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Abstract—For speech enhancement applications, this paper
derives a robust maximum likelihood distortionless response
(MLDR) beamformer by introducing a complex generalized
Gaussian distribution to model speech sparse priors, where we
refer to as the CGGD-MLDR beamformer. In addition, a steering
vector estimation method is integrated into the iteration frame-
work of the proposed CGGD-MLDR beamformer. We show that
the proposed beamformer can be regarded as a generalization
of the minimum power distortionless response beamformer and
its improved variations. For narrowband applications, we also
reveal that the proposed beamformer reduces to the minimum
dispersion distortionless response beamformer, which has been
derived with the `p-norm minimization. The mechanisms of the
proposed beamformer in improving the robustness are clearly
pointed out and experimental results show its better performance
for microphone array speech enhancement in terms of PESQ and
ESTOI improvements.

I. INTRODUCTION

Array beamforming has been widely used to extract the
desired signal and suppress both the interferences and the
noise for many applications, such as sonar, radar, and speech
communication systems. Typically, there are two types of
microphone array beamforming algorithms, where one is
data-independent fixed beamformers and the other is data-
dependent adaptive beamformers. Generally, adaptive beam-
formers are more powerful in suppressing directional inter-
ferences automatically than the fixed beamformers. There
are many well-known adaptive beamformers including the
minimum power distortions response (MPDR) beamformer
[1]–[3], the generalized sidelobe cancellation (GSC) [4]–[6]
and the multi-channel Wiener filtering (MWF) [7]–[11]. Both
the MPDR beamformer and the GSC are quite sensitive to the
steering vector error of the desired speech, while the MWF
is sensitive to the estimation accuracy of the second-order
statistics of speech and noise. Among these beamformers, the
MPDR beamformer is still a hot topic for speech enhancement
because of its promising performance.

There are at least two ways to improve the robustness of the
MPDR beamformer, where one is to improve the estimation
accuracy of the steering vector of the desired speech [12]–[16]
and the other is to estimate the noise power spectral density
(PSD) matrix to replace the noisy PSD matrix [17]–[22].
For practical applications, these two ways can be combined
together to further improve the performance. Whereas, one

cannot expect that the steering vector of the desired speech
can be estimated accurately and the noise PSD matrix does
not contain any desired speech PSD matrix, especially in
low signal-to-interference-plus-noise ratio (SINR) conditions.
This paper focuses on improving the robustness of the MPDR
beamformer by estimating a weighted noisy PSD matrix and
the steering vector simultaneously under maximum likelihood
criterion.

When assuming that the desired speech in the frequency
domain follows a zero-mean complex Gaussian distribution
(CGD) with time-varying variances, a maximum likelihood
distortionless response (MLDR) beamformer was derived in
[23] and it can reduce the word error rates for automatic
speech recognition. When considering the signal and the
noise are non-Gaussian distributed, a minimum dispersion
distortionless response (MDDR) beamformer was derived with
the `p-norm minimization for narrowband applications in [24],
[25]. The relationship between the MLDR beamformer and
the MDDR beamformer has not been revealed clearly and
the mechanism in improving performance needs to be further
clarified. Moreover, the best choice of p in MDDR is not
so straightforward, which also needs to be studied in a more
theoretical way.

This paper derives a robust maximum likelihood distor-
tionless response beamformer by introducing a zero-mean
complex generalized Gaussian distribution to model speech
sparse priors [26], [27], which is referred to as the CGGD-
MLDR beamformer. Meanwhile, we present a steering vector
estimation method in the iteration framework of the proposed
beamformer. One can see that the proposed beamformer is a
generalization of the MPDR beamformer and it can reduce
to many existing variations of the MPDR beamformer. After
revealing the relationship of the proposed CGGD-MLDR
beamformer, this paper shows the mechanism of the CGGD-
MLDR in improving the robustness of the MPDR beamformer.
Moreover, to implement the proposed beamformer, we design
an iterative optimization algorithm to estimate its optimal
weight vector and the steering vector alternately. Experimental
results show that the proposed CGGD-MLDR beamformer can
achieve better performance by properly choosing the shape
parameter p.

