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Abstract— The attention-based encoder-decoder modeling 

paradigm has achieved impressive success on a wide variety of 

speech and language processing tasks. This paradigm takes 

advantage of the innate ability of neural networks to learn a direct 

and streamlined mapping from an input sequence to an output 

sequence for ASR, without any prior knowledge like audio-text 

alignments or pronunciation lexicons. An ASR model built on this 

paradigm, however, is inevitably faced with the issue of 

inadequate generalization especially when the model is not trained 

with huge amounts of speech data. In view of this, we in this paper 

propose a decoder masking based training approach for end-to-

end (E2E) ASR models, taking inspiration from the celebrated 

speech input augmentation (viz. SpecAugment) and masked 

language modeling (viz. BERT). During the training phase, we 

randomly replace some portions of the decoder's historical text 

input with the symbol [mask] to encourage the decoder to robustly 

output a correct token even when parts of its decoding history are 

masked. The proposed approach is instantiated with the top-of-

the-line transformer-based E2E ASR model. Extensive 

experiments conducted on two benchmark datasets (viz. 

Librispeech960h and TedLium2) seem to demonstrate the efficacy 

of our approach in relation to some existing E2E ASR systems.  

I. INTRODUCTION 

End-to-end (E2E) ASR models, particularly with the attention-

based encoder-decoder framework [1], have achieved 

competitive performance in comparison to traditional hybrid 

DNN-HMM methods [2]. In the E2E models, the encoder 

directly maps the input acoustic signals to a higher-order 

semantic representation, which serves as an acoustic model, 

while the decoder maps the representations into the final output 

transcriptions acting as a language model. This E2E paradigm, 

rather than breaking down the ASR process into cascaded 

submodules, such as acoustic modeling, lexical modeling, and 

language modeling as those adopted in the conventional hybrid 

DHH-HMM architecture, can significantly reduce the 

processing pipeline. Although this E2E paradigm drastically 

simplifies the ASR pipeline, one well-acknowledged downside 

is that little is known about how to develop a principled 

framework to tune specific model components to serve some 

certain purposes. One observed problem is that the attention-

based autoregressive E2E model tends to repeat tokens or 

words, which implies that the language modeling power of the 

model may be weak, possibly due to the insufficient amount or 

quality of the training data, or the mismatch between the 

training and evaluation conditions. Further, due also to the end-

to-end paradigm adopted by the attention-based model, it 

remains unclear how to systematically improve the predictive 

power of its decoder given the output history. Recently, non-

autoregressive  E2E manner [23] has shown its effectiveness 

and performed comparable results to the autoregressive models.  

Although various techniques have been designed and 

developed to strengthen the language model predictive power 

of an attention-based model, either by 𝑁 -best hypothesis 

rescoring or through the so-called shallow or deep fusion 

mechanisms [3]. Those improvements are usually mild, and it 

would inevitably introduce additional computational costs 

since an external language model may be introduced. Taking 

inspiration from the celebrated speech input augmentation (viz. 

SpecAugment [4]) and masked language modeling (viz. BERT 

[5]), we in this paper put forward a decoder masking approach 

to improve the robustness of language modeling in the decoder 

module of the attention-based E2E ASR model, which 

meanwhile promotes the generalization capacity of the ASR 

model as well. Unlike SpecAugment [4], which masks out on 

the spectral features of input speech signals during model 

training, our approach instead randomly replaces certain tokens 

(e.g., word or a word-piece) of the partially decoded result of 

the decoder with the symbol [mask] at each time stamp during 

model training. The motivation is to encourage the decoder not 

only to predict the next token but also to fill in the missing 

token (or alleviate the negative impact caused by caused by 

imperfect ASR) based on the contextual information. As such 

and consequently, the ASR model trained with this strategy is 

anticipated to have a stronger language modeling power and is 

more robust. 

In principle, our approach can be applied to the attention-

based E2E framework with arbitrary types of neural networks. 

However, we focus exclusively on the transformer architecture 

[6] since it digests a sequence of partially decoded tokens as 

the decoder's input at each time stamp which provide us more 

explicit contextual information for improving language 

modeling in comparison to the RNN/LSTM architectures. Of 

late, it has been shown that the transformer model can achieve 
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competitive or even superior recognition performance in 

relation to the RNN/LSTM-based E2E model for ASR [8]. In 

contrast to RNN/LSTM, the transformer-based model can 

capture long-term correlations between the tokens of the 

partially decoded result with a relatively lower computational 

complexity, without the need of using many steps of back-

propagation through time as done in RNN/LSTM. We evaluate 

our enhanced transformer model with decoder masking on the 

Librispeech [9] and TedLium2 [10] benchmark datasets. We 

show that decoder masking can achieve significant word error 

rate (WER) reduction on top of SpecAugment, setting highly 

competitive results on both the test sets of the TedLium2 

corpus and on Librispeech corpus for current E2E ASR models. 

