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Abstract—Recent single-channel speech enhancement meth-
ods based on deep neural networks (DNNs) have achieved
remarkable results, but there are still generalization problems
in real scenes. Like other data-driven methods, DNN-based
speech enhancement models produce significant performance
degradation on untrained data. In this study, we make full use
of the contribution of multi-target joint learning to the model
generalization capability, and propose a lightweight and low-
computing dilated convolutional network (DCN) model for a
more robust speech denoising task. Our goal is to integrate the
masking target, the mapping target, and the parameters of the
traditional speech enhancement estimator into a DCN model to
maximize their complementary advantages. To do this, we build
a multi-stage learning framework to deal with multiple targets
in stages to achieve their joint learning, namely ‘MT-in-MS’.
Our experimental results show that compared with the state-
of-the-art time domain and time-frequency domain models, this
proposed low-cost DCN model can achieve better generalization
performance in speaker, noise, and channel mismatch cases.

By dint of the powerful capability of deep neural networks
(DNNs), DNN-based SE algorithms have made great progress
in recent years, especially in dealing with non-stationary
noises. Formulated as a supervised learning problem, direct
mapping [4], [5], mask [6], [7], and raw waveforms[8], [9] are
usually regarded as the targets for network training. Despite
the impressive effect of DNN-based SE approaches, they
usually exhibit worse robustness over traditional methods in
untrained cases. Recently, recurrent units, like long short-term
memory (LSTM) or gated recurrent unit (GRU), are adopted
and reported to improve the generalization performance toward
different noises and speakers [10], [11], [12]. This is because
the recurrent mechanism can harness the contextual informa-
tion of speech utterance, which is proved to be significant
for speech analysis. Besides, full convolutional models with
superimposed dilated convolutions are also recommended due
to their efficient long-term temporal modeling ability [13],
[14], [15]. More recently, to take advantage of the robustness
of traditional methods, DeepMMSE is proposed [16], where a
temporal convolutional network (TCN) is utilized to estimate
the prior SNR and then integrates it into the traditional method.
However, the performance is still limited in low SNRs, and the
robustness in cross-corpus (channel mismatch) cases has not
been explored yet.

In this paper, we studied the contributions of different
targets toward the generalization ability of DNNs and pro-
posed a two-stage paradigm with multi-targets to achieve
more comprehensive robustness in noise, speaker, and channel

I. INTRODUCTION

Speech enhancement (SE), which aims at removing noise
interference in the received speech signals, is a necessary
signal processing technology in many real-world applica-
tions, like hearing aids, mobile phones, and automatic speech
recognition (ASR) systems. It can work on the embedded
devices or in the cloud, which deals with noise reduction in
some simple or complex acoustic scenes. Despite the effective
performance of SE, it is still challenging to design high-
robustness, low-complexity methods, even real-time systems

to meet the requirements of front-end processing.

Early single-channel SE approaches attempt to derive the
gain functions to suppress the noise components based on
some prior assumptions, such as the Gaussian distribution
hypothesis and minimum mean square error (MMSE) cri-
terion. For these traditional SE methods, such as Wiener
filtering [1], MMSE-based log-spectral amplitude (MMSE-
LSA) estimator [2], and the optimally modified log-spectral
amplitude (OMLSA) estimator[3], accurate estimation of the
noise power spectrum density (NPSD) and the prior signal-
to-noise ratio (SNR) is heavily required. Despite that many
traditional algorithms have been proposed to estimate the
NPSD and prior SNR and validated to be robust when some
ideal assumptions are satisfied, they often fail to work in some

more complex non-stationary scenarios.
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mismatch cases. Specifically, in the first stage, we proposed a
novel multi-target architecture, where both complex spectrum
and ideal ratio mask (IRM) are jointly learned. Based on
that, the enhanced magnitude is extracted and fed into the
second stage to estimate the prior SNR. The rationale is three-
fold. Firstly, the phase and magnitude can be simultaneously
enhanced in the first stage. Secondly, the first stage provides an
SNR-improved magnitude as prior information and therefore
facilitates the more accurate prior SNR estimation in the
second stage, which guarantees better robustness in adverse
conditions. Moreover, we fuse different targets as the final
target to achieve their complementary advantages, which is
helpful for model generalization. To make our model more effi-
cient for training and inference, we only used 1-D convolutions
to build a fully convolutional network model. The adopted
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Fig. 1. Speech enhancement framework of the proposed MT-in-MS model.

