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Abstract—We propose large-context end-to-end automatic
speech recognition (ASR) based on a recurrent neural network
transducer (RNN–T) for conversational ASR. Typical end-to-end
ASR models recognize independent utterances. Unlike the typical
end-to-end ASR models, attention-based encoder-decoder models,
which utilize a large context (i.e., a long-range context beyond
the boundary of an utterance) have been recently proposed for
conversational ASR. In this work, we introduce a large-context
encoder for RNN–T to utilize hypotheses generated in previous
utterances as a large context. The large-context encoder obtains
concatenated hypotheses and converts them to hidden vectors.
The hidden vectors are summarized as the available context based
on an attention mechanism. During training, the large-context
encoder and RNN–T components are jointly optimized using
RNN–T loss. In our experiments, we evaluate the proposed
method using medical conversations as a dataset. As a result
of the experiment, we obtained 17.2% and 6.0% relative reduc-
tions in the character error rate compared with those of the
original RNN–T on utterances spoken by the doctor and patient,
respectively.

I. INTRODUCTION

There has been growing interest recently in building

end-to-end automatic speech recognition (ASR) models such

as an attention-based encoder-decoder [1], [2], recurrent neural

network transducer (RNN–T) [3], Transformer transducer [4],

[5] and connectionist temporal classification (CTC) [6]. Typi-

cally, they convert acoustic features to a sequence of characters

or subwords for each utterance independently.

Unlike typical end-to-end ASR models, attention-based

encoder-decoder models, which utilize a large context (i.e.,

a long-range context beyond the boundary of an utterance),

such as hypotheses generated in previous utterances, have been

recently proposed for conversational ASR [7], [8], [9], [10].

In these works, end-to-end ASR models that utilize a large

context achieved better results than typical end-to-end ASR

models.

In this work, we propose a large-context end-to-end ASR

model based on RNN–T [3]. For some conversations such as

medical conversations and confidential related internal meet-

ings, the end-to-end ASR model, which can run on-device,

is important to protect privacy. Among the end-to-end ASR

models, RNN–T has been successfully applied for on-device

ASR [11]. In this work, we introduce a large-context encoder

for RNN–T to utilize hypotheses generated in previous utter-

ances as a large context. A large-context encoder that consists

of Transformer [12] obtains the concatenated hypotheses and

converts them to hidden vectors. The hidden vectors are

summarized as the available context based on an attention

mechanism [13]. During training, the large-context encoder

is optimized with RNN–T components using RNN–T loss.

In the experiment, we evaluate the proposed method using

medical conversations by a doctor and patient as a dataset.

As a result of the experiment, we obtained 17.2% and 6.0%

relative reductions in the character error rate (CER) compared

with those of the original RNN–T on utterances spoken by the

doctor and patient, respectively 1.

II. BACKGROUND

A. RNN–T
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Fig. 1. Architecture of RNN–T.

RNN–T is an end-to-end ASR model. Fig. 1 shows an

overview of RNN–T. The model consists of a label en-

coder, an audio encoder and a joint network. Given acoustic

feature x = (x1,x2, · · · ,xT ) and previous tokens y =
(y1, y2, · · · , yL−1), the audio encoder converts acoustic fea-

ture x to hidden vector haudio, and the label encoder outputs

a new hidden vector hlabel based on previous tokens except

for the blank token. The joint network outputs vector J using

two hidden vectors from the audio and label encoders and

softmax outputs logits. The audio and label encoders consist of

long short-term memory (LSTM) layers and the joint network

consists of a feed-forward layer.

RNN–T is trained using RNN–T loss [3]. Given acoustic

features x and label sequence y, the neural transducer outputs

T × L logits. RNN–T loss is calculated as the sum of

probabilities for all paths using a forward–backward algorithm.

1Code available at https://github.com/atsushiKojima
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Fig. 2. Overview of large-context end-to-end ASR based on RNN–T.

The RNN–T loss function is written as

λRNN−T = −
∑

i

logP (y|x), (1)

P (y|x) =
∑

J∈Z(y,T )

P (J |x), (2)

where Z(y, T ) is the set of all alignments of length T for the

token sequence.

B. Transformer

The Transformer layer consists of multi-head self-attention

and position-wise feed-forward layers. In the multi-head

self-attention layer, self-attention is calculated as

SelfAttention(Q,K, V ) = Softmax(
QKT

√
dk

)V, (3)

where Q ∈ R
Tq×dk , K ∈ R

Tk×dk and V ∈ R
Tk×dv are the

query, key and value, respectively, and dk is a parameter.

