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Abstract—In daily-life scenarios, reverberation inevitably caus-
es a decrease in speech recognizability and speech quality.
Exploring methods to eliminate reverberation will benefit both
human perception and other speech technology applications such
as identity authentication and speech recognition. This paper
proposes a speech dereverberation algorithm based on linear
prediction (LP) residual processing using deep neural network
(DNN). The amplitude spectrum of the LP residual of short-
term speech is used as a speech feature to train the DNN, and
the mapping relationship between LP residual of the reverberant
speech and that of the clean speech is learned. Comparative ex-
periments under different reverberation conditions have verified
the effectiveness and robustness of the algorithm.

Index Terms—speech dereverberation, linear prediction resid-
ual, deep neural network

I. INTRODUCTION

In daily-life scenarios, sound that reaches the ears usually
includes the original source sound and its reflections on
various surfaces, especially in some confined spaces, when
using microphones or other receiving devices to capture the
sound, the original sound is combined with these attenuated,
delayed reflections to form a reverberant signal. Reverberation
will inevitably cause a decrease in speech recognizability
and speech quality [1]. In a reverberant environment, the
speech intelligibility for hearing-impaired listeners is signif-
icantly reduced [2], and severe reverberation will also have a
certain impact on normal-hearing listeners [3]. Reverberation
in speech affects human perception and poses a challenge to
the robustness of identity authentication systems and speech
recognition systems as well [4] [5]. The method to solve the
reverberation problem will benefit many speech technology
applications.

In order to meet the requirements of human ears for speech
intelligibility, people use a variety of methods to study speech
dereverberation. One method is to enhance or modify the linear
prediction (LP) residuals of the short-term speech segments [6]
[7]. In this method, the linear prediction coefficients (LPC) of a
short-term reverberant speech segment is assumed to be equal
to the ones of the corresponding clean speech segment, or can
be estimated to a high accuracy through spatial averaging on
reverberant speech segments collected at different positions
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in the room [8]. Then, the LP residual of the reverberant
speech segment is processed through varied algorithms to get
it approach that of the clean speech [7] [9] [10], and then
the enhanced speech segment is obtained by stimulating the
all-pole filter represented by the LP coefficients using the
processed LP residual.

In recent years, with the broad application of Deep Neural
Network (DNN) in varied signal processing areas, DNN has
also been used for speech enhancement [11]. Using DNN to
eliminate speech reverberation was firstly proposed in [12]
[13]. The DNN was trained to learn the spectral mapping
relationship between reverberant speech and clean speech.
Subsequently, Wu et al. [14] used the reverberation time
(RT60) [15] as known to select the appropriate frame shift
time and frame extension length to further improve the DNN-
based dereverberation method. A step of denoising was added
to the DNN to suppress the noise as well as the reverberation
in [16].

In this paper, we propose to use DNN to process the residual
of the reverberant speech. Instead of using DNN to model
the mapping from the short-term spectrum of the reverberant
speech to that of the clean speech as above in [13] [14],
the DNN in this method is trained to learn the relationship
between the spectrum of the LP residual of the reverberant
speech and that of the clean speech, and hereafter this method
will be referred to as DNN-based linear prediction residual
mapping (DNN-LPRM) method. Since the DNN mapping
is nonlinear and it is well-known that nonlinear processing
of speech signals can introduce in artifacts [17], in DNN-
LPRM we have tried not to apply the direct speech-to-speech
mapping, and only apply the mapping to the LP residual to
avoid this problem to some extent.

The remainder of this paper is organized as follows. The
DNN-LPRM algorithm will be described in Section II. Section
III tests the algorithm and shows the simulating experiment re-
sults; different performance indicators are employed to verify
the effectiveness of our algorithm in speech dereverberation.
We summarize the work in Section IV.

II. ALGORITHM DESCRIPTION

The diagram of the DNN-based LP residual mapping dere-
verberation algorithm model is shown in Fig.1. In the training
phase, the amplitude spectrum of LP residual of the short-term
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Fig. 1. Block diagram of the DNN-LPRM method.

speech is used as the speech feature. The amplitude spectrum
of LP residual of reverberant speech is fed to the input layer
of the network.