multi-scale dilated convolution effectively reduces the model
size and the required floating-point of operations (FLOPs).

The remainder of this paper is structured as follows. The
formulation of multi-targets is presented in Section 2. Section
3 describes the multi-stage learning framework. Section 4 and
Section 5 are the experiment results and conclusion.

II. THE FORMULATION OF MULTI-TARGET

Short-time Fourier transform (STFT) is still the most effec-
tive time-frequency (TF) analysis tool for speech enhancement
tasks, and it is easier to distinguish speech and noise in the
TF domain than the time domain. Let y(z) , x(z), and n(z)
denote the noisy speech, clean speech, and background noise,
respectively, and the noisy speech y(z) follows the additive
noise model. The STFT spectrum of signals can be expressed
as follows:

ey

where k and ¢ indicate the frequency and frame index, Y(k,?),
X(k,t) and N(k,t) respectively refer to the STFT components
of noisy, clean, and noise.

As a generally recognized effective masking target, IRM is
defined as follows:

Y (k,t) = X (k,t) + N(k,t)

- X2(k,1)
IRM (k,t) = \/Xz(k,l) + N2(k,1)

The form of IRM is very similar to the square-root Wiener
filter, and its data range is also from [0,1], which is easy to
learn and its performance is relatively stable.

Considering phase information can help to improve speech
quality, we choose complex spectrum as our mapping target
to model:

Y (k,1) =[Re(X (k,1)) + Re(N(k,1))]
+i - [Im(X (k1)) + Im(N(k,1))]
=Re(Y(k,1)) +i-Im(Y (k,1))

2

3

where Re(-) and Im(-) represents the real and imaginary parts
(RI) of STFT spectrum. The RI spectrum not only has a clear
harmonic structure similar to the magnitude spectrum, but also
implicitly contains the phase information. Thus, it helps to
reduce the phase distortion problem caused by noise.

To fuse DNN-based methods and traditional methods, the
prior SNR is the key bridge. The definition of prior SNR is
as follows:

Az (K, 1)

An (K, 1)

where \, (k,[)=E {|X (k, 1)|2} and \, (k,1)=E {|N (k, 1)\2}
represent the variance of the clean speech and noise spectrum.
Since the data range of the prior SNR is too large, it is not
easy to converge. Therefore, a cumulative distribution function
(CDF) compression method recommended by [17] is used to
adjust the range to [0,1].

(k1) = “)

III. MULTI-STAGE LEARNING MODEL

In order to better integrate multiple targets, we propose a
two-stage learning model, and the block diagram of this model
is shown in Fig.1. The detailed configurations of the model
structure have been presented in Table I. We will introduce
the design details in the following subsections.

A. Stage I: Joint learning of IRM and RI

As defined in Section 2, IRM characterizes the degree of
noise suppression at different frequency points. That is, if
there are no speech components at some frequency points, the
expected IRM should be zero, while at some frequency points
where the proportion of speech components is high, the value
of IRM tends to be one. Therefore, it is natural to regard it
as a gating operation to distinguish speech and non-speech
components.

