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Abstract—In this paper, we propose a new framework for
speech enhancement using supervised attention trained by Invari-
ant Information Clustering (IIC). For suppressing an overfitting
in the speech enhancement network, the multitask learning
with the speaker-invariant information is adopted at the latent
representation layer. Several simulations reveal the effectiveness
of this method through the speech enhancement experiments.

I. INTRODUCTION

Recently, the demands of speech communication and speech
recognition have been increasing as the devices controlled with
a voice user interface have been spread. Since such devices
are mostly used in noisy environments, speech enhancement
technique is growing in importance. In this paper, we focus
on a single microphone speech enhancement technique.

Most of the state-of-the-art speech enhancement are oper-
ated in frequency domain or time-frequency domain [1], [2].
Although some of them produce excellent speech enhancement
results, they usually require a little higher computational
complexity because of the use of the Short Time Fourier Trans-
form (STFT) or the wavelet analysis. The end-to-end speech
enhancement, which is the time-domain speech enhancement,
has the advantage of requiring low computational complexity.
However, it is a challenging task since the waveform is more
easily corrupted by noise than the spectral features.

Among the existing end-to-end models, Wave-U-Net [3] ar-
chitecture significantly provides the outstanding performance.
Wave-U-Net is composed of the stack of the downsam-
pling fully-convolutional layers and the upsampling fully-
convolutional layers. Although the several modifications of
Wave-U-Net have been developed [4], there remains a problem
that the detailed structures are still degraded in a high noise-
level situation.

For accelerating a feature learning, several architectures
are introduced or additional metrics are imposed to the loss
functions. The former approach includes Wave-U-Net with
self-attention mechanism [5], speech enhancement transformer
(SETransformer) [6], and so on. The most of the former
methods utilize the self-attention [7]. The self-attention can
classifies the common structures within the input data, and so
that helps the network to understand the important features
composing the desired output. Although the self-attention
module has a strong effect as intra-attention, this approach,
including the multi-head attention, is insufficient to exploit the
time-invariant information, such as the speaker information.

The latter approach is so called multi-task training. Speech
enhancement GAN [8] and its modifications [11], [9] introduce
an adversarial training as the multi-task training. For more
effective training, some methods focused on the latent rep-
resentation of the autoencoder. High-level SEGAN (HLGAN)
[10] adds a regularization for the latent variable so as to reduce
the distance of the latent variables for the clean speech and
the noisy speech. Adversarial Latent Representation Learning
(ALRL) [12] adopts an adversarial loss for calculating the dis-
tance of the latent variable in HLGAN. They explicitly assume
that the optimal latent variable can be obtained from the clean
speech input, whereas there is no theoretical validation that
this assumption is correct.

In this paper we address to improve learning of the latent
representation using the context invariant features. To obtain
such the features, we introduce new multi-task training based
on information invariant clustering (IIC) [13]. The paired
speech which has the different utterance but uttered by the
same speaker helps IIC to understand the speaker independent
features. Some experiments were conducted to evaluate the
performance of the proposed method. Through the comparison
with the results of the several conventional models, we reveal
that the proposed method can solve the incompatibility be-
tween the distortion loss and the adversarial loss, and improve
the speech enhancement performance.

II. SPEECH ENHANCEMENT USING WAVE-U-NET

In this paper, we adopt the model of Wave-U-Net [3] for
speech enhancement. Figure 1 shows Wave-U-Net architec-
ture. Wave-U-Net has a bottleneck architecture composing
the encoder and decoder to extract the important features
which is called a latent variable. The encoder halves the
dimension of the feature map in each downsampling block,
while the decoder doubles that in each upsampling block.
The feature skip-connections are introduced from the encoder
layers and the decoder layers with the same level to restore
the fine structures. The output layer having a channel-wised
convolution produces the enhanced speech of 16,384 samples.

The model parameters are updated by minimizing the re-
construction loss calculated by

LR = ∥y − d∥1, (1)

where y and d indicate the reconstruction and the desired
clean signal, respectively.
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Fig. 2. Architecture of the original IIC [13].

The proposed method additionally imposes the spectral
normalization (SN) [14] to all weight parameters for stable
learning. The SN regularization guarantees the weights in each
layer to satisfy l-1 Lipschitz continuity as

max
z

∥Wz∥2
∥z∥2

≤ 1 ⇒ ∥z∥2 ≥ ∥Wz∥2 , (2)

where z is the input features for each layers and W is the
weight.