In the dereverberation stage, the trained DNN is provided
with the amplitude spectrum of the LP residual of short-
term testing reverberant speech, and an enhanced residual
spectrum is obtained after passing through the network. Then,
the enhanced amplitude spectrum of the residual is combined
with the phase spectrum of the reverberant speech frame.
After this the time-domain residual after enhancement can be
obtained, and finally speech synthesis is performed to produce
the time-domain dereverberated speech signal by using the
enhanced residual to stimulate the all-pole filter represented
by the LPC.

A. Linear Prediction and Residual Extraction

In a reverberant environment, the speech signal received by
the microphone can be expressed as

y (n) = s (n) ∗ h (n) , (1)

where s(n) represents the clean speech signal, h(n) represents
the room impulse response (RIR), ∗ represents the convolution
operator, and y(n) is the reverberant speech signal.

The principle of the linear prediction is that the value of
the current sample of a speech signal can be estimated by a
linear combination of a few sample values ahead of it

s̃(n) =
∑p

k=1
αks(n− k), (2)

where s̃(n) is the predicted value of the nth sample, p is the
order of the linear prediction system, and αk are the LPC.

An error can be formed by subtracting the predicted value
s̃(n) from the true value s(n)

x (n) = s (n)− s̃ (n) . (3)

The LPC αk can be obtained by minimizing the mean-square
error [18]. Then, by substituting the resulting αk back into
(2) and using (3), we can obtain the LP residual x(n). The

LP residual of the reverberant speech signal, xy(n), can be
obtained in the same way.

Generally speaking, a speech signal is non-stationary, but
short-term frames with a duration of, for example, 10-30 ms
can be regarded as stable [18]. Therefore, when estimating the
LPC and the LP residual, it is necessary to perform framing
and windowing. In this study, a frame length of 16 ms and a
Hamming window [18] are employed to frame the speech.

Let Xn(e
jω) denote the Short-Time Fourier Transform

(STFT) [18] of the residual x(n). The amplitude of Xn(e
jω),

|Xn(e
jω)|, along with |Xy

n(e
jω)| is used to train the DNN,

where |Xy
n(e

jω)| represents the amplitude of the reverberant
speech residual spectrum. In the dereverberation stage, let
|Xyp

n (ejω)| denote the amplitude spectrum after mapping, and
the phase term of Xy

n(e
jω), ∠Xy

n(e
jω), is used to form the

frequency term of the residual after processing

|Xyp
n (ejω)|ej∠Xy

n(e
jω). (4)

Then (4) can be transform back to time domain using the
inverse STFT to produce the enhanced residual.

B. DNN-Based LP Residual Mapping

In previous work which uses DNN to learn the direct
mapping relationship between reverberant speech and clean
speech, the amplitude spectrum of the short-term speech frame
has been used as the speech feature [12] [14]. In this work, the
amplitude spectrum of the LP residual is used as the speech
feature to train the DNN.

The DNN model based on the Keras and Tensorflow frame-
work is used [19]. The DNN contains 3 hidden layers, and all
the layers are fully connected. Except for the output layer,
the activation functions of all fully connected layers in the
model use the LeakyReLU function [20]. LeakyReLU is a
special version of Rectified Linear Unit (ReLU). When it is not
activated, LeakyReLU will still have a non-zero output value,
so as to obtain a small gradient to avoid the neuron “death”
phenomenon that may occur in ReLU. In order to ensure that
the final output is non-negative, the activation function of the
output layer uses the Sigmoid function to normalize the DNN
output of the spectral amplitude to the unit range of [0, 1]
[21].

