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Abstract—We apply an advanced language model fusion
method to the encoder-decoder models of a Japanese automatic
speech recognition (ASR) system to reduce character error
rates (CERs) in cross-domain scenarios. Our method, which
uses a Density Ratio approach based on Bayes ’ theorem, is
an extension of the Shallow Fusion method widely used for
integrating the scores of speech recognition and language models.
Since Japanese has a much larger number of characters than
alphabet languages, and since there can be multiple possible
meanings and pronunciations of the same kanji character, it is
unclear whether the linguistic information inside a character-
based end-to-end speech recognition is approximated by the
language model.

We conducted experiments using two types of encoder-decoder
models, an RNN model and a Transformer model, and evaluated
our results by calculating the cross-domain CERs of the ASR ’
s text output when using the Japanese Academic Presentation
Speech (APS) corpus and the Japanese Simulated Presentation
Speech (SPS) corpus. When using the RNN model, our proposed
method achieved a 1.2% lower CER in comparison to the Shallow
Fusion method. When using the Transformer model, our method
also outperformed the Shallow Fusion method, achieving a 0.7%
lower CER.

I. INTRODUCTION

Conventional DNN-HMM ASR systems are very complex
[1, 2], consisting of multiple modules such as acoustic, lexical
and language models. On the other hand, end-to-end ASR
models use a simple neural network structure to directly
convert acoustic features into target symbols (e.g., a character
or word) using RNNs such as an LSTM, allowing the ASR
to perform high-speed recognition. In particular, the use of
sequence-to-sequence (Seq2Seq) models with attention [3, 4]
has significantly improved performance in natural language
processing tasks such as speech recognition and machine
translation. When performing speech recognition tasks, with
a large enough training dataset these Seq2Seq models can
model speech-to-text mapping well, but if a language model
trained with large amounts of text data is also used, this rich
linguistic information can be leveraged to achieve even better
recognition performance. Since the language model can be
trained with just text data, it is relatively easy to prepare a large
amount of training data for the target domain. The Shallow
Fusion method is a standard method used for integrating an

ASR model and a language model [5, 6, 7, 8, 9]. It does this
by adding the output probability of the ASR model and the
output probability of the language model in the logarithmic
region at the time of inference. Another proposed integration
method, called Deep Fusion [10], inputs the hidden states
of the pre-trained ASR model and the pre-trained language
model into the neural-network. A modified version of Deep
Fusion, called Cold Fusion [11], uses a pre-trained language
model to train the ASR model from scratch. There are various
other approaches which also utilize both ASR and language
models, such as the Density Ratio approach [12]. All of
the language model integration methods described above can
improve the performance of Seq2Seq models, however there
are problems with each of these integration methods. The ASR
model contains“ implicit linguistic information” since the
training parameters of the ASR model are estimated so that
the model will output accurate inference results for the training
data. Therefore, when using the Shallow Fusion method, the
linguistic information contained in the training data is reflected
in the ASR model’s parameters. In other words, the Shallow
Fusion method adds the output probability of the language
model for the target task to the output probability of the
ASR model, which depends on the linguistic information
contained in the training data. The Deep Fusion and Cold
Fusion methods require re-training each time a language model
is integrated. When using the Deep Fusion method, the DNN
is trained using the hidden states of the pre-trained ASR model
and the pre-trained language model as input. This means that if
you replace the language model, you also need to re-estimate
the parameters of the DNN model. For similar reasons, when
using the Cold Fusion method, the ASR model is trained from
scratch using the pre-trained language model, thus re-training
is required when the language model is replaced. Because
of these drawbacks, these methods have failed to replace the
simple Shallow Fusion method as the go-to method for most
of the ASR community. Part of the appeal of Shallow Fusion
is that it does not require model retraining. This is purely
applicable at the time of decoding.

The Density Ratio approach is an advanced language model
fusion method which can be regarded as an extension of
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Shallow Fusion using Bayes ’ theorem. This approach ap-
proximates the ASR model with the linguistic information of
the target domain by adding the output probability of the target
domain language model to the output probability of the ASR
model with its“ implicit linguistic information” removed.
This approach makes it possible to create an ASR model for
domains which have little speech data available for training,
by using only the textual data available for that domain.

