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Abstract—To realize robust End-to-end Automatic Speech
Recognition (E2E ASR) under radio communication condition,
we propose a multitask-based method to jointly train a Speech
Enhancement (SE) module as the front-end and an E2E ASR
model as the back-end in this paper. One of the advantages of
the proposed method is that the entire system can be trained
from scratch. Different from prior works, either component here
doesn’t need to perform pre-training and fine-tuning processes
separately. Through analysis, we found that the success of the
proposed method lies in the following aspects. First, multitask
learning is essential, that is, the SE network is not only learned
to produce more intelligible speech, it is also aimed to generate
speech that is beneficial to recognition. Secondly, we also found
speech phase preserved from noisy speech is critical for an
improved ASR performance. Thirdly, we propose a dual-channel
data augmentation training method to obtain further improve-
ment. Specifically, we combine the clean and enhanced speech
to train the whole system. We evaluate the proposed method on
the RATS English data set, achieving a relative WER reduction
of 4.6% with the joint training method, and up to a relative
WER reduction of 11.2% with the proposed data augmentation
method.

Index Terms—End-to-End, Speech Enhancement, Automatic
Speech Recognition, Multitask Learning, Joint Training, Con-
former

I. INTRODUCTION

With the surge of recent attention-based end-to-end neural

network modeling framework [1]–[5], as well as big data

usage, the performance of Automatic Speech Recognition

(ASR) has been significantly improved, such that its appli-

cation has been widely deployed in diversified industrial area.

However, ASR performance is still far from being desired un-

der extremely noisy conditions, such as radio communication

conditions, where speech might not only be contaminated by

ambient noise, it is also distorted by communication channel

due to limited transfer bandwidth, as well as Codec losses. For

instance, for radio communication speech 1 to be studied in

this work, it not only has lower Signal-to-Noise Ratio (SNR),

the speech signal itself is also seriously distorted. As a result,

the speech intelligibility is rather low.

To achieve decent results under noisy conditions, one com-

mon approach is to employ multi-condition training method.

This is appropriate for some minor or intermediate noisy

1By radio communication speech, here it means single channel Ultra High
Frequency (UHF) speech that is very noisy. The SNR is close to 0 dB.

conditions. For the extremely noisy conditions, such as SNR

being close to 0 dB, the first priority is to make the incoming

speech intelligible. As a result, Speech Enhancement (SE) as

the front-end is necessary. Nevertheless, prior experiences tell

us employing SE to boost speech intelligibility does not mean

the enhanced speech is necessarily conducive to the back-end

ASR performance improvement [6], [7], given that the SE and

ASR models are trained separately. Besides, even both SE

and ASR models are jointly trained, it is not guaranteed with

improved ASR performance. This is particularly true under

the single channel scenarios.

In this paper, we propose a multitask-based joint learning

approach to robust ASR over radio communication speech, i.e.,

RATS [8] English data set. The entire network is a pipeline that

is made up of an E2E SE and ASR components respectively,

and the front-end SE component provides denoised speech for

better ASR results in the back-end. The so-called multitask-

based joint learning approach refers to the front-end SE

component is not only learned to produce more intelligible

speech (whose loss is denoted as LSE), it is also learned to

yield speech that boost ASR results (whose loss is denoted as

LASR).

The main contributions of this paper are four-fold. First,

the entire ASR system can be simply trained from scratch

with multitask-based joint learning approach. Secondly, we

have performed comprehensive analyses on how ASR perfor-

mance is affected by the front-end SE component. Particularly,

the total loss function for the SE component is defined as

(1−β)LASR+βLSE , where β is a scaling factor controlling

the contribution of the SE component. Besides, we have

explicitly verified that phase information is critical to ASR

performance improvement. Thirdly, we propose a dual-channel

data augmentation method using clean and enhanced speech

to train the back-end ASR component, and it leads to further

improvement. Finally, to the best of our knowledge, our work

is the first time report on robust ASR assisted with SE over

radio communication speech.

The paper is organized as follows. Section II introduces the

related work. Section III and IV describe the joint modeling

architecture and the proposed multitask-based joint learning.

In section V, experimental settings and results are presented.
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Fig. 1. Speech enhancement and ASR joint modeling architecture. We use time-frequency spectral masking based method for SE, taking STFT spectral
magnitude as input during training.