III. REGURALIZATION BY CONTEXT-INVARIANT
CLUSTERING

In this section, we introduce a speech enhancement frame-
work using IIC [13]. IIC is a strong algorithm for unsupervised
classification, which discovers clusters underlying unlabelled
data samples. The network of IIC simply composes of a single
fully-connected layer and a softmax function, and is normally
connected to the output of the feature extraction network.
Figure 2 shows the network architecture of IIC. IIC requires
a source of paired samples (x,x′), where x,x′ could be

different data but belong to the same object class. Namely
x and x′ have a certain projective relation of x = g(x′). The
goal of IIC is to learn the network model Φ by maximizing
the mutual information between encoded data:

max
Φ

I (Φ(x),Φ(x′)) . (3)

Ref. [13] reported that IIC can provide superior performance
for the clustering task to the supervised clustering algorithm.

We utilize IIC to accelerate the understanding of the speaker
dependent features at the latent representation in Wave-U-Net.
Figure 3 shows the learning architecture of Wave-U-Net using
IIC. In the proposed method, IIC is adopted to the latent
variable of Wave-U-Net. The input paired data is composed of
two frame data segmented at the random position within one
noisy speech utterance. The batch data is set to the stack of
the various speaker’s paired data. According to [13], the loss
function of IIC to be minimized can be written by

LI = P (log(P )− α log(Pj)− α log(Pi)) , (4)

P =
1

n

n∑
i=1

Φ(xi) · Φ(x′
i)

T , (5)

Pj =
1

n

n∑
i=1

Φ(xi), (6)

Pi =
1

n

n∑
i=1

Φ(x′
i), (7)

where α(> 0) is a constant to adjust the influence of the
marginal entropies. In our method, the projection function Φ
operates the time shift and so can be represented by

Φ: = {x(n+ k)|x(n) ∈ x}, (8)

where k is an integer constant. The overall loss function is
given by

L = LR + βLI , (9)

where β is a strength of regularization.
Due to the nature of the unsupervised clustering algorithm,

the number of classes can be set arbitrarily. In this paper, the
number of classes is set to 5, which is less than the number of
the speakers included in the dataset described below. The aim
of this setting is that IIC could roughly integrate the speaker
independent features while avoiding the overfitting.

Using this learning architecture, the encoder can learn the
context invariant features, and thus we expect Wave-U-Net to
flexibly adjust the reconstruction process due to the speaker
dependent features underlying the input data.

IV. EXPERIMENTAL SETUP

A. Dataset

To evaluate the performance of the proposed architecture
on the speech enhancement task, we employed VCTK speech
dataset [15] and DEMAND dataset [16], which are the same
datasets used in [8]. For the training set, 10 types of noise
and 10 different sentences with 4 signal-to-noise ratio (SNR)
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Fig. 3. Learning Architecture of Wave-U-Net with the context invariant clustering.

(15, 10, 5, and 0 dB) were used. For the test set, 5 types of
noise and 4 different sentences with 4 SNR (17.5, 12.5, 7.5,
and 2.5 dB) were used. Each speech data has the sampling
frequency of 16kHz. During training, the speech waveform
segments with length of 16,384 samples were extracted from
the training data with 50% overlap. During testing, the length
of the speech waveform segment was the same as that of
training, but the ratio of the overlap was changed to 75%.
As in [8], a high-frequency pre-emphasis filter of coefficient
0.95 was applied to each segment of the waveform. The
segments of the waveform produced by the trained model were
de-empasized and eventually concatenated to reconstruct the
enhanced speech waveform.

B. Settings

The model of Wave-U-Net that we useed is completely the
same as in [3]. We omitted the over-clustering loss shown in
[13]. The settings of the other hyper parameters are shown as
below. The model parameters of Wave-U-Net and IIC were
updated by Adam [17] with β1 = 0.9 and β2 = 0.9. The
learning rate is 0.0001 for Wave-U-Net but 0.01 for IIC. The
number of epochs is 200 with random minibatches of size
28, which is the same value as the number of speakers. As
mentioned above, the proposed architecture used the spectral
normalization for stable training. The number of classes in IIC
is less than the number of speakers as 5, since we aimed to
induce the integration of the speaker independent features and
the avoidance of the overfitting.

C. Objective Evaluation

To assess the quality of the reconstruction signals, we used
six objective metrics including PESQ [18], CSIG, CBAK,
COVL [19], Segmental SNR (SSNR), and STOI [20]. PESQ
measures speech quality, which returns a score from 4.5 to
-0.5, with higher scores indicating better quality. CSIG is a

MOS predictor of speech distortion (from 1 to 5), CBAK is
a MOS predictor of intrusiveness of background noise (from
1 to 5), and COVL is a MOS predictor of overall processed
speech quality (from 1 to 5). STOI whose score ranges from 0
to 1 is a measure used to predict the intelligibility of speech.

