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Abstract—Non-parallel training is a difficult but essential task
for DNN-based speech enhancement methods, for the lack of
adequate noisy and paired clean speech corpus in many real
scenarios. In this paper, we propose a novel adaptive attention-
in-attention CycleGAN (AIA-CycleGAN) for non-parallel speech
enhancement. In previous CycleGAN-based non-parallel speech
enhancement methods, the limited mapping ability of the gen-
erator may cause performance degradation and insufficient
feature learning. To alleviate this degradation, we propose an
integration of adaptive time-frequency attention (ATFA) and
adaptive hierarchical attention (AHA) to form an attention-
in-attention (AIA) module for more flexible feature learning
during the mapping procedure. More specifically, ATFA can
capture the long-range temporal-spectral contextual information
for more effective feature representations, while AHA can flexibly
aggregate different AFTA’s intermediate output feature maps
by adaptive attention weights depending on the global context.
Numerous experimental results demonstrate that the proposed
approach achieves consistently more superior performance over
previous GAN-based and CycleGAN-based methods in non-
parallel training. Moreover, experiments in parallel training
verify that the proposed AIA-CycleGAN also outperforms most
advanced GAN-based and Non-GAN based speech enhancement
approaches, especially in maintaining speech integrity and re-
ducing speech distortion.

I. INTRODUCTION

Speech enhancement (SE) aims to recover clean speech
components from the noise-corrupted mixture, so as to im-
prove speech quality and intelligibility. It has become a funda-
mental technique in many communication applications such as
the front-ends for automatic speech recognition (ASR) systems
and hearing assistant devices [1]. Due to the unprecedented
development of deep neural networks (DNNs), many DNN-
based SE approaches have demonstrated better performance
over traditional signal-processing-based approaches [2]. These
DNN-based approaches can be divided into two categories,
namely masking-based approaches [3], [4], [5] and mapping-
based approaches [6], [7], [8]. Recently, Generative Adversar-
ial Networks (GANs) have shown their promising performance
in the SE area for its powerful capability of mapping the target
output distribution from the original input distribution [9],
[10], [11], [12], in which a generator (G) tries to conduct
the enhancement process and a discriminator (D) tries to
distinguish between real inputs and fake outputs generated by
this generator.

In the standard formulation of supervised speech enhance-
ment methods, the mapping functions are trained to minimize
the loss between the output features of the enhanced speech
and the features of the corresponding clean speech. Therefore,
they always need a large number of paired clean-noisy samples
to conduct supervised training and improve the generalization
of the whole network. However, there exist many practical
scenarios in which it is difficult or impossible to obtain parallel
recordings of clean-noisy pairs, and sometimes we can only
acquire clean data that mismatches the source noisy data.
To resolve this problem, CycleGAN was adopted for both
standard parallel and non-parallel training in the SE area [14],
[15], [16], which was originally proposed for unpaired image-
to-image translation [17] and began to thrive in speech appli-
cations in recent years [18]. Nonetheless, these previous non-
parallel CycleGAN-based SE methods with unpaired data can
hardly achieve competitive performance when compared with
the standard parallel training, because of the limited mapping
ability of the generator.

In this paper, a novel CycleGAN-based system is proposed
with an adaptive attention-in-attention mechanism to cope with
non-parallel speech enhancement. Specifically, two generators
(dubbed GX→Y and FY→X ) and two discriminators (dubbed
DX and DY ) are jointly trained with relativistic adversarial
losses, cycle-consistency losses and an identity mapping loss.
To improve the mapping ability of the generators, we propose
a novel attention mechanism dubbed attention-in-attention
(AIA) in generators for more powerful feature fusion and
feature correlation learning. This AIA consists of adaptive
time-frequency attention (ATFA) and adaptive hierarchical
attention (AHA). Specifically, ATFA aims at capturing the
long-range temporal-spectral contextual dependency in par-
allel, while AHA aims to flexibly aggregate all the output
feature maps of ATFA together by the hierarchical attention
weights depending on the global context. For discriminators,
multi-scale discriminators are adopted to force the generator
to pay more attention to finer details. Besides, considering the
effectiveness of the power compression in the dereverberation
and denoising task [19], [20], the magnitude of the spectrum
is compressed as the input features to better attenuate the
background noise.

The remainder of the paper is organized as follows. In
Section II, the proposed framework is described in detail.
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Fig. 1. Training procedure of the proposed method. Forward noisy-clean-noisy cycle and backward clean-noisy-clean cycle are illustrated in the left and right
parts, respectively.