The remainder of this paper is organized as follows. Section
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II presents problem formulation and related work. In section
III, we derive the CGGD-MLDR beamformer and study its
relationship with the MPDR beamformer and its variations.
The mechanism in improving robustness is also presented. In
section IV, we study the performance of the CGGD-MLDR
beamformer and compare it with the MLDR and the MPDR
beamformers. Section V presents some conclusions.

II. PROBLEM FORMULATION AND RELATED WORK

We assume that a desired speech source and some uncorre-
lated directional noise sources impinge on an arbitrary shape
microphone array consisting of M microphones. By applying
the short-time Fourier transform (STFT), the microphone array
signals can be written into vectors of M in time-frequency
bin, denoted by y(k, l) = [Y1(k, l), ..., YM (k, l)]

T , where k
indicates the frequency index and l indicates the frame index.
We have

y(k, l) = h(k)S(k, l) + v(k, l)

= x(k, l) + v(k, l),
(1)

where S(k, l) denotes the complex spectrum of the desired
speech; h(k) denotes the steering vector of the desired speech;
v(k, l) denotes the noise vector.

The objective of a beamformer is to design a spatial filter
w(k), which can be applied to extract the desired speech:

Ŝ(k, l) = wH(k)y(k, l)

= wH(k)h(k)S(k, l) + wH(k)v(k, l).
(2)

The well-known MPDR beamformer aims to minimize the
beamforming output power with the distortionless constraint
on the desired direction, which can be given by:

min
w(k)

E
{
wH(k)y(k, l)

}2
s.t. wH(k)h(k) = 1. (3)

The close-formed solution of (3) can be written as

wMPDR(k) =
R−1yy (k)h(k)

hH(k)R−1yy (k)h(k)
, (4)

where

Ryy(k) = E
{
y(k, l)yH(k, l)

}
= λs(k)Υss(k) + λv(k)Υvv(k)

= Rss(k) + Rvv(k)

(5)

denotes the noisy PSD matrix; λs(k) denotes the PSD of the
desired speech; Υss(k) denotes the desired speech correlation
matrix; λv(k) denotes the PSD of the noise signal and Υvv(k)
denotes the noise correlation matrix; Rss(k) and Rvv(k)
denote the desired speech PSD matrix and the noise PSD
matrix, respectively. In practice, the noisy PSD matrix needs
to be replaced by using its sample covariance matrix, which
can be given by:

R̂yy(k) =

L∑
l=1

y (k, l) yH (k, l). (6)

Accordingly, the estimated weight vector of the MPDR beam-

former can be expressed as

ŵMPDR(k) =
R̂−1yy (k)h(k)

hH(k)R̂−1yy (k)h(k)
. (7)

It is well-known that the MPDR beamformer is sensitive
to the estimation error of steering vector h(k) and the can-
cellation of the desired speech often occurs. To improve its
robustness, the noisy PSD matrix should be replaced by the
noise PSD matrix and the steering vector h(k) should be
estimated more accurately. For this purpose, one needs to
distinguish noise-only time-frequency bins from noisy bins or
the desired speech presence probability (SPP) in each time-
frequency bin needs to be estimated before updating the noise
PSD matrix. With noise PSD matrix and noisy PSD matrix,
we can estimate the steering vector of the desired speech in
theory, so that the estimated weight vector of a more robust
MPDR beamformer can be obtained finally.

In [23], the MLDR beamformer is derived and its weight
vector has the same form as the MPDR beamformer and the
only difference is that the noisy PSD matrix in the MPDR
beamformer is estimated and replaced by a weighted sample
covariance matrix, which can be given by:

CGDR̂yy(k) =

L∑
l=1

y (k, l) yH (k, l)

λs (k, l)
, (8)

where λs (k, l) = E
{
|S2(k, l)|

}
indicates the PSD of the de-

sired speech in each time-frequency bin. Note that |S2(k, l)| is
often unknown prior and it needs to be estimated and replaced
by its estimated value. That is to say, λ̂s (k, l) = |Ŝ2(k, l)|
should be used for practical applications.