We also compare among disparate masking strategies and their 

fusion in concert with the transformer-based E2E ASR model, 

which also confirms the complementarity of our approaches to 

the existing ones. 

II. RELATED WORK 

A. SpecAugment 

Very recently, SpecAugment [4], a label-preserving data 

augmentation mechanism, has drawn much attention from the 

ASR community, since it can achieve a good level of success 

in increasing the diversity of training data so as to avoid 

overfitting and improve robustness of ASR models. More 

specifically, SpecAugment treats the spectrogram (or spectral 

features) of a speech signal as an image, and in turn warps it 

along the time axis, mask blocks of consecutive frequency 

along the time axis bins and mask the whole frequency bins in 

short spans of time. These operations collectively lead to 

considerable word error rate reductions on several benchmark 

tasks, without the need to make any modifications to the ASR 

models.  

B. Semantic Masking 

In contrast to SpecAugment, the semantic masking method 

[11] is more lexical structure-aware in the sense that the time 

spans of the spectral features of a speech signal to be randomly 

masked correspond exactly to the lexical tokens conveyed by 

the speech signal. This method encourages an E2E ASR model 

to reconstruct masked portions of an input speech signal (that 

respectively correspond to different lexical tokens) based on 

their contextual information, which implicitly improves the 

predictive power of language modeling for the ASR model. 

However, this method would require additional computational 

overheads for aligning the spectral features of the training 

speech signals and their corresponding orthographic transcripts 

during the training phase, which would be susceptible to 

alignment errors.  

C. BERT 

BERT [5] is a mechanism to obtain pretrained contextualized 

language models, which essentially is a bidirectional encoder 

that comprises multiple layers of transformer-based neural 

networks [6]. A BERT-based contextualized language model 

can be pre-trained on huge amounts of general-domain text and 

then be fine-tuned on a relatively small amount of task-specific 

text, demonstrating excellent performance on many 

downstream natural language processing (NLP) tasks. BERT 

originally has two pre-training objectives: masked language 

modeling (MLM) and next sentence prediction (NSP). MLM 

randomly replaces some of the input tokens with [mask] 

symbols and then bases the prediction the original tokens on 

their both left and right contexts. NSP predicts whether two 

input sentences appear consecutively in a corpus to model 

between-sentence cohesion. In this paper, we extend the notion 

of MLM for training the encoder of an E2E ASR model for 

better robustness. To this end, we randomly mask the partially 

decoded results of the decoder during the training phase, with 

the purpose of making it more robustly predict the output of 

each time stamp in succession. 

 

III. DECODER MASKING 

A. Masking strategy 

Our decoder masking method (as shown in Figure 2) is a 

lightweight data-augmentation mechanism, since it requires 

minimal preprocessing for ASR model training. In the training 

phase, we randomly selected and masked a certain percentage 

 

Fig. 1 Overview of our proposed framework. 
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of the tokens involved in the partially decoded results of the 

decoder (before they were fed into the decoder) at each time 

stamp for predicting the next output token. Following [5], in 

our work, we randomly sampled 15% of the tokens and 

replaced it with the special [mask] symbol. We also placed a 

restriction on the masking function so that it will only be 

activated when the decoding history is accumulated to have 

more than 15 tokens to avoid unstable training. It should be 

noted that our decoder masking method is easy to be combined 

with the other previously proposed masking methods since our 

method focuses on token-level masking of the decoder while 

the other masking methods work on the spectral feature-level 

of a speech signal to be fed into the encoder. 

 

B. Why Decoder Masking Works 

Our method is similar in spirit to the masked language 

modeling (MLM) for pre-training of BERT, since both of them 

are proposed to mask a certain portion of tokens for enhancing  

the robustness of language modeling. However, the intuitions 

behind these two methods are different. BERT aims to predict 

the masked tokens based on both their left and right contexts, 

with the goal of pre-training its model parameters a priori for 

possible downstream tasks. The significant difference between 

BERT and our method is that the ASR decoder can only reach 

the right-side information, so our method is more like a data-

augmentation approach to enhance the robustness of the 

decoding process and meanwhile alleviate the overfitting 

problem. Also, during the training phase of an E2E ASR 

system, the encoder is often viewed as acoustic model while 

the decoder as language model. In view of the aforementioned 

aspects, the novelty of our method is the direct integration of 

the MLM notion into the decoder of E2E ASR in an explicit 

manner, which is orthogonal to the earlier attempt of semantic 

masking. 