II. RELATED WORK

In earlier times, SE system is separately trained as the

pre-processor for robust ASR systems. However, the main

challenge of separate training is that the output from the SE

system is actually a distorted speech that may not be desirable

for the ASR. To resolve such a mismatch problem, prior work

[9], [10] propose a mimic loss from ASR output in addi-

tion to the conventional feature-based MSE loss to train the

SE system. [11] employs a convolutional time-domain audio

separation network (Conv-TasNet), which is utilized in [12]

for single-channel speaker-independent speech separation. The

success of Conv-TasNet might be attributed to that spectral

and phase features are not decoupled for consideration, over-

coming the limitation of some spectral mapping [13] or time-

frequency masking methods [14]. Likewise, to preserve the

phase information when doing SE, [15] proposes a complex

spectral mapping for both single and multiple channel SE for

robust ASR. The advantage is particularly demonstrated for

the multi-channel ASR performance improvement. Besides,

to alleviate distortions generated by the target SE system,

[16] employs diversified noise data to train a distortion-

independent SE system for robust ASR, which obtains decent

WER results on ChiME-2 corpus. Likewise, [17] introduces

SE Generative Adversarial Network (SEGAN). However, it

is found that SEGAN brings performance improvement only

when the enhanced data is combined with the original data for

training.

Recently, joint training of SE and ASR systems become

popular. [18] proposes a joint training framework for ChiME-

2 task, where SE front-end is jointly trained with the con-

ventional DNN-HMM hybrid ASR system. In [19] and [20],

SEGAN assisted joint training methods are introduced for

the AISHELL-1 simulated-noise data respectively. Notably,

to make SEGAN work, pretraining is indispensable for the

generator part, and the fine-tuning of the generator with the

corresponding discriminator is a non-trivial work. Different

from [19] and [20], no pretraining for either component is

necessary in our case.

More recently, [21] attempts to employ a SE-based DC-

CRN [22] as data augmentation technique, using consistency

loss to fine-tune the DCCRN component. To gain ASR

improvement, a 3-step training recipe is employed. During

decoding a learnable feature selection is adopted assuming

that enhanced speech is complementary to the original speech.

Another work in [23] proposes a multi-channel-like data

augmentation method, using SE as front-end. It aims to

stablize an E2E-based streaming ASR in the back-end. The

model architecture is similar to one of our proposed methods,

however, their training recipe is rather complicated.

III. JOINT MODELING ARCHITECTURE

To realize robust ASR under noise condition, we propose

the joint modeling architecture, which consists of two com-

ponents, namely, the SE as front-end and the ASR in the

back-end. The SE front-end aims to provide enhanced speech

conducive to the back-end ASR. Since we attempt to train the

two components jointly, we concatenate them in tandem, as

illustrated in Figure 1. The fundamentals for each component

are briefly described in this section.

A. Time-frequency masking-based SE

As shown in Figure 1, we employ Bidirectional Long

Short Term Memory (BLSTM) to conduct time-frequency

masking-based SE work similar to [14]. Specifically, we

use spectral magnitude |X| extracted by short-time Fourier

transform (STFT) from the noisy waveform as input to train

LSTM-based mask estimator M , where X is complex Fourier

transform, and X = R+iI. Such predicted masks M conduct

the element-wise product with the noisy input X , and then

inverse STFT (ISTFT) transforms enhanced waveform from

the corresponding features, that is, X̂ = ISTFT((R+iI)⊗M).

B. Conformer-based ASR

We use a Conformer-based ASR [4], [24] for the back-

end. However, we don’t utilize SpecAugment [25], because we

find that it performs worse in our current experiment corpus.

The Conformer is a convolution-augmented Transformer [26],

based on the complementary features of convolutional learning

and multi-head self-attention (MHSA). Therefore, the Con-

former focuses more on feature locality, and is capable of

learning global context dependencies. In practice, a proposed

Conformer block takes the place of conventional Transformer

block. [4] reported that the Conformer achieves consistent

performance improvement over Transformer on Librispeech

data set.

Except for the Conformer framework, our E2E ASR model

is jointly trained with both CTC and attention-based cross-

entropy criteria. As a result, the ASR loss criterion is as

follows:

LASR(Y |Xenc) = (1− λ)Latt(Y |Xenc)

+ λLCTC(Y |Xenc)
(1)
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Fig. 2. Multitask-based joint learning framework for robust ASR over radio communication speech. Here, multitask learning means the front-end SE is updated
by both SE and ASR back gradient propagation simultaneously.

where Xenc and Y represent the encoder output and decoder

output respectively. λ ∈ [0, 1] aims to balance the losses

between the CTC and attention-based cross-entropy criteria.