III. METHOD

A. MLDR with a Complex Generalized Gaussian Distribution

We assume that S(k, l) follows a zero-mean complex gen-
eralized Gaussian distribution, and so its probability density
function can be expressed as:

ρ (S(k, l)) =
p

2πγΓ (2/p )
e
− |S(k,l)|p

γp/2 , (9)

where γ > 0 is the scale parameter, p is the shape parameter
of this complex generalized Gaussian distribution, and Γ (·)
is the Gamma function. Generally, the complex generalized
Gaussian can be divided into three groups including super-
Gaussian, Gaussian, and sub-Gaussian, respectively. In this
letter, the super-Gaussian distribution is considered for speech
applications, i.e. 0 < p < 2. In this case, according to convex
analysis, ρ (S(k, l)) can be represented as a maximization
over scaled Gaussians with different variances, which can be
expressed as:

ρ (S(k, l)) = max
λs(k,l)>0

NC (S(k, l); 0, λs(k, l))ψ (λs(k, l)) ,

(10)
where NC(S(k, l); 0, λs(k, l)) denotes a complex Gaus-
sian distribution with zero-mean and time-varying variance
λs(k, l); ψ(·) denotes a scaling function which is related to
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distribution. With this model, the weight vector w(k) can be
optimized by maximizing the following likelihood function:

max
w(k)

L∏
l=1

max
λs(k,l)>0

NC (S (k, l) ; 0, λs (k, l))ψ (λs (k, l))

s.t. wH (k) h (k) = 1
(11)

which is equivalent to minimize the negative log-likelihood
with the weight vector w(k) and λs(k, l), which can be
expressed as:

min
w(k),λs(k,l)>0

L∑
l=1

(
|S (k, l)|2

λs (k, l)
+log (πλs (k, l))−logψ (λs (k, l))

)
s.t. wH (k) h (k) = 1

(12)
It is worth noting that the optimization problem depends

on S(k, l), which is unknown prior and it is the estimation
target of the beamformer. An estimate of S(k, l) is denoted
by Ŝ(k, l). A Lagrange multiplier method can be used to solve
this optimization problem, and the cost function can be written
as

Jk =

L∑
l=1

g(w(k), λs(k, l)) + αk(wH(k)h(k)− 1), (13)

where
g(w (k),λs (k, l))

=


∣∣∣Ŝ (k, l)

∣∣∣2
λs (k, l)

+log(πλs (k, l))−logψ
(
λ̂s (k, l)

)
=

(∣∣wH (k) y (k, l)
∣∣2

λs (k, l)
+ log (πλs (k, l))− logψ (λs (k, l))

)
(14)

and αk denotes the Lagrange multiplier. This optimization
problem needs to optimize λs(k, l) and w(k) simultaneously,
resulting in that we cannot get a closed-form solution. In this
paper, we design an iterative optimization algorithm to solve
this problem and the updating rule can be obtained by setting
the partial differentials of the cost function with respect to a
corresponding parameter at zero. When w(k) is determined,
by setting the partial differentials of Jk with respect to λs(k, l)
at zero, one can get

λs(k, l) =
2γp/2

p

∣∣∣Ŝ(k, l)
∣∣∣2−p, (15)

when λs(k, l) is determined, the term related to λs(k, l) can
be regarded as a constant value, then the cost function (13) is
equivalent to

Jk=

L∑
l=1

∣∣wH (k) y (k, l)
∣∣2

λ̂s (k, l)
+αk

(
wH (k) h (k)− 1

)
. (16)

Finally, by setting the partial differentials of (16) with repect
to w(k) at zero and using the distortionless constraint on the

desired speech, one can get

ŵCGGD(k) =

(
CGGDR̂yy(k)

)−1
h(k)

hH(k)
(

CGGDR̂yy(k)
)−1

h(k)
, (17)

where

CGGDR̂yy(k) =

L∑
l=1

y(k, l)yH(k, l)

λs(k, l)
=

L∑
l=1

py(k, l)yH(k, l)

2γp/2
∣∣∣Ŝ(k, l)

∣∣∣2−p .
(18)

Because ŵCGGD(k) is invariant to the constant scaling factor
in (15), (18) can be further reduced to

CGGDR̂yy(k) =

L∑
l=1

y(k, l)yH(k, l)

max
(
λ̂
(1−p/2)
s (k, l), δ

) , (19)

where λ̂s(k, l) = |Ŝ(k, l)|2 denotes the estimated PSD of the
desired speech in each time-frequency bin. δ in the denomi-
nator is a small positive floor value to avoid dividing by zero.
In the iterative optimization algorithm, with the initialization
ŵ0

CGGD(k) = ŵMPDR(k), we can keep updating λ̂s(k, l) and
ŵCGGD(k) until reaching the maximum number of iterations.