Based on this, we propose an interactive learning method
between the IRM and RI targets [18]. As shown in Fig.1,
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TABLE I
THE DETAILED CONFIGURATIONS OF THE PROPOSED MODEL, I AND II
REPRESENT THE STRUCTURES OF THE FIRST AND SECOND STAGES,

RESPECTIVELY
Layers Kernel Size Output Size Dilated Rate
I: Conv 1 320%3 (—1,320) 1
I: Conv 2 3203 (—1,161) 3
I: Conv 3 161x3 (—1,161) 5
I: Conv 4 161x1 (—1,161) 1
I: Conv 5 644x1 (—1,644) 1
I: Sigmoid 322x1 (—1,161) 1
I: Linear 644x1 (—1,322) 1
I: Sub Conv 40/41/80/81x3 | (—1,40/41) (1,3,5)
II: Wide Conv 322/161x1 (—1,322) 1
II: Narrow Conv 322x1 (—1,161) 1
II: Sub Conv 40/41/80/81x3 | (—1,40/41) | (2¢,d=0~4)
II: Sigmoid 322x1 (—1,161) 1

we use two parallel branches to learn IRM and RI targets
interactively, and in each branch, IRM and RI targets are
learned step by step through many multi-scale analysis units.
For each multi-scale unit, our bidirectional multi-scale con-
volution method [19] is adopted to encode the features. The
input features are firstly divided into m groups in multi-scale
layer for 1-D sub-band convolutional operation, and then batch
normalization (BN) [20], ReLU, and dropout (DP) [21]. After
the multi-scale layer, we respectively use a ‘linear’ and a
‘sigmoid’ layer to produce the intermediate representations of
RI and IRM. Both layers use the 1-D convolution to integrate
the analysis results, but the convolutional layer of the IRM
branch adds the Sigmoid activation function to act on different
RI feature dimensions to realize the information interaction.

Besides, since the feature dimensions of the ‘sigmoid’ and
‘linear’ layers are not equal, which are 161 dimensions and
322 dimensions respectively, we duplicate the generated gating
factors and multiply them on the real and imaginary features
respectively. In our model, the number of multi-scale units is
set to 3 with the dilation rate of 1, 3, and 5, and the divided
subgroups for IRM and RI branches are 8 and 16, respectively.

In order to extract more comprehensive acoustic features,
we firstly extract the long-term features from the time-domain
signals through four dilated convolution layers and then fuse
the extracted TF features, log power spectrum (LPS) and RI
spectrum, through a 1-D convolution layer. The noisy LPS
and RI are stacked forward to the multi-scale units of two
branches, which effectively shortens the gradient propagation
path. At the end of the first stage model, the enhanced RI and
IRM are obtained. At the same time, a simple fusion is made
on the output of the first stage to prepare for the input of the
second stage. For the output of the IRM branch, the estimated
IRM value is multiplied by the noisy magnitude spectrum to
get the masked magnitude:

‘XIRM(k'vt)‘ = V/exp (LPS (Xin(k,1))) - Xiras (k. t)  (5)
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Then, we average the masked magnitude spectrum with the
reconstructed magnitude from the enhanced RI:

‘X(k,t)’ = % (‘Xm(kvt)) + ‘XIRM(kvt)D (6)

To better estimate the prior SNR, we concatenate the averaged
and noisy magnitude as the input of the second stage model.

B. Stage II: Learning Prior SNR

For a priori SNR modeling scheme, previous work has
proved that the TCN model [16] has more advantages than the
LSTM model [17] in terms of performance and computational
complexity. Thus, we also adopt the TCN structure to estimate
the prior SNR. The difference is that we apply the multi-
scale dilated convolution used in the first stage to replace the
normal 1-D dilated convolution in the original TCN residual
block. This introduced multi-scale convolution layer not only
reduces the number of residual blocks, but also improves the
granularity of temporal feature analysis. In our proposed TCN
model, we stack 8 multi-scale residual blocks, and the dilation
rate cycles in increments of 1, 2, 4, 8, and 16.