After each fully connected layer and before the activation
function, batch normalization is set. The activation value of
the previous layer is renormalized on each batch, that is, the
average value of its output data is close to 0 and the standard
deviation is close to 1. The purpose is to reduce the learning
rate and improve the computing speed and performance of
DNN training. This is the average variance normalization
(MVN) strategy commonly used in speech recognition [22].
In addition, the dropout processing is added at the end of
each layer except the output layer [23]. A certain percentage
of input neurons are randomly disconnected each time the
parameters are updated during the training process to prevent
over-fitting. It further improves the DNN training performance.
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The objective function is based on the minimum mean-
square error (MMSE)

E =
1

MD

M∑
m=1

D∑
d=1

(X̂m
d −Xm

d,norm)
2, (5)

where E represents the mean-square error, X̂m
d and Xm

d,norm

represent the dth DNN output and normalized target feature
at frame index m, D and M represent the size of the feature
vector and mini-batch respectively. The DNN output and
normalized target features are

X̂m
d =

∑L

l=1
wl,dR

m
l + bd (6)

Xm
d,norm =

Xm
d − µd

σd
(7)

where wl,d and bd represent the weights and biases between
the last hidden layer and output layer respectively, with L
denoting the last hidden layer size. Rm

l is the output at the
lth neuron of the last hidden layer at frame m. µd and σd
represent the global mean and variance of the target feature at
frequency bin d over all target utterances.

III. EXPERIMENTS AND RESULT ANALYSIS

A. Parameters and Evaluation Indicators

The speech data used in the simulating experiments are from
the TIMIT database [24]. The reverberant speech segments
are obtained by convolving the clean speech with the RIRs
generated using the image-source method [25] [26]. The room
size is set to 6 m×4 m×3 m (length×width×height), and the
speaker and microphone are located at [2, 3, 1] m and [4, 1, 2]
m respectively. In the training set, 380 clean speech recordings
are convolved with RIRs of reverberation time 0.3 s to 1.0 s
with an interval of 0.1 s. In order to test the algorithm, we
randomly selected 10 speech recordings from the TIMIT test
set to convolve them with RIRs with reverberation times of
0.3s-1.0s, to generate 10×8=80 reverberant speech segments
as a test data set.

In the linear prediction stage, the frame length is set to
16 ms, which corresponds to 0.016×16000=256 samples with
the sampling rate of 16 kHz. In the windowing processing,
the overlap rate between two adjacent frames is 1/2, and a
Hamming window function with a length of 256 is used [18].
The order p of linear prediction is set to 12 as usually used
in other speech processing techniques [8].

In the training and testing phases, 512-point STFT is used to
generate 257-dimension amplitude spectrum features. A frame
extension of 5 frames is set at the input layer of the DNN, that
is, the input dimension is 257×5=1285. The DNN used has 3
hidden layers, each with 2048 nodes. The maximum number
of training rounds is set to 20, the minimum batch size is
set to 128, and the input and target features of the DNN are
globally normalized to zero mean and unit variance [14]. In
the model training process, the mean-square error (MSE) is
used as the loss function, and the Adam optimizer is used to
train the model [27].

In evaluation, the speech-to-reverberation modulation en-
ergy ratio (SRMR) [28], the frequency-weighted Segmented
Speech Signal-to-Noise Ratio (fwSegSNR) [29], and the Per-
ceptual Evaluation of Speech Quality (PESQ) [30] are used.
These three objective evaluation indicators are the ones used in
the REVERB challenge and proved to have high correlation
scores with the subjective test results in terms of perceived
amount of reverberation and of overall quality [1].

B. Experimental Results
Based on deep neural network, we compare the results

of using linear prediction residual processing and not using
linear prediction residual processing to verify the feasibility
of the algorithm. In the experimental results, the clean speech
is labeled with RAW, the reverberant speech is labeled with
REV, the dereverberation results using DNN speech amplitude
spectrum mapping [14] is labeled with DNN-SM, and the
dereverberation result using our algorithm is labeled with
DNN-LPRM.

Figure 2 shows an example of the residual signals of a
test speech recording with RT60=0.5 s. The speech content

Fig. 2. The residuals of the clean speech, the reverberant speech, and the
residual after DNN-LPRM processing.

is: “She had your dark suit in greasy wash water all year.” It
can be seen in the figure that the residual after processing is
closer to that of the clean signal, and the smearing caused by
the strong peaks in the residual of the reverberant speech has
been largely eliminated. Figure 3 (a) and Fig. 3 (b) show the
spectrogram of RAW speech and REV speech. The spectrum
mapping result of DNN-SM is shown in Fig. 3 (c), and that of
DNN-LPRM is shown in Fig. 3 (d). In Fig. 3 (c), the tailing
energy caused by reverberation is greatly attenuated, which
indicates that the spectral mapping result of DNN is a good
estimate of the clean spectrogram. Compared with Fig. 3 (c),
the spectrogram in Fig. 3 (d) is clearer, and is closer to the
spectrogram of clean speech in Fig. 3 (a), indicating that the
linear prediction residual enhancement further improves the
dereverberation performance.