The experimental setup is presented in Section III, while
experimental results are provided and discussed in Section IV.
Finally, conclusions are drawn in Section V.

II. PROPOSED SCHEME

A. Problem Formulation

In the speech enhancement task, when taking the short-time
Fourier transform (STFT) to the mixture signal, in the time-
frequency (T-F) domain, we can have:

Xt,f = Yt,f + Zt,f , (1)

where Xt,f = |Xt,f | ejθXt,f ∈ C, Yt,f = |Yt,f | ejθYt,f ∈ C
and Zt,f = |Zt,f | ejθZt,f ∈ C denote the T-F representations
of the mixture, clean speech and noise components in the
time index of t and frequency index of f , respectively. Most
recently, using the power-compressed spectra as input features
dramatically improves speech quality in the dereverberation
and denoising task [19], [20], so we conduct the power
compression on the spectral magnitude before feeding into the
mapping network. The compression coefficient is set to 0.5,
which is reported an optimal choice in [20]. Therefore, the
enhanced spectral magnitude can be expressed as:∣∣∣X̃t,f

∣∣∣η = GX→Y (|Xt,f |η ;ϕG), (2)

where η = 0.5; GX→Y denotes the mapping function of the
generator G and ϕG denotes its parameter set.

B. Network architecture

In our CycleGAN-based SE system, a forward noisy-to-
clean generator G is first employed to enhance the noisy
features to the clean ones, while an inverse clean-to-noisy
generator F is applied to convert the enhanced features back
to the original domain. As illustrated in Fig. 1, a forward-
inverse noisy-clean-noisy cycle and an inverse-forward clean-
noisy-clean cycle jointly constrain G and F to conduct non-
parallel mapping. Discriminators DX and DY are trained to
classify the target speech features as real and the generated
speech features as fake. As shown in Fig. 2, the generator

is composed of three components, including three downsam-
pling layers, an adaptive attention-in-attention (AIA) module
and three homologous upsampling layers. Each downsam-
pling/upsampling layer block is composed of a 2D convolu-
tion/deconvolution layer, followed by instance normalization
(IN), Parametric Relu activation function (PRelu) and gated
liner units (GLUs) [21]. The proposed AIA consists of six
ATFA modules and an AHA module, where ATFA is pro-
posed to capture the long-range dependencies along temporal-
spectral dimensions with low computational cost and AHA
is introduced to aggregate different intermediate features to
capture the long-term hierarchical contextual information by
the adaptive weights depending on the global context.

The discriminator is composed of six 2D convolutions,
each of which is followed by spectral normalization (SN) and
PRelu, so as to compress the feature maps into a high-level
representation. SN can stabilize the training process of the
discriminator and avoid vanishing or exploding gradients [22].
Note that we set the configuration of the utilized discriminators
the same as our previous study [23]. Inspired by recent
studies on image enhancement [24], we propose to apply a
multi-scale discriminator that uses the intermediate layer of
the discriminator with a smaller receptive field, which can
force the generator to produce speech features with global
consistency and finer details.

C. Adaptive Time-Frequency Attention

Attention mechanism [25] has been widely used in speech
processing tasks for its capability of leveraging the contextual
information in the feature maps. Following the terminology
in [26], we compute the attention function on the output
feature maps Fin ∈ RB×T×F

′
×C′

of the downsampling
layers. Here, B denotes the batch size of input features,
T denotes the number of frames, F

′
denotes the number

of frequency bins and C ′ denotes the number of channels
in each feature map. To alleviate the heavy computational
complexity of conventional self-attention, we introduce an
adaptive time-frequency attention (ATFA) mechanism as a
lightweight solution to capture the long-range correlations
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Fig. 2. The framework of the proposed generators. IN, GLU, and PRelu indicate instance normalization, gated linear unit, and parametric Relu activation,
respectively.
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Fig. 3. The diagram of adaptive time-frequency attention (ATFA) modules.⊙
and

⊗
denote the matrix multiplication and element-wise multiplication,

respectively.

exhibited in T-F spectrogram as in [27]. As illustrated in Fig. 3,
the proposed ATFA consists of two branches: an adaptive time
attention branch (ATAB) and an adaptive frequency attention
branch (AFAB). The two branches cooperate to capture the
global dependencies along temporal and spectral dimensions
in parallel. By factorizing the original attention into time-
dimension and frequency-dimension, we can reduce the large
attention weight matrix to two much smaller ones, i.e., (T×T )
and (F