For evaluation, we compared other five end-to-end models
in addition to the above three models: SEGAN [8], HLGAN
[10], WGAN-GP, SERGAN [11], SETransformer [6], Atten-
tion Wave-U-Net [5], ALRL [12], and Wave-U-Net with IIAD
[21]. Table I shows the experimental results of the different
models. This table summarizes that the proposed method
provides best performance at PESQ and SSNR. As seen from
this table, the Wave-U-Net with IIAD also demonstrates better
results, where this method utilizes the self-attention based
adversarial training instead of the normal adversarial training.
Therefore, it is expected that the combination of the adversarial
training with the proposed method would more boost the
speech enhancement performance.

Figures 4 illustrates the resulting spectrograms of
p257 070.wav which is a noisy female speech signal with low
SNR included in the test set. Focusing on the silenced region
enclosed in the white dashed box (1), the proposed method
provides second-best performance. Meanwhile, focusing on
the white dashed box (2), the proposed method can successes
in keeping the weak speech component in comparison with
the other methods.

V. CONCLUSION

In this paper, we proposed a new training architecture for
the end-to-end speech enhancement network. The proposed
learning architecture helps the encoder to understand the
context invariant features. From the experimental results, we
reveal the effectiveness of the proposed method.
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TABLE I
OBJECTIVE EVALUATION RESULTS OF 10 DIFFERENT MODELS ON THE TEST SET OF VCTK DATASET

Model PESQ CSIG CBAK COVL SSNR STOI
Noisy 1.97 3.35 2.44 2.63 1.68 0.921
SEGAN [8] 2.16 3.43 2.94 2.80 7.73 -
HLGAN [10] 2.48 3.65 3.19 3.05 9.21 -
WGAN-GP [11] 2.54 - - - - 0.937
SERGAN [11] 2.62 - - - - 0.940
SETransformer [6] 2.62 - - - - 0.93
Wave-U-Net [3] 2.40 3.52 3.24 2.96 9.97 -
AttWave-U-Net [5] 2.63 3.95 3.30 3.29 9.35 -
ALRL [12] 2.57 4.79 3.23 3.16 9.73 0.937
Wave-U-Net with IIAD [21] 2.80 4.11 3.37 3.45 10.0 0.944
Wave-U-Net with IIC 2.80 4.05 3.35 3.39 10.3 0.942
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Fig. 4. Spectrograms of speech speech p257 070.wav in the test : (a) clean
speech, (b) noisy speech, (c) enhanced by Wave-U-Net, (d) enhanced by Wave-
U-Net with IIAD, (e) enhanced by Wave-U-Net with IIC (proposed).

REFERENCES

[1] H. Choi, J. H. Kim, J. Huh, A. Kim, J. W. Ha, and K. Lee, “Phase-aware
speech enhancement with deep complex U-Net,” in Proc. of ICLR 2019,
New Orleans, USA, April 2019.

[2] F. Weninger, H. Erdogan, S. Watanabe, E. Vincent, J. Le, R. R. Hershey,
and B. Schuller, “Speech enhancement with LSTM recurrent neural
networks and its application to noise-robust ASR,” in Proc. of LVA/ICA
2015, Liberec, Czech Republic, Aug. 2015.

[3] C. Macartney and T. Weyde, “Improved speech enhancement with the
Wave-U-Net,” in Proc. of NIPS 2018, Montreal, Canada, Nov. 2018.

[4] A. Pandey and D. Wang, “A new framework for CNN-based speech
enhancement in the time domain,” IEEE/ACM Trans. Audio, Speech,
and Language Process., vol. 27, no.7, pp.1179–1188, July 2019.

[5] R. Giri, U. Isik, and A. Krishnaswamy, “Attention Wave-U-Net for

speech enhancement,” in Proc. of WASPAA 2019, New York, USA, Dec.
2019.

[6] W. Yu, J. Zhou, H. B. Wang, and L. Tao, “SETransformer: speech
enhancement transformer,” Cognitive Computation, pp. 1–7, Oct. 2020.

[7] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention
generative adversarial networks,” in Proc. of ICML 2019, California,
USA, June 2019.

[8] S. Pascual, A. Bonafonte, and J. Serrà, “SEGAN: Speech enhancement
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