–L2 0.546 0.499 0.591 0.673 0.612 0.729
LSVM 0.538 0.488 0.594 0.661 0.593 0.729

TABLE IV
A DETAIL OF THE RESULTS OF THE SEGMENT-LEVEL EVALUATION IS

SHOWN. WE CALCULATED F1-SCORE AND AUC FOR CLASSIFICATION
ACCURACY FOR EACH PARTICIPANT-SPECIFIC MODEL.

Participant model C F1-score AUC

s1ka
LR–L1 12.743 0.500 0.620
LR–L2 12.743 0.500 0.620
LSVM 112.884 0.493 0.612

s2ka
LR–L1 1.438 0.546 0.663
LR–L2 0.695 0.544 0.663
LSVM 0.004 0.488 0.594

s3ka
LR–L1 0.336 0.521 0.658
LR–L2 2.976 0.534 0.665
LSVM 6.158 0.530 0.665

s4ka
LR–L1 483.293 0.564 0.691
LR–L2 26.367 0.565 0.697
LSVM 26.367 0.565 0.696

s6ka
LR–L1 2.976 0.594 0.723
LR–L2 0.695 0.591 0.723
LSVM 2.976 0.594 0.724

s7ka
LR–L1 0.695 0.518 0.626
LR–L2 0.078 0.521 0.627
LSVM 0.038 0.519 0.624

s8ka
LR–L1 0.695 0.548 0.721
LR–L2 0.695 0.548 0.721
LSVM 0.336 0.550 0.722

s9ka
LR–L1 54.556 0.529 0.627
LR–L2 112.884 0.531 0.627
LSVM 112.884 0.531 0.627

s10ka
LR–L1 2.976 0.519 0.634
LR–L2 26.367 0.514 0.626
LSVM 1.438 0.521 0.636

s11ka
LR–L1 26.367 0.560 0.692
LR–L2 233.572 0.554 0.685
LSVM 0.002 0.510 0.593

s12ka
LR–L1 0.336 0.585 0.723
LR–L2 1.438 0.583 0.725
LSVM 6.158 0.586 0.726

s13ka
LR–L1 2.976 0.585 0.709
LR–L2 6.158 0.585 0.709
LSVM 2.976 0.585 0.709

s14ka
LR–L1 2.976 0.496 0.607
LR–L2 0.162 0.499 0.612
LSVM 0.018 0.490 0.604

s15ka
LR–L1 0.695 0.577 0.729
LR–L2 0.162 0.576 0.729
LSVM 0.336 0.577 0.729

grand average ERP from channel Cz. Both N1 and P2 ampli-
tudes of onset were larger than that of not-onset. This finding
is consistent with that of Sturm et al., who reported N1-P2
complex elicited as a reaction to sound onset [16]. Secondly,
we assessed the decoding model as segment-level (by 500-
ms window). The summary of segment-level classification
accuracy (F1-score and AUC) for each classification method
are shown in Table III, which shows the mean, minimum, and
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Fig. 3. The absolute values of the coefficients of LR–L1, LR–L2, and LSVM for s12ka are shown. The horizontal line indicates a time in seconds, and the
vertical line indicates the EEG channel. In all models, the coefficients around 0.3 s were more significant than those at other times.

maximum values of accuracy across subjects. In addition to
this, the classification accuracy by each participant was shown
in Table IV. According to Tables III–IV, the averaged F1-socre
was 0.54, and five out of fourteen participants’ AUC indicated
more than 0.7. Besides, there are no significant differences
between the models. The averaged F1-scores were the same
as the previous study [6], although the evaluation methods
were different from ours.

In order to discuss which time of the EEG is essential
for classification, we plotted the magnitude of the weight
of the LR–L1, LR–L2, and LSVM averaged across folds.
Fig. 3 shows the coefficients of a participant (s12ka). The
horizontal axis indicates the channel index corresponding to
Fig. 3, and the vertical axis indicates the time. As shown in
Fig. 3, the weights of the three models were largest just before
at 0.3 s after onset. These results suggest that the onset-related
response occurs around 300 ms after the onset of the stimulus.
According to the previous study [25], P200 components were
correlated with the magnitude of the rapid change in the musi-
cal feature. Also, Haumann et al. demonstrated that average P2
responses could be extracted at sound onsets in real musical
pieces [26]. Since P200 is evoked 200–300 ms after onset, the
present results are consistent with previous studies. Moreover,
these results match with the segment-level accuracies shown
in Tables III–IV. Thus, considering our paradigm to predict
onset one by one can be challenging, our proposed model
seems appropriate.

Furthermore, we conducted a music-level evaluation to
assess the trained models. Fig. 4 shows the results of music-
level evaluation with LSVM. Although accuracy depended
on participants, top-1 accuracy using correlation showed the
best performance with an accuracy of 91.7%, and top1-
accuracy using hamming distance showed 79.2%. As for the
evaluation using correlation coefficients, the accuracy of both
top-1 and top-3 were above chance level. The results were
basically above the chance level in the evaluation using the
Hamming distance, although some subjects were below the
chance level. In addition, the maximum accuracies, or outliers,
in the validation process are indicated by red crosses. Overall,
nine subjects’ accuracy was above the maximum in all cases,
while the remaining five participants’ accuracy was below
the maximum in some cases As well as the segment-level

evaluation, the music-level evaluations of the LR showed
similar results.

One unanticipated finding was that the classification accura-
cies were low for some participants. In BCI studies, there is a
phenomenon called BCI-illiteracy, which is the incompatibility
between the user and the BCI occurring when a user cannot
attain adequate control of a BCI [27], [28]. One of the possible
causes of BCI-illiteracy is a low signal-to-noise ratio of EEG.
It is known that although brain activity is occurring, it may not
be observed as scalp EEG due to the shape of the cerebrum and
scalp. According to Ahn et al., subjects in the illiterate group
showed higher noise than subjects in the literate group [29].
The low performance in our results may be due to noise in the
EEG. Also, Lotte et al. argued that it could not be decoded by
signal processing and machine learning algorithms if the user
cannot encode the command [30]. Therefore, it can be assumed
that participants with a low accuracy may not recognize
the music they listen to. One possible solution to improve
the classification accuracies is learning end-to-end DNN. As
several researchers have proposed DNN architectures, models
that integrate feature extraction may precisely decode EEG
[31], [32], [33]. Further studies are needed to better understand
brain responses during listening to music.

V. CONCLUSION

We proposed an approach to predict onsets of notes in
music using EEG. The baseline-corrected EEG was divided
into segments of 500 ms each, and the models of LR–
L1, LR–L2, and LSVM were trained. From Segment-level
evaluation and the coefficients of the classifiers, we found
no significant difference between the models. Most accuracies
were above the chance level for music-level evaluation, and
the best participant achieved a classification rate of 87.5%.
These results suggest that the brain’s response to each note of
music can be decoded from the brain waves while listening to
music. Further, the proposed method can be adapted for BCIs
using natural music, solving music perception, music therapy,
and training for music learners.
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