The Japanese language is said to be a difficult or complex
language system compared to Western alphabet languages,
which are composed of about 52 uppercase and lowercase
letters. Japanese has a much larger number of characters than
the alphabet languages, numbering into the thousands, and
there can be multiple homonyms and pronunciation variations
for some kanji characters. In fact, there are three sets of
Japanese characters: kanji (logograms), hiragana (a syllabary),
and katakana (a syllabary used for non-Japanese words). In
addition, Japanese contains complicated prefixes and suffixes,
and has lax grammatical constraints (e.g., the subject of a
sentence is often omitted), especially in daily conversation.
In other words, Japanese does not conform to Western SVO
grammar (subject + verb + object), making the recognition
of spontaneous speech difficult. It has been reported that
the linguistic information in speech recognition models in
English, Spanish and Italian can be approximated by external
language models, but it is still unclear whether the linguistic
information trained in character- based end-to-end Japanese
speech recognition can be approximated by a language model.

We conducted experiments using two types of Japanese
encoder-decoder models: an RNN model and a Transformer
model [13]. We calculated cross-domain CERs for recognition
of the Japanese Academic Presentation Speech (APS) corpus
and the Japanese Simulated Presentation Speech (SPS) corpus.

II. BACKGROUND AND RELATED WORK

A. Language model integration methods

The standard method used to integrate ASR and language
models is called Shallow Fusion. It adds the output probabili-
ties of an ASR model and a language model in a logarithmic
domain, which can be expressed using the following formula-
tion:

y = argmax
y

{logPASR(y|x) + λ logPLM (y)}, (1)

where logPASR(y|x) is the output probability of the ASR
model, which is the probability of inferring symbol label y
when acoustic feature x is given, and where logPLM (y) is
the prior of the language model. When using the Shallow
Fusion method, the language model is only used during
inference, and the language model and ASR models are trained
independently.

Another method of integrating the ASR and language mod-
els is called Deep Fusion, which can be expressed using the
following equations:

gt = σ(v⊤sLM
t + b), (2a)

sDF
t = [st; gts

LM
t ], (2b)

yt = softmax(DNN(sDF
t )), (2c)

where [st; gts
LM
t ] is the concatenation of vector st and vector

gts
LM
t . st, sLM

t , and sDF
t represent the hidden states of

the pre-trained ASR model, pre-trained language model, and
Deep Fusion model, respectively. The scalar gt is a gate value
trained using st and weight parameters v and b. In Equation
(2c), the DNN is a deep neural network which can have any
number of layers. The Deep Fusion method uses a pre-trained
ASR model and a pre-trained language model, which are
first trained independently. The ASR model and the language
model are integrated by training the DNN, to which the hidden
state information of each pre-trained model are fed.

In addition, a modified version of the Deep Fusion method
called Cold Fusion has also been proposed. The ASR model
is trained using linguistic information from a pre-trained
language model. The Cold Fusion method can be expressed
as follows:

hLM
t = DNN(lLM

t ), (3a)

gt = σ(W [st;h
LM
t ] + b), (3b)

sCF
t = [st; gt ◦ hLM

t ], (3c)

yt = softmax(DNN(sCF
t )). (3d)

Here, lLM
t is the logit output of the language model, and st

is the state of the ASR model. Gate value gt is trained using
state hLM

t , state st of the ASR model, and weight parameters
W and b. sCF

t is a concatenation of the vectors obtained
by the Hadamard product of st, gt and lLM

t . Therefore, the
state of the ASR model (st) and the DNN output of language
model (lLM

t ) are concatenated to integrate their information.
In addition, it has been reported that the performance of Cold
Fusion is improved by using the fine-grained (FG) gating
mechanism as the gate algorithm [14].

As mentioned previously, several methods for integrating
the ASR model and the language model have been proposed,
and this has been reported to improve speech recognition
performance.

B. A Density Ratio approach to language model fusion

A Density Ratio approach [12] is similar to Shallow Fusion
but with an important difference, which is that this method
also considers “implicit linguistic information”. This is a key
point which we would like to emphasize. During inference in
ASR tasks, we try to infer the sequence ŷ as follows:

ŷ = argmax
y

{logPsouce(y|x)}, (4)

where logPsource(y|x) is the probability of output sequence
y obtained from the ASR modeling “source task” when the
input sequence is x. The “source task” refers to the task
in which the speech data used for training was recorded.
During this process, input sequence x and output sequence
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y represent the input acoustic feature sequence and the output
symbol label sequence, respectively. The log output probability
logPsouce(y|x) from the ASR model can be expanded using
Bayes’ rule as follows:

logPsource(y|x) = logPsource(x|y)
+ logPsource(y)− logPsource(x)

∝ logPsource(x|y) + logPsource(y).