IV. E2E TRANSFORMER-BASED ASR MODEL 

We model the ASR problem as a mapping from an input speech 

feature vector sequence 𝑋  to an output syllable sequence 𝑌 

with Transformer [6]. Transformer can be simplified as a 

stacking of the following residual-normalization structure [7] 

to smooth information flow and avoid gradient explosion and 

vanishing: 

𝑧𝑙+1 = LN(𝑧𝑙 + 𝑓(𝑧𝑙)) (1) 

where 𝑙  denotes index of the layers and LN(∙)  is the layer 

normalization. Function 𝑓(∙)  represents the basic building 

block of Transformer, such as attention network or feed-

forward network which would be formalized in the following 

subsection. The encoder in Transformer is a stack of 𝐿 identical 

layers, with each layer involving a self-attention sub-layer 

(SAN) and a feed-forward sub-layer (FFN). The decoder uses 

a similar structure except for an extra cross-attention sub-layer 

(CAN) inserted in-between the above two sub-layers, which is 

schematically depicted in Figure 1.  

A. Transformer Block 

In this work, Transformer architecture was implemented 

following the setup suggested in [8]. The Transformer module 

consumes input speech feature vectors to obtain their high-

level abstraction with a self-attention mechanism. Suppose that 

𝑄,𝐾 and 𝑉 are inputs of a transformer block, its outputs are 

calculated by the following equation: 

SelfAttention(Q, K, V) = softmax (
QK

√(𝑑𝑘)
) V (2) 

where 𝑑𝑘  is the dimensionality of input feature vectors. To 

account for multiple attentions, the so-called multi-head 

attention scheme was adopted, which is expressed by 

MultiHeadAtt(Q, K, V) = [H1, … , Hdhead
]Whead (3) 

Where 𝐇𝑖 stands for SelfAttention(Q𝑖 , K𝑖 , V𝑖) and dhead is the 

number of attention heads.  

B. ASR Training Process 

Following the previous work [8], we adopted a multi-task 

learning strategy to train the E2E ASR model. Systematically 

speaking, both the E2E decoder module and the CTC module 

predict the distribution of 𝑌 at each time stamp given the input 

𝑋, denoted as 𝑃𝑎𝑡𝑡(𝑌|𝑋) and 𝑃𝑐𝑡𝑐(𝑌|𝑋). We made use of the 

weighted average of the following two negative log likelihoods 

to train our model 

ℒ = −𝛼logPatt(𝑌|𝑋) − (1 − 𝛼)logPctc(𝑌|𝑋) (4) 

where the interpolation parameter 𝛼  controls the degree of 

reliance on log𝑃𝑎𝑡𝑡(𝑌|𝑋) rather than log𝑃𝑐𝑡𝑐(𝑌|𝑋). In the test 

phase, we combined the scores of attention model 𝑃𝑎𝑡𝑡, CTC 

score 𝑃𝑐𝑡𝑐  and an RNN-based (viz. LSTM) language model  

𝑃𝐿𝑀 to guide the decoding process, which is formulated by 

P(yi|X, y<i) = Pctc(yi|X, y<i) + 𝛽1Patt(yi|X, y<i) 
+𝛽2PLM(yi|X, y<i) 

(5) 

V. EXPERIMENTS 

In this section, we conduct a series of experiments on two 

widely-used ASR benchmark datasets, viz. LibriSpeech [9] and 

 

Fig. 2 A schematic depiction of our purposed decoder masking 

method. To obtain the output prediction T𝑛, the transformer 

decoder consumes it corresponding partially-masked historical 

output [𝑇1, [mask],… , 𝑇𝑛−2, 𝑇𝑛−1]. 
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TedLium2 [10]. We compare our ASR method with a few top-

of-the-line hybrid DNN-HMM and E2E systems. We 

implemented our method based on ESPnet codebase [8], and 

the experimental setups for these two datasets were the same as 

[8], except for the decoding setting, for which we adopted a 

beam size of 20. In addition, the values of 𝛽1 and 𝛽2 were set 

to 0.5 and 0.7, respectively. 

A. Librispeech 960h 

We represented an input speech signal as a sequence of 80-

dimensional log-Melfilter bank feature vectors, each of which 

was appended with 3-dimensional pitch features [18]. 