For simplicity, we fix λ = 0.3 during training.

IV. MULTITASK-BASED JOINT LEARNING

A. Single channel joint SE and ASR

As shown in Figure 1, we can use ASR loss in Equation

1 to train the entire network jointly. However, we found that

such a training recipe yields suboptimal results. This might

be that our training data is too noisy, so ASR loss can not

explicitly guide the SE component to denoise data. As shown

in Figure 2, we employ multitask-based joint training instead,

where the front-end SE component is learned from both ASR

and SE loss simultaneously. Here, the loss is defined as:

Ljoint = (1− β)LASR + βLSE (2)

where LASR is the ASR loss criterion defined in Equation 1.

LSE is SE loss, where spectral magnitude MSE is employed.

β is the weighting factor that controls SE loss LSE .

As mentioned above in Section II, multitask-based joint

training as shown in Figure 2 has also been proposed pre-

viously. However, to the best of our knowledge, no work has

emphasized how the output of SE is concatenated with ASR

as input in detail. Actually, there are two options worth for

our attention.

B. Preserve phase information

Assuming X ′ is an enhanced complex spectrum, we can

choose what follows as ASR input:

1) |X ′| → Log-Mel(|X ′|
2
)

2) X ′ → ISTFT(X ′) → X ′′ → |X ′′| → Log-Mel(|X ′′|
2
)

In case 1, we ignore the phase information of the enhanced

speech, while in case 2, we preserve the phase information of

the enhanced speech. Moreover, case 2 is also more flexible,

as X ′ and X ′′ can be in different dimensions. In this paper,

we choose the second case (see Figure 2) but report the ASR

results in both cases to indicate that phase information is

decisive for WER improvements on our data. We note that

joint training is viable for both cases.

TABLE I
THE OVERALL DATA SETS (HOURS) FOR EVALUATION

Language Train Valid Test

English 44.3 4.9 8.2

C. Dual-channel data augmentation

Building a robust joint SE and ASR system under the radio

communication speech conditions is a challenging problem, as

the radio communication speech data is extremely noisy. The

problem usually appears at initial training stage as the SE com-

ponent cannot provide quality enhanced speech to the ASR

component. As a result, the model may not be well learned in

the end. To obtain robust ASR, we propose a dual-channel data

augmentation method, as illustrated in Figure 3. Specifically,

during the training, we mix the clean and enhanced speech in

each mini-batch to train the joint network. We use the entire

back-propagation to update the ASR component, while part of

the back-propagation corresponding to the enhanced speech to

update the SE component. During the testing, since we only

have noise data, we use the same network as illustrated in

Figure 2. The ASR and SE losses are changed as follows:

{

Ljoint
ASR = γLC

ASR + (1− γ)LN
ASR

Ljoint
SE = βLSE + (1− β)LN

ASR

(3)

where LC
ASR and LN

ASR are defined as ASR loss from clean

and noise data respectively. γ is weighting factor for the clean

data, while β is the same as in Equation 2.

V. EXPERIMENTS AND RESULTS

A. Data

We conduct experiments on part of the English data that is

originally utilized for Speech Activity Detection (SAD) from

Robust Automatic Transcription of Speech (RATS) program

over radio channels [8]. There are eight channels, and we

choose channel A data that belongs to UHF data category

for evaluation. The details are shown on the Table I. The data

is recorded with push-to-talk transceiver by playing back the

clean Fisher data. One can refer to [8] for more details.

B. Experimental setup

All experiments are performed on ESPnet [27] platform. We

employ Adam algorithm [28] to optimize the joint network as
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Fig. 3. Data flow diagram of dual-channel data augmentation for the joint modeling architecture.

shown in the above figures with 0.002 and 32 as initial learning

rate and batch size respectively.

1) Speech Enhancement: For SE component implementa-

tion as shown in Figure 2 and 3, the network consists of

3 BLSTM layers with 896 units for each, then a dropout

layer, and a feed-forward layer. The input to the BLSMT is

257-dimensional spectral magnitude features. To examine the

effect of different masking estimate method, we also employ

different activation functions, such as ReLU [29], Mish [30],

as well as meta-ACON [31]which is modified to fit sequence

modeling ,Code is available at 2 respectively.

2) Conformer-based ASR: We use Conformer [24] for the

back-end ASR with 80-dim Log-Mel features as input. The

encoder consists of 12 Conformer layers, while the decoder

has 6 transformer layers, with 994 byte-pair-encoding (BPE)

[32] tokens as output. To yield better results, RNNLM-based

shallow fusion [33] is employed via training a RNNLM with

the training transcript.