(5)

On the right side of Equation (5), we can see that the ASR
model includes the acoustic information term logPsource(x|y)
and the linguistic information term logPsource(y). This lin-
guistic information, contained in the ASR model, is the
“implicit linguistic information”, the statistics of language
obtained from the speech data which was used for training.
The Shallow Fusion method does not take this “implicit
linguistic information” into consideration. Seq2Seq end-to-end
speech recognition utilizes this “implicit linguistic informa-
tion”, which improves decoding when the test task is the
same as the training task. However if the test task is quite
different from the training task, it can result in a degradation
in decoding performance.

Based on Bayes’ rule, this method removes the “implicit
linguistic information” contained in the ASR model using a
probabilistic approach. Let us assume the “implicit linguistic
information” included in the ASR model from the source task
can be approximated by the language model trained using text
data from the source task. The “implicit linguistic information”
can be removed by subtracting the output probability of the
language model (trained using the text data from the source
task) from the output probability of the ASR model for the
source task, as follows:

logPsource(y|x)− λsub log P̃source(y)

∝ logPsource(x|y) + logPsource(y)− λsub log P̃source(y)

≈ logPsource(x|y),
(6)

where log P̃source(y) is the probability of the language model
for the source task, and λsub is a subtraction weight which
balances the acoustic and linguistic information. This may
compensate for the estimation error of Psource, which is the
difference between Psource and P̃source. Equation (6) can
also be thought of as the log output probability of a pure
acoustic model. It is then possible to replace the linguistic
information by adding the output probabilities of the language
model trained for the target task to Equation (6), as follows:

logPsource(y|x)− λsub log P̃source(y) + λadd log P̃target(y)

≈ logPsource(x|y) + λadd log P̃target(y)

∝ logP(source,target)(y|x),
(7)

where log P̃target(y) is the probability of the language
model for the target task, and λadd is an addition weight.

Fig. 1: Hybrid CTC/Attention Architecture.

P(source,target)(y|x) indicates that the acoustic information is
for the source task, and the linguistic information is for the
target task. It can also be said that P(source,target)(y|x) is the
ASR model, where the acoustic information is the source task
and the linguistic information is the target task.

Using Equations (4) and (7), our method successfully re-
places only the linguistic information of the ASR model. Thus,
it is possible to create an ASR model for any target task simply
by preparing text data for that task.

Additionally, since this method integrates the language
model only at the time of inference, like Shallow Fusion, re-
training is not necessary, unlike the Cold Fusion and Deep
Fusion approaches.

C. Espnet

ESPnet is an open-source speech processing toolkit for
creating end-to-end models [15]. In our experiment, we used
the RNN ASR and Transformer models provided by ESPnet.
The RNN model uses a Hybrid CTC/Attention Architecture
[16, 17, 18], while the Transformer model is a Joint CTC
Attention Transformer. We also used the RNN language model
[19] provided by ESPnet.

1) Hybrid CTC/Attention Architecture: Figure 1 shows a
diagram of Hybrid CTC/Attention Architecture model. First,
the input acoustic features are formatted using VGG-net, and
are then converted into intermediate representation H by the
six BLSTM (Bidirectional LSTM) layers, which are used as
the encoder. The Seq2Seq decoder consists of one LSTM layer
and one Linear layer. An additional Linear layer is used as the
CTC decoder.

2) Joint CTC Attention Transformer: Figure 2 shows a
diagram of the Joint CTC Attention Transformer model. The
encoder consists of a stack of N = 18 identical layers. Each
layer has two sub-layers, one of which is a multi-head self-
attention mechanism while the other is a simple, locally
fully connected feed-forward network. This method adopts
a residual connection around each of the two sub-layers,
followed by layer normalization. That is, the output of each
sub-layer is Layer-Norm (x+ Sub− layer(x)). The decoder
also consists of a stack of Q = 6 identical layers. While
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Fig. 2: Joint CTC Attention Transformer.

each encoder layer contains two sub-layers, each decoder
layer contains three sub-layers in order to perform multi-head
attention on the output of the encoder stack. Similar to the
encoder, it uses a residual connection around each sub-layer,
followed by layer normalization. It also modifies the self-
attention sub-layer of the decoder stack so that positions do
not join subsequent positions. Further, in order to supplement
the acoustic information, a CTC composed of one Linear layer
is used.