B. Steering Vector Estimation

This part presents a steering vector estimation method
in the iteration framework of the proposed CGGD-MLDR
beamformer without explicitly estimating the desired speech
PSD matrix. This paper adopts the generalized eigenvalue de-
composition (GEVD)-based method for its stable performance
[28], although both the noisy PSD matrix and the noise PSD
matrix need to be estimated beforehand. To estimate the noise
PSD matrix, we commonly need to estimate a time-frequency
mask to distinguish noise-only bins from noisy bins, and then
we can have

R̂vv(k) =
1∑L

l=1M(k, l)

L∑
l=1

M(k, l)y (k, l) yH (k, l),

(20)
where M(k, l) ∈ [0 1] denotes the time-frequency mask,
which can be the speech absence probability. M(k, l) = 1 in-
dicates that the time-frequency bin (k, l) is noise-only. On the
contrary,M(k, l) = 0 means that the time-frequency bin (k, l)
contains the desired speech. Traditionally, one needs to esti-
mate the SPP, such as using complex Gaussian mixture model
[29], to get this mask indirectly. It is interesting to see that (19)
has the similar form as (20), and a larger 1/λ̂

(1−p/2 )
s (k, l)

implies that the desired speech PSD is lower in the time-
frequency bin (k, l). This means that 1/λ̂

(1−p/2 )
s (k, l) can

be potentially applied to weight the sample covariance matrix,
although it dose not range from zero to one. Accordingly, in
this paper, we propose an alternative mask, which is

M(k, l) = 1/λ̂(1−p/2 )
s (k, l) . (21)

Substitute (21) into (20) to obtain the estimated noise PSD
matrix, and then perform the GVED-based method to estimate
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Algorithm 1 CGGD-MLDR with SV estimation method

Input: y(k, l), p, ĥ and maximum iteration number I
Output: ŵI

CGGD(k) and ŜI(k, l)
1: Initialize: ŵ0

CGGD(k) = ŵMPDR(k)
2: for i = 0, 1, 2, ..., I−1 do
3: for l = 1, 2, ...,L do
4: Compute Ŝi(k, l) = (ŵi

CGGD(k))Hy(k, l)

5: Update λ̂i+1
s (k, l) =

∣∣∣Ŝi(k, l)∣∣∣2−p
6: Compute
7: CGGDR̂i+1

yy (k) =CGGD R̂i+1
yy (k) + y(k,l)yH(k,l)

λ̂i+1
s (k,l)

8: Update ŵi+1
CGGD(k) =

(CGGDR̂
i+1
yy (k))

−1
ĥ(k)

ĥH(k)(CGGDR̂
i+1
yy (k))

−1
ĥ(k)

9: Compute

10: R̂vv(k) = 1∑L
l=1M(k,l)

L∑
l=1

M(k, l)y (k, l) yH (k, l)

11: Update ĥ(k) = R̂vv(k)P
{

R̂−1vv (k)Ryy(k)
}

12: return ŵI
CGGD(k) and ŜI(k, l)

the steering vector, which can be given by:

ĥ(k) = R̂vv(k)P
{

R̂−1vv (k)Ryy(k)
}
, (22)

where P {•} extracts the principal eigenvector of a matrix.
Estimation of the steering vector and that of the weight

vector for the CGGD-MLDR beamformer can be updated
alternately to provide a very robust adaptive beamformer with
a given coarse steering vector estimation and microphone
array signals directly. The whole algorithm is summarized in
Algorithm 1.