SentencePiece [19] was adopted as the tokenizer, and the size 

of resulting token inventory was 5,000. We trained a baseline 

E2E ASR model with a 12-layer transformer-based encoder 

and a 6-layer transformer-based decoder, of which the attention 

vector size was 512 with 8 heads, amounting to roughly 75M 

parameters. To explore the influence of using a larger model, 

we enlarge the model to be equipped with a 24-layer 

transformer-based encoder and 12-layer transformer-based 

decoder, having roughly 138M parameters. The setting of the 

hyperparameters for SpecAugment followed [8] for a fair 

comparison. We employed the Adam algorithm to update the 

model, and the warmup step was 25,000. We trained our ASR 

model for 50 epochs on 4 Titan RTX GPUs, which 

approximately cost 4 days to coverage. Two additional copies 

of the original speech training data were created by perturbing 

the speaking rate of each training utterance to 0.9 times and 1.1 

times of its original one, respectively. In this way, the training 

data had increased three-fold. Following [8], we averaged the 

parameters of the ASR models obtained at the last 5 

checkpoints to form the final model. In addition, the RNN 

language model used in our experiments was instantiated with 

LSTM, which was trained using ESPnet.  

In the first set of experiments, we evaluate our method from 

three viewpoints. First, we compare our method with some 

state-of-the-art methods, whose results, in terms of word error 

rate (WER), are shown in the first five rows of Table 1. As can 

be seen from the middle part of Table 1, when working in 

concert with either the base or the large transformer-based ASR 

models, our proposed decoding masking method can lead to 

quite competitive results in comparison to other existing strong 

E2E ASR models. The performance gap between our method 

and the other E2E models becomes almost negligible when it 

is additionally equipped with a language model fusion 

component. Second, we confirm the utility of our decoding 

masking method by comparison to the two existing masking 

methods (viz. SpecAugment and semantic masking). Our 

method outperforms both semantic masking and SpecAugment 

when with the base model setting, which indeed shows the solid 

gains brought by decoder masking for enhancing the robustness 

of the ASR model. Third, we show the comparison between our 

method and some well-acknowledged hybrid DNN-HMM 

systems, whose results are shown in the bottom part of Table 1. 

As can be seen from Table 1, our method performs comparably 

with them on the test-clean set, but is still worse than the best 

hybrid model on the test-other dataset. Furthermore, the 

improvement achieved by our method on test-other dataset is 

more pronounced. 

B. TedLium2 

We further conduct another set of experiments on TedLium2 

[10] dataset, which was compiled from TED Talks. In this set 

of experiments, we followed the same large model setting as 

those we mentioned in the previous subsection the inventory of 

distinct output tokens for ASR is set to 1,000.  

The experimental results are depicted in Table 2, exhibiting 

a similar trend as those obtained from the Librispeech dataset. 

 
TABLE I. 

WER results achieved by various ASR methods and their variants on the 

Librispeech dataset. 

 

 
TABLE III. 

Ablation test (in terms of WER) on TedLium2. 

 

 
TABLE II. 

Experiment results (in terms of WER) on TedLium2. 
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Our method shows excellent performance on TedLium2 as 

compared to the two existing masking methods and the strong 

hybrid DNN-HMM systems. The experiment also confirms the 

practical feasibility of decoder masking when the speech 

dataset available for training the ASR models is relatively 

small.  

We also conduct an ablation test on TedLium2 to assess the 

effectiveness of combining different masking methods. Note 

here that the corresponding experiments were conducted based 

on the same settings of Table 2. When working in isolation, our 

decoder masking method outperforms the other two masking 

methods. The sixth and seventh rows verify that our method 

can be effectively paired with either SpecAugment or semantic 

masking, resulting in further WER reductions. The last row of 

Table 3 shows that the combination of all three masking 

methods can achieve the best results. This also reveals the 

complementary merits of these three masking methods. 

VI. CONCLUSION AND FUTURE WORK  

In this paper, we have proposed a novel data-augmentation 

method, viz. decoder masking, for end-to-end ASR, which can 

improve the predictive power of language modeling for the 

ASR model. Moreover, we have explored the combinations of 

different masking strategies for use in training the ASR model, 

and evaluated their effectiveness. The corresponding results 

have shown that our method can achieve state-of-the-art 

performance on TedLium2 in relation to several strong E2E 

ASR systems. As to future work, we plan to explore more 

variants of training data augmentation to further enhance E2E 

ASR performance and also explore the effectiveness of 

combining our proposed method to more powerful neural 

models [20] and non-autoregressive end-to-end ASR 

frameworks [21, 22]. 
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