3) RNN language mdel: ESPnet can also be used to train
the language model. We used the character-based RNN lan-
guage model [19] in our experiment. This model consists of
an Embedding layer, two LSTM layers and a Linear layer.
During decoding, ESPnet allows the use Shallow Fusion with
this language model.

D. Approaches similar to this research

A study by McDermott et al. [12], in which an RNN-T
[20] was used for the ASR model, was a powerful motiva-
tion for our research. However, in contrast to that approach,
we use integrated RNN and Transformer models for our
ASR model, which are the models most commonly used for
speech recognition. In [21], the authors also formulated their
encoder-decoder model using Bayes ’rule, but they did not
take scaling/normalization into account. Investigators in [22]
showed that when the method proposed by McDermott et al. is
applied to the encoder-decoder model, it is effective for ASR
with English, Spanish and Italian. In this study, we wanted
to verify that a similar approach is effective with Japanese,
which is considered to be a relatively difficult language for
speech recognition, especially in terms of language modeling.
These other approaches, especially that used in [12], are
more general, while in this paper we test this approach using

Fig. 3: The Density Ratio approach for encoder-decoder model.

an integrated LSTM-based and Transformer-based encoder-
decoder model. From a theoretical point of view, this method
should also be effective with other end-to-end encoder-decoder
models, such as Conformer models [23].

III. THE DENSITY RATIO APPROACH FOR
ENCODER-DECODER MODEL

In this study, we apply the Density Ratio approach to
encoder-decoder model. McDermott et al. [12] conducted
experiments using an RNN-T decoder as an ASR model. How-
ever, when using an RNN-T in this manner, past recognition
results and current acoustic features are directly converted into
output symbol labels. In our study, in order to verify whether
inference using the beam search algorithm is possible, experi-
ments were conducted using a RNN model and a Transformer
model.

The diagram in Figure 3 shows how the Density Ratio
approach is applied to the encoder-decoder model. We applied
this approach to the Seq2Seq decoder only. The output of
the decoder is constructed using an RNN layer such as an
LSTM, which tries to predict the current state from a previous
state. In this manner, the decoder is trained to utilize linguistic
information. On the other hand, when using CTC, the current
state does not depend on the previous state, so CTC was used
as an additional method, utilizing acoustic information.

We first subtract the output probability of the language
model trained in the source domain, from the output probabil-
ity of the decoder of the encoder-decoder model trained in the
source domain. The subtraction layer of this language model
is designed to cut out the linguistic information contained
in decoder. The linguistic information can then be tuned to
the target domain, by adding the output probabilities of the
language model of the target domain.

IV. EXPERIMENTS

A. Setup
We tested the Density Ratio approach experimentally using

an ASR task, and compared the results to those obtained when
performing the same task using the Shallow Fusion method.
The results were evaluated using the character error rates
(CER) for the test sets.

We prepared four types of ASR models for our experiment.
The first ASR model was the Hybrid CTC/Attention Architec-
ture trained using the Japanese Academic Presentation Speech
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TABLE I: Details of datasets used in our experiments.

Corpus Splits Speakers Utterances Characters
Academic Train 929 144,268 5,355,547

Presentation Dev1 39 4,000 155,519
Speech Dev2 10 1,272 45,169
(APS) Test 10 1,292 44,915

Simulated Train 1,654 232,886 6,026,797
Public Dev1 38 4,018 129,738
Speech Dev2 10 1,385 43,480
(SPS) Test 13 1,336 29,610

TABLE II: Test set perplexities for character-based RNN language
models trained using APS and SPS speech corpora.

Model Perplexity of test set
APS SPS

APS LM 17.19 34.62
SPS LM 33.29 18.87

(APS) corpus, which includes presentations on the subjects
of engineering, humanities and sociology. The second ASR
model was the Hybrid CTC/Attention Architecture trained
using the Japanese Simulated Public Speech (SPS) corpus,
which does not contain academic terminology. Both corpora
are included in the Corpus of Spontaneous Japanese (CSJ)
dataset. The third ASR model was the Joint CTC Attention
Transformer trained with the APS dataset, and the last model
was the Joint CTC Attention Transformer trained with SPS
dataset. We used the Hybrid CTC/Attention Architecture and
Joint CTC Attention Transformer models provided by ESPnet,
as outlined in Section III-A.