′ × F
′
). Along the time path, we reshape the input

feature features into CtF ′ vectors with dimension 1 × T to
calculate temporal self-attention, which can be calculated as:

Qt = ConvtQ(Fin),K
t = ConvtK(Fin), V

t = ConvtV (Fin),

Qt
Res,K

t
Res, V

t
Res = Reshapet(Qt,Kt, V t),

σt = softmax((Qt
Res) · (Kt

Res)
T ),

OutATAB = Reshapet
′
(σt · V t

Res),
(3)

where Qt
Res,K

t
Res, V

t
Res ∈ RB×T×(Ct×F ′), Ct ={

C
8 ,

C
8 , C

}
, OutATAB ∈ RB×T×F ′×C , and C = 64. Analo-

gously, we reshape the input into CfT vectors with dimension
1 × F ′ to calculate the adaptive attention OutAFAB along

the frequency axis in parallel. Finally, The output features of
these two branches and the original features are then combined
together by two adaptive weights to generate the final output
of ATFA module, which can be formulated as:

OutATFA = Fin + αOutATAB + βOutAFAB (4)

where Fin, OutATAB and OutAFAB represent the original
input feature map given by the last downsampling layer,
the output of ATAB and the output of AFAB, respectively.
Here, α and β are initialized as 0 and gradually lean to
assign a larger weight. In summary, each branch has the
following steps: (1) Reshape the input features; (2) Extract the
long-range contextual dependencies along time and frequency
axes, respectively; (3) Perform feature fusion along different
dimensions with adaptive weights.

D. Adaptive Hierarchical Attention

As shown in Fig. 4, we introduce an adaptive hierarchical
attention (AHA) module to integrate different hierarchical
feature maps given a set of ATFA modules’ outputs F =
{Fn}Nn=1 , Fn ∈ RT×F ′×C , where N is the number of ATFA
blocks and set to be 6. Specifically, we first employ an average
pooling layer PoolAvg and a 1× 1 convolutional layer Wn to
squeeze the output feature map of each ATFA modules into
a global representation: Ph

n = PoolAvg(Fn) ∗Wn ∈ R1×1×1,
and then we concatenate all the outputs as Ph ∈ R1×1×N×1,
which is then fed into the Softmax function to obtain the
hierarchical attention map Wh ∈ R1×1×N×1. After that we
cascade all inputs F = {Fn}Nn=1 to obtain a global feature
map Fh ∈ RT×F ′×C×N . Subsequently, we incorporate the
global contextual information by performing a matrix mul-
tiplication between Fh ∈ RT×F ′×C×N and the hierarchical
attention weights Wh

N , which can be defined as:

GN =

N∑
i=1

Wh
i F

h
i (5)

where GN ∈ RT×F ′×C denotes the global contextual feature
maps. Finally, we perform an element-wise sum operation
between the output feature map FN the last ATFA module
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Fig. 4. The diagram of the adaptive hierarchical attention (AHA) module. s⃝,
⊙

and
⊗

denote the softmax function, matrix multiplication and element-wise
multiplication, respectively.

and the global contextual feature map GN to obtain the final
OutAHA ∈ RT×F ′×C :

OutAHA = FN + γ

N∑
i=1

Wh
i F

h
i

= FN + γ

N∑
i=1

exp(PoolAvg(Fi) ∗Wi)∑N
n=1 exp(PoolAvg(Fn) ∗Wn)

Fi.

(6)

Note that γ is a learnable scalar coefficient and initialized as 0.
This adaptive learning weight gradually learns to assign larger
weight to merge global contextual information effectively.
In a nutshell, OutAHA is a weighted sum of all ATFA
modules’ outputs, thus helping to fuse the global context
of all intermediate feature maps with different weights and
progressively guide the enhancement procedure.

E. Loss function

To ensure the effective mapping in non-parallel training,
we use the following losses, namely relativistic adversarial
losses, cycle-consistency losses, and an identity mapping loss,
to jointly optimize the proposed model.