The training target of the second stage model is the prior
SNR, as described in Section 2. Therefore, as shown in Fig.1,
after the last multi-scale residual block, a ‘sigmoid’ layer is
used to estimate a compressed version of prior SNR. Different
from the previous prior SNR mapping schemes, which only
estimate from the noisy magnitude spectrum, the combination
of enhanced magnitude and noisy magnitude can provide
a better reference for the model to map prior SNR. Also,
in the model inference stage, we adopt the phase spectrum
recovered from the enhanced RI spectrum of the first stage
to resynthesize, which can further improve the upper limit of
performance.

C. Loss Function

The whole model is trained in two stages, and an intermedi-
ate estimate is obtained for each stage. Therefore, we define an
accumulated loss to jointly optimize the targets of two stages:

Loss = o - LoSSstager + B - LOSSgtagerr @)

Where « and ( are the weighted coefficients for each stage.
The loss in the first stage is composed of two parts, which are
the mean square error (MSE) loss of IRM and RI:
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Where T' and K represent the mini-batch size and feature
size, respectively, and Xrys and X gy are the ideal IRM and
RI targets. For the loss in the second stage, cross-entropy is
used as the loss function:
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Where X,,;snr is the ideal prior SNR, log(-) is a logarithmic ~ For the speaker mismatch case, 320 utterances from different
operation with base 2. Because the loss values of the two speakers are mixed with the last 20% of the 12 noises as
stages are of the same order of magnitude, we set a=3=1 in the speaker mismatch set. Besides, 3 new noises (cockpit3,
this study. factory2, pink) from NOISEX-92 are mixed with these 320
. . utterances as the noise mismatch set. To construct the more
D. Multi-Target Fusion for Model Inference challenging channel mismatch case, we randomly select 320
In the model inference stage, we propose a multi-target ygterances from Voice Bank database [24] and mix them with
fusion method to achieve the complementary advantages of  four real noises (pedestrian area, street, bus, and café) of
the three targets. Firstly, in order to utilize the advantages CHiME-4 [25]. The test SNR levels are fixed at {-5, 0, 5,
of traditional speech enhancement methods, the prior SNR 10, 15} dBs. The short-time objective intelligibility (STOI)
predicted by the second stage model is substituted into the [26] and perceptual evaluation of speech quality (PESQ) [27]
gain function of MMSE-LSA: are adopted as two evaluation metrics.

E — In our experiment, all the utterances are resampled to 16

£k, 1) 1 e
Guvse—rsalk, ) = ﬁexp 3 / dx (10)  kHz. In order to reduce the time-delay as much as possible, we
b9+ vikt) T split the utterance into frames by a Hamming window with 20
and v(k,t) is given by: ms length and 10ms overlap. 320-point STFT is performed for
£k, 1) TF analysis, and the extracted feature sizes of the waveform,
v(k,t) = W’Y(h t) (11) LPS, and RI spectrum are 320, 161, and 322, respectively. The

model is optimized by Adam [28] for each mini-batch size of
Where the posterior SNR v(k,t) is estimated by 1+£(k,t). 10,000 consecutive frames. The dropout rate in our model is
Then, we can obtain the MMSE-LSA enhanced magnitude: set to 0.2.

PzpriSNR (k,t)

Moreover, the enhanced results of the first stage model are

:\/gxp(LPS(Xm &,9))-Grnase-rsak,f) (12) B The contributions of targets for model generalization
In this section, we study the performance of three targets
also incorporated: (IRM, RI, and prior SNR) in the case of the speaker, noise,
and channel mismatch. Three independent sub-models are
:1(‘ Kt ) ) (13) separated from our MT-in-MS model, namely IRM model,
3 RI model, and prior SNR model. Fig.2 presents the averaged
At the same time, the reconstructed phase of the enhanced RI PESQ and STOI results under three mismatch cases.
spectrum is used to replace the noisy phase for resynthesis:

Im (Xm(k,t))

‘X(k,t)

—0—’ Xrrnr (k1)

+’ Xpm‘SNR ()