The utterances in each corpus are randomly divided into
four sets: train, dev1, dev2 and test. The “train” set contains
the training data for the ASR model, the “dev1” set is the
development set for ASR model training, the “dev2” set is
the development set for tuning the parameters of the Density
Ratio approach or Shallow Fusion methods. The “test” set is
the data to be used during testing. All of the datasets are open
to each other. Table I shows the details of the datasets used
in the experiments. The vocabulary size (number of character
types) used in this experiment is 3031 in APS ASR model and
2755 in the SPS ASR model. The vocabulary of the language
model was matched to the vocabulary of the ASR model in
each experiment.

We used the character-based RNN language model outlined
in Section III-A as the language model. Table II shows the
test set perplexities of the language model when trained with
the training sets of the APS and SPS corpora. These results
confirm that the language information contained in the two
corpora are different. Note that similar results were obtained
when using the vocabulary of APS ASR model and when using
the vocabulary of SPS ASR model.

B. ASR Model Training

The following ASR models were used in this study.
1) Hybrid CTC/Attention Architecture: The acoustic fea-

tures of the input speech for the ASR models were CMV-
normalized using an 80 mel-scale filter bank. We expanded the

training sets using speaking speed perturbation, adding voice
data converted at factors of 0.9 and 1.1 to the original voice
data. We used the Hybrid CTC/Attention Architecture outlined
in Section III-A as our RNN ASR models. We trained the entire
models end-to-end using Ada-delta with a batch size of 24. We
used early stopping with the dev1 set to prevent overfitting,
and a patience value of 3 [24].

2) Joint CTC Attention Transformer: The training data is
the same as in Section IV-B-1. In addition, per the original
ESPnet model, spec augmentation (time warping, along with
masking blocks of frequency channels and time steps) was
conducted [25]. The time warp parameter was set to 5, and
the ranges for frequency masking and time masking were
randomly determined, between [0 to 30] and [0 to 40],
respectively. Masking was performed twice in each case. We
used the Joint CTC Attention Transformer outlined in Section
III-A for our Transformer ASR models. The number of heads
of Multi-Head Attention in the encoder and decoder was set
to 8. We trained the entire models end-to-end using Adam.

3) RNN language model: As outlined in Section III-A,
the character-based RNN language model consisted of an
Embedding layer, two LSTM layers and a Linear layer. The
input to the Embedding layer was a character one-hot vector.
The batch size was 256, and SGD was used as the optimization
function.

C. Experimental Results

We evaluated the performance of the Shallow Fusion
method and the Density Ratio approach when used as the
encoder-decoder methods, with each of the four ASR models
described in Section IV-A. We then evaluated the cross-domain
CERs of these integrated models using the APS and SPS
test sets, respectively. We used the dev2 sets to tune addition
weight λadd of the Shallow Fusion method, and subtraction
and addition weights λsub and λadd, respectively, of the
Density Ratio approach method.

Experimental results for the Hybrid CTC/Attention Archi-
tecture and Joint CTC Attention Transformer are shown in
Tables III and IV, respectively. For reference, we also show
the CERs when the APS ASR model is evaluated using the
APS test set, and when the SPS ASR model is evaluated using
the SPS test set (i.e., CERs for matched cases).

When the APS ASR model (Hybrid CTC/Attention Ar-
chitecture) and SPS test set were used, the CER for the
Density Ratio Approach (DRA) method was 14.0%, outper-
forming the Shallow Fusion method, which achieved a CER
of 15.2%. When the SPS ASR model (Hybrid CTC/Attention
Architecture) and the APS test set were used, the CER when
using the DRA method was 1.6% lower than when using the
Shallow Fusion method. Using the APS ASR model (Joint
CTC Attention Transformer) and the SPS test set, the DRA
obtained a CER of 9.6%, which was lower than the Shallow
Fusion method, which achieved a CER of 10.3%. When using
the SPS ASR model (Joint CTC Attention Transformer) and
the APS test set, the CER for the DRA method was 2.5%
lower than that obtained when using the Shallow Fusion
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TABLE III: Speech recognition results of Hybrid CTC/Attention Architecture for Shallow Fusion (SF) and Density Ratio approach (DRA).

Method ASR model Test set Language model integration λsub λadd CER
Baseline — — — 16.2

SF APS SPS ASRAPS + λadd LMSPS — 0.3 15.2
DRA ASRAPS − λsub LMAPS + λadd LMSPS 0.9 0.9 14.0

Baseline — — — 16.2
SF SPS APS ASRSPS + λadd LMAPS — 0.3 14.6

DRA ASRSPS − λsub LMSPS + λadd LMAPS 0.9 0.9 13.0
Matched APS APS — — — 9.8

SPS SPS — — — 8.0

TABLE IV: Speech recognition results of Joint CTC Attention Transformer for Shallow Fusion (SF) and Density Ratio approach (DRA).