Relativistic adversarial loss: For the noisy-to-clean map-
ping procedure, we employ the relativistic average least-square
(RaLS) adversarial loss [28] to make the enhanced compressed
spectral magnitude GX→Y (|Xt,f |0.5) appear to the target
clean ones |Yt,f |0.5, which can be expressed as below:

LRA(DY ) = Ey

[
(DY (y)− ExDY (GX→Y (x))− 1)2

]
+

Ex

[
(DY (GX→Y (x))− Ey(DY (y)) + 1)2

]
(7)

LRA(GX→Y ) = Ex

[
(DY (GX→Y (x)))− EyDY (y)− 1)2

]
+Ey

[
(DY (y)− Ex(DY (GX→Y (x))) + 1)2

]
(8)

where x and y are the compressed magnitudes of noisy
and clean spectrum (i.e. |Xt,f |0.5 and |Yt,f |0.5), respectively.
Here, the generator GX→Y tries to synthesize the enhanced
spectral magnitude that can deceive the discriminator DY

by minimizing LRA(GX→Y ), whereas the discriminator DY

attempts to distinguish the generated spectral magnitude from
the clean one y by minimizing LRA(DY ). Analogously, the
inverse clean-to-noisy generator FY→X and its correspond-
ing discriminator DX are optimized using LRA(DX) and
LRA(FY→X).

Cycle-consistency loss: Without parallel supervision, gen-
erators may map source feature space to any random permu-
tation of the target space within only adversarial losses. To
constrain the non-parallel mapping, a cycle-consistency loss
is utilized to bring the output back to original input data.
The cycle-consistency loss Lcycle(GX→Y , FY→X) can help
two generators GX→Y and FY→X to identity the pseudo pair
(x, y) without paired data as follows:

Lcycle(GX→Y , FY→X) = Ex [∥FY→X(GX→Y (x))− x∥1]
+Ey [∥GX→Y (FY→X(y))− y∥1]

(9)
where ∥·∥1 indicates the L1 Norm.

Identity-mapping loss: Since the generator should not
modify the compositions, such as linguistic information of the
target speech feature when it is fed into the generator as the
input [16], too much, we regularize generators G and F to be
as close as possible to the identity mapping by minimizing an
identity-mapping loss [17], which can be given by:

Lid(GX→Y , FY→X) = Ex [∥FY→X(x)− x∥1] +
Ey [∥GX→Y (y)− y∥1]

(10)

where the magnitudes of the target spectrum (i.e., y and x)
are provided as the inputs of the generators (i.e., GX→Y and
FY→X ), respectively. In summary, the overall loss can be
summarized as follows:

LFull = LRA(GX→Y , DY ) + LRA(FY→X , DX)

+λcycleLcycle(GX→Y , FY→X) + λidLid(GX→Y , FY→X)
(11)

where λcycle and λid are tunable hyper-parameters, which are
set to be 5 and 10, respectively.
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TABLE I
ABLATION STUDY FOR NORMAL AND COMPRESSED MAGNITUDE UNDER

NON-PARALLEL TRAINING.

Models PESQ SSNR STOI DNSMOS

Unprocessed 1.97 1.68 0.921 3.02

Normal magnitude

CycleGAN (baseline) 2.47 5.69 0.924 3.36

CycleGAN+ATAB 2.53 6.28 0.929 3.40

CycleGAN+AFAB 2.54 6.42 0.928 3.39

CycleGAN+ATFA 2.59 6.65 0.932 3.41

AIA-CycleGAN 2.61 6.69 0.931 3.43

Compressed magnitude (parameter η = 0.5)

CycleGAN (baseline) 2.56 6.21 0.926 3.38

CycleGAN+ATAB 2.59 6.67 0.928 3.41

CycleGAN+AFAB 2.61 6.61 0.931 3.43

CycleGAN+ATFA 2.64 6.94 0.930 3.45

AIA-CycleGAN 2.67 7.23 0.932 3.47

III. EXPERIMENTS
A. Datasets

The dataset used in this work is publicly available as
proposed in [29], which is a selection of the Voice Bank
corpus [30] with 28 speakers for training and another 2 unseen
speakers for the test. The training set consists of 11572 mono
audio samples, while the test set contains 2 speakers’ (one
male and one female) 824 utterances. For the training set, au-
dio samples are mixed together with one of the 10 noise types,
i.e., two artificial (babble and speech shaped) and eight real
noise from the DEMAND database [31], at four SNRs of 0,
5, 10 and 15 dB. The test utterances are created with 5 unseen
test-noise types (all from the DEMAND database) at SNRs of
2.5, 7.5, 12.5 and 17.5 dB. The original raw waveforms are
downsampled from 48kHz to 16kHz beforehand.