We take the average of the SRMR evaluation results of
10 speech recordings under RT60=0.3-1.0 s. Figure 4 shows
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(a) (b)

(c) (d)

Fig. 3. The frequency spectrum of a testing speech recording with
RT60 = 0.5 s: (a) RAW, (b) REV, (c) DNN-SM, (d) DNN-LPRM

Fig. 4. SRMR results under RT60=0.3-1.0 s.

that the DNN-LPRM method has achieved a big improvement
in SRMR compared with DNN-SM. On average, the SRMR
value of the speech after DNN-LPRM processing is 1.24
higher than that of the reverberant speech, and 0.56 higher
than that of the DNN-SM. Under low reverberation conditions,
when RT60=0.3 and 0.4 s, the DNN-SM method does not
significantly improve the SRMR, whereas the SRMR value
of the DNN-LPRM method can be maintained at a relatively
high level. And with the increase of the reverberation time,
the SRMR value of the DNN-LPRM method does not drop
significantly, and the DNN-LPRM always keeps the gap with
the DNN-SM method in SRMR. It also shows that our DNN-
LPRM method has high robustness under both low and high
reverberation conditions.

The evaluation results of fwSegSNR and PESQ averaged
over the same 10 speech recordings under RT60=0.3-1.0 s are
shown in Fig. 5 and Fig. 6. Figure 5 shows that the DNN-
LPRM method has achieved a significant improvement in the

Fig. 5. Evaluation results of fwSegSNR under RT60=0.3-1.0 s.

Fig. 6. Evaluation results of PESQ under RT60=0.3-1.0 s.

segmental signal-to-noise ratio. The fwSegSNR achieved with
the DNN-LPRM is 5.7 dB higher than that of the reverberation
speech and is 4.1 dB higher than that obtained with the DNN-
SM method on average. With the increase of reverberation
time, the value of fwSegSNR drops very little, and maintains
at a high level, which shows that our DNN-LPRM method has
high robustness in fwSegSNR under different reverberation
conditions.

Figure 6 shows that the DNN-LPRM method has also
achieved improvements in speech quality. The PESQ value is
0.3 higher than that of the reverberant speech and 0.2 higher
than that obtained with the DNN-SM method on average.
Please note that PESQ is an indicator of the general speech
quality and was not devised specifically for evaluating the
severeness of the reverberation in speech. We employed it
here as a monitor of the change in speech quality brought
about by the DNN-LPRM to ensure that no big decrease in
speech quality is introduced by the algorithm, and the results
show that small improvement in PESQ has been achieved.

Based on the above results, the performance of our DNN-
LPRM method has greatly surpassed the DNN-SM method.
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It has effectively removed the reverberation in the speech
and improved the speech quality, and has high robustness
under different reverberation conditions. We have also tested
its robustness to different position of the source-microphone
combination in the same room, and the results show that
keeping the source-microphone distance unchanged, the differ-
ent source-microphone position in the room brings very little
change in the performance of the algorithm. Robustness of the
algorithm to different source-microphone distance in different
rooms will be investigated in further research. Comparison
of DNN-LPRM with more algorithms using data such as the
evaluation set for REVERB Challenge [1] will also be done
further.

IV. CONCLUSION
This paper proposes a speech dereverberation algorithm

based on linear prediction residual processing using deep
neural network. Experimental results show that the algorithm
has achieved significant improvements in various objective
speech evaluation indicators, which proves the effectiveness
of the DNN-LPRM in removing the reverberation in speech.
The robustness of the algorithm to different levels of rever-
beration has also been tested, and it performs consistently
well in different reverberant scenarios. The performance of
the algorithm has been compared with the method using DNN
mapping on the speech-level feature, and the results show
that our algorithm surpasses the speech-level feature mapping
algorithm by 4.1 dB in fwSegSNR.
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