Method ASR model Test set Language model integration λsub λadd CER
Baseline — — — 10.6

SF APS SPS ASRAPS + λadd LMSPS — 0.3 10.3
DRA ASRAPS − λsub LMAPS + λadd LMSPS 0.9 0.9 9.6

Baseline — — — 10.7
SF SPS APS ASRSPS + λadd LMAPS — 0.3 11.1

DRA ASRSPS − λsub LMSPS + λadd LMAPS 0.9 0.9 8.6
Matched APS APS — — — 6.1

SPS SPS — — — 7.7

method. Therefore, the Density Ratio approach improved (i.e.,
lowered) the CERs for ASR in the Japanese encoder-decode
model, compared to Shallow Fusion. No significant difference
was observed in the relative error rate between English and
Japanese when using the Shallow Fusion and Density Ratio
approaches.

Note that the addition and subtraction weights of the lan-
guage models are important parameters for optimizing the
performance of the proposed method. Figure 4 shows the
details of the language model weights and the resulting CERs
when using the Shallow Fusion method and the Density Ratio
approaches in this experiment. The vertical axes of these
figures show the subtraction weights of the language model,
while the horizonal axes show the addition weights. Figures
4 (a) to (d) show the language model weights and associated
CERs for the experiments using the Hybrid CTC/Attention
Architecture, while Figures 4 (e) to (h) show language model
weights and associated CERs when the Joint CTC Attention
Transformer is used. The rows with subtraction weights of 0.0
(the boxes shown in blue) correspond to the CERs achieved
when using various addition weights with Shallow Fusion,
while the boxes marked in red show the CERs achieved when
using various language model weights with the Density Ratio
approach.

As can be seen in Figure 4, the CERs achieved when
using language model weights optimized with the dev2 dataset,
and the CERs achieved when using the language model
weights optimized with the test dataset are not so different.
Our results show that the proposed encoder-decoder model
for Japanese works best when the subtraction and addition
weights of the language model are set to about 1.0 when
using the Density Ratio approach. McDermott et al. [12]
reported that the optimal subtraction and addition weights of

the language model were both about 0.5. It is unclear whether
the difference between these results was caused by differences
in the ASR model architectures used or by differences between
the languages being recognized, thus further investigation is
necessary.

V. CONCLUSIONS

We applied the Density Ratio approach, which is an exten-
sion of Shallow Fusion using Bayes’theorem, to the encoder-
decoder of Japanese speech recognition models. In comparison
to Western languages, Japanese is considered to be a more
difficult language to model.

In our experiments, we evaluated two types of encoder-
decoder models, an RNN model and a Transformer model.
Cross-domain CERs were calculated after ASR when using the
Japanese-language Academic Presentation Speech (APS) and
Simulation Presentation Speech (SPS) corpora. When using a
Density Ratio approach, our proposed RNN modeling method
achieved a CER 1.2% lower than the Shallow Fusion method.
When using the Transformer model, we achieved a CER 0.7%
lower than the Shallow Fusion method. We observed that when
using the Density Ratio approach, the encoder-decoder model
worked best with Japanese when the subtraction and addition
weights of the language models were set to around 1.0. In [12],
the optimal subtraction and addition weights for the language
model were both about 0.5. It is unclear whether this difference
is due to the architecture of the ASR model or due to the use of
different languages, so further investigation will be necessary.
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(a) Language model weights on dev2 datasets in Hybrid CTC
/ Attention Architecture in SPS domain

(b) Language model weights on test datasets in Hybrid CTC /
Attention Architecture in SPS domain

(c) Language model weights on dev2 datasets in Hybrid CTC /
Attention Architecture in APS domain

(d) Language model weights on test datasets in Hybrid CTC /
Attention Architecture in APS domain

(e) Language model weights on dev2 datasets in Joint CTC
Attention Transformer in SPS domain

(f) Language model weights on test datasets in Joint CTC
Attention Transformer in SPS domain

(g) Language model weights on dev2 datasets in Joint CTC
Attention Transformer in APS domain

(h) Language model weights on test datasets in Joint CTC
Attention Transformer in APS domain

Fig. 4: Language model addition and subtraction weights and CERs (character error rate).
Blue areas correspond to the Shallow Fusion, whereas the red areas correspond to the Density Ratio approach.
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