B. Implementation Setup

The Hanning window of length 32ms is utilized, with 75%
overlap between adjacent frames. The 512-point STFT is
utilized and the 257-dimension compressed spectral magnitude
is used as the input feature. For the non-parallel training
strategy, we randomly crop a fixed-length segment (i.e., 108
frames) from a randomly selected noisy audio file as the input,
while the target is a randomly selected clean audio file that
is different from the input audio. That is to say, the input
totally mismatches the target speech features. We adopt the
Adam optimizer [32] with the momentum term β1 = 0.9,
β2 = 0.999 and train the networks with an initial learning
rate of 0.0001 for discriminators and 0.0002 for generators,
respectively. The same learning rates are maintained for the
first 50 epochs, while they linearly decay in the remaining
iterations. We set the batch size to 4 and use Lid only for the
first 20 epochs.

IV. RESULTS AND ANALYSIS

We use the following objective metrics to evaluate
speech enhancement performance: the perceptual evaluation of
speech quality (PESQ) [33], short-time objective intelligibility

(STOI) [34], segmental signal-to-noise ratio (SSNR), the mean
opinion score (MOS) prediction of the speech signal distortion
(CSIG) [35], the MOS prediction of the intrusiveness of
background noise (CBAK) and the MOS prediction of the
overall effect (COVL) [35]. In addition, we evaluate the
subjective quality by DNSMOS [36], which is a robust non-
intrusive perceptual speech quality metric designed to evaluate
noise suppressors. Higher values of all metrics indicate better
performance.

A. Ablation study

We first investigate the effectiveness of the proposed atten-
tion modules and the power compression. As shown in Table I,
we set the CycleGAN without proposed attention modules as
the baseline, which is also trained with the relativistic average
least-square loss. From the results, we can have the following
observations. Firstly, compared with non-compressed methods,
CycleGAN-based approaches fed with the compressed spectral
magnitude achieve better performance, indicating that the
power compression facilitates more accurate spectrum recov-
ery. For example, compressed-magnitude CycleGAN achieves
average 0.09 PESQ and 0.52dB SSNR improvements over
the normal-magnitude CycleGAN. The possible rationale is
that, when the compression operation is applied, the gap
between the magnitude of the speech and noise components is
narrowed, that is to say, the residual noise components in the
weak energy regions (i.e., middle and high-frequency regions)
are given more priority during the enhancement produce [19].
Secondly, by adding the proposed attention branches, Cy-
cleGAN+ATAB improves the average PESQ and STOI by
0.03 and 0.002 over the compressed-magnitude baseline, while
CycleGAN + AFAB improves the average PESQ and STOI
by 0.05 and 0.004. This indicates that the ATAB and AFAB
can effectively guide the feature learning procedure of the
generators. By integrating ATAB and ATFB as the ATFA mod-
ules, we also observe considerable improvements on PESQ,
SSNR and DNSMOS scores. Finally, by integrating the AHA
module and ATFA modules as an AIA module, we can see that
the proposed AIA-CycleGAN significantly outperforms other
comparisons, which verifies the effectiveness of the proposed
AIA module in improving the speech quality.
B. Comparison under non-parallel and parallel training

To investigate the effectiveness of our proposed method with
both the parallel and non-parallel training strategy, we compare
our proposed method with the reference methods including
conventional GANs and CycleGANs. Here, ”GAN-normal” is
fed with the normal magnitude as the input features while
”GAN-compressed” is fed with the compressed magnitude.
From Table II, we can observe the following two phenom-
ena. Firstly, GAN-based methods yield similar performance
with CycleGAN in the parallel training, whereas CycleGAN
outperforms GAN-based methods by a large margin in the
non-parallel training. This indicates the cycle consistency
constraint can prevent the mapping ability of the generators
from sharply degrading under unpaired data. Besides, by
employing the AIA module, the proposed approach under
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TABLE II
EXPERIMENTAL RESULTS AMONG DIFFERENT MODELS UNDER

NON-PARALLEL AND PARALLEL TRAINING. BOLD INDICATES THE BEST
RESULTS FOR DIFFERENT TRAINING CONDITIONS.

Methods PESQ STOI CSIG CBAK COVL DNSMOS
Noisy 1.97 0.921 3.35 2.44 2.63 3.02

Non-parallel training
GAN-Normal 2.01 0.914 3.48 2.74 2.67 2.68
GAN-Compressed 2.03 0.916 3.54 2.78 2.72 2.72
CycleGAN 2.56 0.927 3.78 3.14 3.16 3.38
AIA-CycleGAN 2.67 0.932 3.86 3.20 3.21 3.47

Parallel training
GAN-Normal 2.56 0.931 3.72 3.23 3.16 3.33
GAN-Compressed 2.60 0.934 3.78 3.25 3.18 3.35
CycleGAN 2.62 0.932 3.87 3.16 3.24 3.41
AIA-CycleGAN 2.74 0.936 3.96 3.25 3.29 3.49

unpaired data achieves similar and competitive performance
compared with parallel training, and significantly outperforms
all the baselines. For example, AIA-CycleGAN surpasses
GAN-compressed by a large margin in PESQ, CSIG, CBAK,
COVL and DNSMOS using non-parallel training, which is
0.64, 0.38, 0.46, 0.54 and 0.79, respectively.