C. Related to the MPDR Beamfomer and its Variations
This part discuss the relationship between the proposed

CGGD-MLDR beamformer and the MPDR beamformer to-
gether with its improved variations. The proposed CGGD-
MLDR beamformer is a generalized MPDR beamformer,
which can reduce to many existing improved versions of the
MPDR beamformer for different values of the shape parameter
p in (9). Obviously, we can have the following comments:

1) When p = 2, the proposed CGGD-MLDR beamformer
reduces to the well-known MPDR beamformer due to
CGGDR̂yy(k) ≡ R̂yy(k) because of λ̂(1−p/2)s (k, l) ≡ 1.

2) When p = 0, the proposed CGGD-MLDR beamformer
becomes the newly proposed MLDR beamformer1 [23]
due to CGGDR̂yy(k) ≡CGD R̂yy(k) for p = 0.

3) When p is a positive value, for narrowband applications,
the proposed CGGD-MLDR beamformer has the same
form as the MDDR beamformer that is derived from
the `p-norm [24]. Note that the proposed CGGD-MLDR
beamformer gives clear guidelines on choosing the shape
parameter p in (9), this is because it is derived from max-
imum likelihood theory and p relates to the distribution
of the desired speech S(k, l).

1In [30], the MLDR was also called the weighted MPDR (wMPDR).

D. Mechanisms of the Proposed CGGD-MLDR Beamformer
in Improving Robustness

We assume that there are L1 noise-only frames among all
L frames. We further assume that L and L1 is large enough
that the intercorrelation between x(k, l) and v(k, l) can be
ignored and λs (k, l) and λv (k, l) do not change over time.
Accordingly, (19) becomes

CGGDRyy (k) = L2 (λs (k))
p
2 Υss (k)

+

(
L1ρ(k) + L2 (λs (k))

p
2

1

ε (k)

)
Υvv (k) ,

(23)

where ρ(k) = λv (k)
/
δ(1−p/2) and ε(k) = λs (k) /λv (k) is

the input SINR. L = L1 + L2 with L2 the number of frames
containing desired speech. One can see that CGGDRyy (k) is a
linear combination of Υss (k) and Υvv (k), we further define
the ratio of the two combination coefficients, which is

rp (k) =
L1ρ (k) + L2 (λs (k))

p
2 1
ε(k)

L2 (λs (k))
p
2

. (24)

when p = 2, we have r2 (k) = L/(L2ε (k)) and thus r2 (k)
is determined by the input SINR and the number of the
desired speech frames among all L noisy frames. Note that the
smaller r2 (k) is, the more sensitive the MPDR beamformer
is. When p = 0, we have r0 (k) = (L1ρ (k) + L2/ε (k))/L2.
Obviously, when ρ(k)ε (k) ≥ 1, i.e., λs(k) ≥ δ, r0(k) ≥
r2(k) holds true always. This should be the reason that the
MLDR beamformer can improve the robustness of the MDPR
beamformer. For arbitrary values of p ∈ [0 2), one can
easily derive that rp(k) ≥ r2(k) holds true if and only if
λs(k) ≥ δ, which means that the CGGD-MLDR beamformer
can be always more robust than the MPDR beamformer due
to that δ is only a small positive value as mentioned above.

IV. EXPERIMENTAL RESULTS

This section evaluates the performance of the proposed
CGGD-MLDR beamformer and compares it with the MPDR
beamformer and the MLDR beamformer. The performance of
the oracle minimum variance distortionless response (MVDR)
beamformer is also presented to show the theoretical limit,
where the noise PSD matrix and the steering vector of the
desired speech are assumed to be known exactly for MVDR.
In this section, the PESQ [31] and ESTOI [32] improvements
are chosen as objective measurements.

A. Simulation Results

Ten utterances with each about 20s duration are taken from
TIMIT corpus [33] and the white Gaussian noise is chosen
from NOISEX-92 database [34] as interference. The room
impulse response is generated by using the image method [35],
with a room of size 6m × 10m × 4m and the reverberation
time 160 ms. We consider a uniform linear array with 6
microphones and 4 cm inter-sensor distance which is placed
at the center of the room. The desired speech is 2m away
from the array center propagating from θ = 0◦, and two
interferences propagate from 30◦ and −60◦, respectively.
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TABLE I
PESQ AND ESTOI IMPROVEMENTS OF CHIME-3 DATABASE. BEST SCORES ARE HIGHLIGHTED IN BOLD