Softmax(QKT

√
dk

) is called self-attention. Again, the Trans-

former layer has multiple heads:

MultiHeadAttention(Q,K, V )

= Concat(HEAD1, ...,HEADhead)W
O,

(4)

HEADi = SelfAttention(QWi
Q,KWi

k, QWi
V ), (5)

where head is the number of heads and WO ∈ R
din×din ,

W
Q
i ∈ R

din×dk , WK
i ∈ R

din×dk and WV
i ∈ R

din×dv are

model parameters.

III. LARGE-CONTEXT END-TO-END ASR BASED

ON RNN–T

A. Architecture

In this paper, we propose large-context end-to-end ASR

based on RNN–T. To utilize hypotheses generated in previous

utterances as a large context, we introduce a large-context

encoder for RNN–T. Fig. 2 shows an overview of the proposed

method. In this figure, hcontext and c represent the hidden

vector of the large-context encoder and the context vector,

respectively. K and U represent the number of input tokens

for the large-context encoder and the index of utterances,

respectively.

The large-context encoder, which consists of Trans-

former, obtains concatenated hypotheses in the order of

utterance start times and converts them to hidden vectors

(hcontext
1 ,hcontext

2 , · · · ,hcontext
K ). When the model recognizes

the first utterance in the conversation, the large-context en-

coder obtains a special token, which represents that the hypoth-

esis to refer to do not exist. When the large-context encoder

obtains the hypothesis generated in the first utterance, this

token is removed from the input for the large-context encoder.

Attention is then calculated as

ap,l = Softmax(wT tanh(Uhlabel
l +Hhcontext

p + b)), (6)

where l and p represent the indexes of the hidden vectors of

the label encoder and large-context encoder, respectively. w,

U , H and b are model parameters. Also, context vector c

is calculated using attention a and the hidden vectors of the

large-context encoder hcontext as

cl =
K∑

p=1

ap,lh
context
p . (7)

Then, the context vector is concatenated with the hidden

vectors of the label encoder. The joint network outputs vector

J using the concatenated vector [hlabel; c] and the hidden

vectors of the audio encoder haudio, and softmax outputs

logits.
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B. Training

To train the proposed model, we calculate all possible

context vectors. Given the hidden vectors of the label en-

coder (hlabel
1 ,hlabel

2 · · ·hlabel
L ) and the hidden vectors of the

large-context encoder (hcontext
1 ,hcontext

2 · · ·hcontext
K ), possi-

ble context vectors (c1, c2, · · · cL) can be calculated using

Equations (6) and (7). Then, we concatenate the context

vectors and the hidden vectors of the label encoder, and

obtain ([hlabel
1 ; c1], [h

label
2 ; c2], · · · , [hlabel

L ; cL]). Using these

concatenated vectors and the hidden vectors of the audio

encoder, we can train the proposed model using RNN–T

loss. During training, the large-context encoder obtains not

hypotheses but reference transcripts. As the number of pre-

vious utterances when referring to reference transcripts, we

randomly choose from the uniform distribution [0, Nrefer] for

each sample, where Nrefer is a tunable parameter.

C. Inference

For inference, the context vector is updated only when

the model outputs a token except the blank token. Firstly,

the hidden vector of the label encoder is uploaded. Second,

attention is calculated, then the context vector is updated.

Finally, the joint network obtains the two updated vectors and

the hidden vector of the audio encoder, and softmax outputs

logits. The input for the large-context encoder is updated using

the best hypothesis yielded by a beam search.

IV. EXPERIMENTS AND RESULTS

A. Corpus and Setup

As the experimental dataset, we used real medical con-

versations consisting of 93.3 h of transcribed speech. The

duration of one conversation was from 10 to 15 minutes and

the duration of utterances was from 170 to 15000 ms. The

number of utterances included in one medical conversation

was 34 to 534. The speech spoken by the doctor and patient

was recorded on separate channels at 16 kHz. We divided

conversations into training and test datasets. TABLE I shows

the details of each dataset. When training the model, we also

used 518 h of speech data collected from conversations such as

internal meetings because the size of the medical conversation

dataset was small.

TABLE I
DATA SUBSETS.

Subset Speaker
Duration

(h)
# of

utterances
# of

characters
# of

conversations

Training
Doctor 43.6 73059 845869

436
Patient 48.0 77337 890103

Test
Doctor 0.8 3808 177710

10
Patient 0.9 4108 17080

In all experiments, the ASR model output a character and a

blank token. The total number of tokens was 3672. As input

acoustic features, we used a 40-dimensional log Mel filter

bank, computed with a 25 ms window and shifted every 10

ms. Every three frames were stacked and these features were

downsampled to a 30 ms frame rate [14].

When the large-context encoder obtained hypotheses, spe-

cial tokens <dr> and <pt> representing the doctor and

patient were inserted in the beginning of their hypotheses,

respectively. These tokens can be determined automatically

because the speech of the doctor and patient was recorded on

separate channels.