Fig. 5 shows the spectrograms of the noisy/clean utterances
and the utterances enhanced by GAN-compressed, CycleGAN
and AIA-CycleGAN in the non-parallel training. This fig-
ure demonstrates that CycleGANs dramatically surpass the
conventional GAN-based method. Moreover, we observe that
AIA-CycleGAN can effectively surpass the original Cycle-
GAN in terms of noise suppression. For example, as shown in
the red sign area and green sign area of Fig. 5 (c) and (d), AIA-
CycleGAN shows a more powerful capability of suppressing
residual noise components.

C. Comparison with other competitive GAN-based and Non-
GAN based approaches

Our proposed model is also compared with several other
competitive GAN-based and Non-GAN based baselines under
standard paired data. As seen from Table III, AIA-CycleGAN
outperforms these advanced GAN-based methods in terms of
PESQ, CSIG and COVL by considerable improvements, while
providing similar STOI and CBAK with CP-GAN [12]. For
example, AIA-CycleGAN provides average 0.58 PESQ, 0.011
STOI, 0.48 CSIG, 0.31 CBAK and 0.49 COVL improvements
than SEGAN [9], which is the first GAN-based SE approach
in the time domain. The significant improvements in PESQ,
CSIG and COVL indicate that our proposed method better
maintains speech integrity while reducing speech distortion.
When compared with other Non-GAN based methods, our
AIA-CycleGAN also provides competitive performance es-
pecially in terms of PESQ and CSIG scores. Note that we
reimplement GCRN [8] and DCCRN [5] in Voice bank +
DEMAND dataset, and directly use the reported scores of
other methods in their original papers.

V. CONCLUSIONS

In this paper, we propose a novel adaptive attention-in-
attention CycleGAN (AIA-CycleGAN) to solve the difficulty
in non-parallel speech enhancement task. Specifically, we use

(e) Clean Speech

(a) Noisy speech 

(b) Enhanced by GAN-compressed 

(c) Enhanced by CycleGAN

(d) Enhanced by AIA-CycleGAN

Fig. 5. Visualization of the noisy/clean spectrogram and enhanced spectrogram
using different methods.

TABLE III
EXPERIMENTAL RESULTS AMONG DIFFERENT MODELS UNDER PARALLEL

TRAINING.
Methods PESQ STOI CSIG CBAK COVL
Noisy 1.97 0.921 3.35 2.44 2.63

GAN-based methods
SEGAN [9] 2.16 0.925 3.48 2.94 2.80
MMSEGAN [13] 2.53 0.930 3.80 3.12 3.14
RSGAN [10] 2.51 0.937 3.78 3.23 3.16
RaSGAN [10] 2.57 0.937 3.83 3.28 3.20
CP-GAN [12] 2.64 0.940 3.93 3.29 3.28

Non-GAN based methods
Wave-U-net [37] 2.64 – 3.56 3.08 3.09
DFL-SE [38] – – 3.86 3.33 3.22
CRN-MSE [39] 2.61 0.938 3.78 3.11 3.24
GCRN [8] 2.51 0.940 3.71 3.24 3.09
DCCRN [5] 2.68 0.939 3.88 3.18 3.27
AIA-CycleGAN 2.74 0.936 3.96 3.25 3.29

relativistic adversarial losses, cycle-consistency losses and an
identity loss to jointly constrain the forward noisy-clean-noisy
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cycle and backward clean-noisy-clean cycle. To effectively
improve the feature correlation learning in the generators,
we integrate adaptive time-frequency attention and adaptive
hierarchical attention to form an attention-in-attention module
to capture local and global long-range dependencies. By em-
ploying ATFA, generators can capture the long-range temporal
and frequency contextual information to distinguish different
types of information for more effective feature representations.
By employing AHA, generators can capture the long-range
hierarchical contextual information to flexibly aggregate dif-
ferent global feature maps by learnable weights. Experimen-
tal results demonstrate that the proposed approach provides
consistently better speech enhancement performance than the
previous GAN-based and CycleGAN-based baselines under
both parallel and non-parallel training.
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