Method BUS CAF PED STR
∆PESQ ∆ESTOI ∆PESQ ∆ESTOI ∆PESQ ∆ESTOI ∆PESQ ∆ESTOI

MPDR -0.25 -0.05 0.31 0.09 0.34 0.11 0.05 0.01
MLDR 0.55 0.16 0.63 0.21 0.61 0.21 0.80 0.20

CGGD-MLDR 0.65 0.17 0.68 0.23 0.65 0.26 0.88 0.22

2 4 6 8 10
Iteration
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2
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E

SQ

(a)

2 4 6 8 10
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O
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(b)

MPDR
MVDR

MLDR
PRO p=0.25

PRO p=0.5
PRO p=1

Fig. 1. Performance versus the number of iterations. (a) PESQ improvements.
(b) ESTOI improvements. ”PRO” represents ”CGGD-MLDR” for simplicity.

The steering vector of the desired speech is initialized by
ĥ(k) = [1, 1, ..., 1]T .

In the first experiment, we study the performance of CGGD-
MLDR beamformer versus the number of iterations with the
input SINR=0 dB, where the results are plotted in Fig. 1. From
this figure, one can observe that the choice of p seriously affect
the performance of the CGGD-MLDR beamformer. Among
them, it has the highest PESQ and ESTOI improvements with
p = 0.5 and gradually converges to the theoretical limit with
the increasing of the number of iterations, while MPDR have
the lowest PESQ and ESTOI improvements. Moreover, one
can see that the CGGD-MLDR beamformer with p = 0.5
provides much higher PESQ improvements with only very
limited number of iterations, e.g., 2 to 3, which means much
faster convergence rate than the MLDR beamformer.

In the following experiments, we only present the results
of the CGGD-MLDR beamformer with p = 0.5 and compare
it with the MLDR and the MPDR beamformers for its best
performance in the first experiment. Fig. 2 plots the PESQ
and ESTOI improvements versus the input SINR ranging from
-5 dB to 10 dB. We can see that the PESQ improvements
reduce as the increase of the input SINR for all beamformers
and the proposed CGGD-MLDR beamformer with p = 0.5 is
much better than the other two beamformers. For the MPDR
beamformer, PESQ and ESTOI improvements can be negative
because of the desired speech cancellation problem in high
input SINR conditions.

B. CHiME-3 database Experiment results

Finally, we test the performance of the proposed CGGD-
MLDR beamformer under different noisy scenarios using

-5 0 5 10
SINR (dB)

0

0.5

1

1.5

2

 P
E

SQ

(a)

-5 0 5 10
SINR (dB)

-0.2

0

0.2

0.4

0.6

 E
ST

O
I

(b)

MPDR MVDR MLDR PRO p=0.5

Fig. 2. Performance versus SINR. (a) PESQ improvements. (b) ESTOI
improvements. ”PRO” represents ”CGGD-MLDR” for simplicity.

the CHiME-3 database. Experimental results in Table I are
the average scores with 80 utterances in each scenario. One
can also see that the proposed CGGD-MLDR beamformer
with p = 0.5 can achieve the highest PESQ and ESTOI
improvements under all noise scenarios. This demonstrates
that the proposed CGGD-MLDR beamformer is robust to
different types of noise and can still perform very well in
real-world environments.

V. CONCLUSIONS

When a zero-mean complex generalized Gaussian distri-
bution is introduced to model the complex spectrum of the
desired speech, we derive the CGGD-MLDR beamformer with
the maximum likelihood criterion, which is a generalization
of the MPDR and the MLDR beamformers. Meanwhile, we
propose to estimate the steering vector of the desired speech
using the GEVD-based method with the help of the estimated
speech PSD, and thus we do not need to estimate the speech
presence probability and/or the speech absence probability. By
properly choosing the shape parameter p, the CGGD-MLDR
beamformer can achieve better performance than the MLDR
beamformer in terms of PESQ and ESTOI improvements. The
most attractive aspect is that the proposed CGGD-MLDR with
p = 0.5 can converge in a much faster way than the MLDR
beamformer, and so the computational complexity can be
decreased dramatically due to that the proposed beamformer
needs much fewer iterations to achieve the same performance
of the MLDR beamformer.
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