C. Results

Table II reports the overall WER results with both single-

and dual-channel multitask-based joint learning (denoted as

MTJL and DC-MTJL in Table II) methods respectively.

TABLE II
WER (%) COMPARISON BETWEEN DIFFERENT SYSTEMS. MCT REFERS TO

MULTI-CONDITIONAL TRAINING USING 3X SPEED PERTURBATION;
DISJOINT TRAINING REFERS TO BOTH SE AND ASR SYSTEMS ARE

TRAINED SEPARATELY; JL STANDS FOR JOINT LEARNING WITHOUT

MULTITASK RECIPE, I.E., THE ENTIRE NETWORK IS LEARNED FROM ASR
LOSS; MTJL AND DC-MTJL REFER TO SINGLE- AND DUAL-CHANNEL

MULTITASK-BASED JOINT LEARNING METHODS RESPECTIVELY.

System Description WER (%)

S1 Baseline with Global MVN 54.3
S2 S1, Speed perturbation (3x) 49.8

S3 Disjoint training 55.6
S4 JL (mono-task), with phase 54.0
S5 MTJL, β = 0.3, w/o phase 68.6
S6 MTJL, β = 0.3 in Eq. (2) 51.8
S7 DC-MTJL, with β = 0.3 and γ = 0.7 48.2

It is note-worthy that both MTJL and DC-MTJL have

achieved significant WER reduction compared with the base-

2https://github.com/shanguanma/joint-se-asr/blob/main/meta-acon.py

line system in Table II. Particularly, the performance improve-

ment of the proposed dual channel MTJL method is a relative

reduction of 11.2% over the baseline system. Additionally, one

can notice that phase information is critical. Without phase

consideration, the WER of System S5 is rapidly degraded,

while S4 improved the performance with phase information

for even mono-task based joint training. Furthermore, with the

help of both phase information and multitask learning, System

S6 achieves significant WER improvement over the Baseline

S1, from 54.3% down to 51.8%. Thirdly, since the training

data is a small data set, data augmentation is very effective

for the WER improvement, as indicated by System S2, where

speed perturbation (3x) is employed. Finally, we notice that

we employ the ReLU activation function for mask estimate

in the SE component of S4,S5,S6 in Table II. However,in

the S3,S7,we employ the Mish activation function for mask

estimate.

For the dual-channel MTJL (DC-MTJL) method, we are

interested to see how the final WER result is affected by the

clean data weighing factor γ as indicated in Equation 3. Table

III reports the WER results with different clean data weighting

factor configuration, γ in Equation (3).

TABLE III
WER (%) RESULTS FOR THE DUAL-CHANNEL MULTITASK-BASED JOINT

LEARNING METHOD WITH DIFFERENT CLEAN DATA WEIGHTING FACTOR γ .

System Clean data weighing factor (γ) WER (%)

S1 0.3 49.6
S2 0.4 49.3
S3 0.5 49.9
S4 0.6 50.3
S5 0.7 48.2

From Table III, we observe that reasonable WER results

can be achieved with γ around 0.5. In our work, γ = 0.7
yields the best WER. This suggests that one can obtain better

recognition performance when clean data is combined to train

the ASR system under very noise conditions.

Finally, as above mentioned, we attempted different ac-

tivation function to estimate the mask in the front-end SE

component. Based on the single channel multitask-based joint

learn system as illustrated in Figure 2, Table IV reports the

performance comparison in detail.
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TABLE IV
WER (%) RESULTS OF USING DIFFERENT ACTIVATION FUNCTION FOR

MASK ESTIMATION WITH SINGLE CHANNEL MULTITASK-BASED JOINT

LEARNING CONFIGURATION.

Activation type WER (%)

ReLU 51.8

Mish 53.3
meta-ACON 52.9

Table IV reveals that the ReLU activation function yields

the best WER in our experiments.

VI. CONCLUSION

In this paper, we proposed a multitask-based joint learning

framework for robust ASR over RATS radio communication

speech data. Our discoveries lie in the following aspects. First,

joint training can yield improved results, but keeping phase

information is vital. Secondly, when joint training is combined

with multitask recipe, further performance improvement can

be achieved. Finally, since the target data is extremely noisy,

training with the help of clean data is essential, which obtains

the best WER reduction for the proposed method.
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