When training the model, gradient clipping was applied with

a value of 5 to avoid an exploding gradient. Furthermore,

we applied SpecAugment [15] and label smoothing [16] to

improve robustness. All networks were implemented using

PyTorch [17].

As the evaluation measure, we used CER and the

90-percentile real time factor (RT90). For CER, results are

given as the relative character error rate reduction (CERR)

[%]. For RT90, we evaluate inference speed by measuring

decoding time over 534 utterances included in a conversation

on a Intel Core R© i7-6700 processors machine using 1 CPU

per method to process an utterance at a time.

B. Experimental Setup

For the network architecture, we used four unidirectional

LSTM layers with 128 hidden nodes and a unidirectional

LSTM layer with 128 hidden nodes for the audio encoder

and label encoder, respectively. TABLE II shows the param-

eters of the large-context encoder. The joint network obtains

384-dimensional vectors from audio, label and large-context

encoders, and outputs a 128-dimensional vector with Tanh

activation. Finally, softmax outputs 3672-dimensional logits.

TABLE II
LARGE-CONTEXT ENCODER ARCHITECTURE.

Parameter Value

Number of layers 4

Number of heads 4

Head dimension 32

Number of hidden nodes 128

Position-wise feed-forward dimension 256

To train the proposed model, we used the Transformer

learning schedule [12]. We also used the Adam optimizer [18]

and set β1 = 0.9, β2 = 0.999 and ǫ = 10−7. Also, we set

Nrefer = 128. For inference, we used a beam search with a

beam size of 4.

In addition, we examined the effect of the number of

utterances Nhypothesis when referring to hypotheses on CER

and RT90. For instance, the large-context encoder obtains

only hypotheses generated in the last two utterances in the

case of Nhypothesis = 2. This is worth exploring because

the computational cost for outputting hidden vectors of the

large-context encoder can be reduced by the limiting context.

We remove the oldest hypothesis from the input for the

large-context encoder if the number of hypotheses that must

be kept reaches Nhypothesis.

As the baseline system, we used the original RNN–T. For

the audio encoder and label encoder, we set the parameters to
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TABLE III
RESULTS OF CERR AND RT90.

Method Nhypothesis Doctor Patient Overall RT90

RNN–T (baseline) [3] - 0.0 0.0 0.0 0.06
+ large-context encoder 10 5.1 1.1 3.6 0.06
+ large-context encoder 20 8.3 2.7 5.9 0.06
+ large-context encoder 128 14.0 5.0 9.8 0.28
+ large-context encoder ∞ 17.2 6.0 11.9 0.89

TABLE IV
EFFECT OF THE RECOGNITION ERROR (Nhypothesis = ∞).

Input for large-context encoder Doctor Patient

Hypothesis 0.0 0.0

Reference transcripts 0.0 0.9

Fig. 3. Example of self-attention.

be the same as those in the proposed method. The total pa-

rameter sizes of the proposed model and the original RNN–T

are 2.6 (M) and 1.6 (M), respectively.

C. Results

The results are summarized in TABLE III. For CER, the

proposed model outperforms the original RNN–T for the

doctor and patient for all values of Nhypothesis. In the case

of Nhypothesis = ∞, we obtained 17.2% and 6.0% relative

reductions in CER. Regarding the effect of Nhypothesis, the

larger the value of Nhypothesis, the more CER is reduced.

However, increasing Nhypothesis also leads to an increase

in RT90. Therefore, there is a trade-off relation between

Nhypothesis and CER.

In addition, we examined the effect of the recognition

error in the proposed method. The results are summarized in

TABLE IV.

For the speech of the patient, CER was slightly reduced

when reference transcripts were used, but CER for the speech

of the doctor was not reduced. Therefore, we conclude that

effect of the ASR error is small for the proposed model.

D. Analysis of Self-Attention in Large-Context Encoder

We analyzed self-attention in the large-context encoder.

Fig. 3 shows an example of self-attention during inference.

The number of concatenated hypotheses was 64. From this

figure, we can see a column-based pattern. We can see that

specific inputs play a special role regardless of the position

in inputs. These results suggest that the large-context encoder

can capture long-range context.

V. CONCLUSION

In this paper, we proposed large-context end-to-end ASR

based on RNN–T for conversational ASR. To utilize hypothe-

ses generated in previous utterances as a large context, we

introduced a large-context encoder, which consists of Trans-

former for RNN–T. The large-context encoder obtains con-

catenated hypotheses and converts them to hidden vectors. The

hidden vectors are summarized as the available context based

on an attention mechanism. During training, the large-context

encoder and RNN–T components are jointly optimized using

RNN–T loss. In our experiments, we compared the proposed

method with the original RNN–T using medical conversations.

As a result of the experiment, we obtained 17.2% and 6.0%

relative reductions in CER compared with those of the original

RNN–T on utterances spoken by the doctor and patient,

respectively.
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