PESQ STOI

3.5

0 (k,t) = arctan (14)

X N
Rf Re (Xm(k, t))
X(k,t) = |X(k,0)] - exp (ifg,, (kD) (5)
It is helpful to reduce the phase distortion caused by noises.
The final enhanced waveform can be obtained through inverse o [ Prior SNR model
STFT operations. . LT ins

0
Speaker Noise Channel Speaker Noise Channel

IV. EXPERIMENT AND RESULTS

A. Experimental setups Fig. 2. Averaged PESQ and STOI results for different targets in speaker, noise
) ) and channel mismatch cases.
In our experiment, we perform the model evaluation on the

TIMIT speech database [22], which contains a total of 6300 From the above Fig.2, we can find that the prior SNR
sentences spoken by 630 speakers. 4,620 training utterances target performs better in terms of speech quality, while the
are corrupted by 12 noise cases (babble, factoryl, destroyerl, RI target produces better speech intelligibility in the speaker
destroyer2, cockpitl, cockpit2, volvo, tank, leopard, white, and noise mismatch cases. The IRM target is relatively stable
hfchannel, machinegun) from NOISEX-92 database [23] to in three mismatch cases and has more performance advantages
generate a 38-hour training dataset. Each utterance is mixed in the channel mismatch case. The proposed MT-in-MS model
with the first 60% part of each noise file, and the mixed SNR  deeply integrates the three targets, gives full play to different
level follows the uniform distribution in the range of -5 to  advantages, and achieves the best performance.

15. To guide model training, we also generate a validation

dataset by mixing 280 utterances from the TIMIT test set with - Comparison with the state-of-the-art methods

the middle 20% of each noise file. As for the construction In this section, the comparison models are evaluated from
of the noisy test dataset, we consider speaker, noise, and three aspects: generalization performance, model size, and
channel mismatch to evaluate the generalization of the model. computational complexity (the floating-point of operations,
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FLOPs). We compare the MT-in-MS with two state-of-the- explore the generalization performance of different learning
art models, GCRN [11] and DDAEC [9]. Both models also targets in various data mismatch cases, and propose a multi-
consider phase distortion, and process speech signals from the target fusion scheme to achieve their complementary advan-
complex domain and time domain respectively. The evaluated tages. We use a multi-branch learning structure to integrate
results of PESQ and STOI for different models are shown in the IRM and RI targets, and further achieve the fusion with
Table II and Table III, respectively. the traditional method in a multi-stage learning way. The

incorporation of multi-scale convolution allows us to design a

THE AVERAGED PESQ RESULTEﬁ%I;EDiiFERENT MODELS IN SPEAKER, lightweight and efficient model to integrate different targets.
NOISE AND CHANNEL MISMATCH CASES Experimental results show that, compared with the state-
of-the-art models, the proposed MT-in-MS model achieves
Methods PESQ better generalization performance while further reducing the
Speaker | Noise | Channel | Ave computational burden for real-time processing.
Noisy 2.18 2.05 2.30 2.18

GCRN [11] 3.06 2.85 2.47 2.79 ACKNOWLEDGMENT
DDAEC [9] 2.96 2.84 2.58 2.79 This work was supported by the Natural Science Foundation
MT-in-MS 3.15 2.88 2.70 2.91 of Guangdong Province under Grant No. 2020B1515120004,

and the Shenzhen Basic Research Program under Grant No.
JCY20180503182125190 and JCYJ20180507182241622.
TABLE III
THE AVERAGED STOI RESULTS FOR DIFFERENT MODELS IN SPEAKER, REFERENCES
NOISE AND CHANNEL MISMATCH CASES
[1] P. Scalart ef al., “Speech enhancement based on a priori signal to noise

STOI estimation,” in ICASSP, 1996, pp. 629-632.
Methods [2] Y. Ephraim and D. Malah, “Speech enhancement using a minimum
p P! g
Speaker | Noise | Channel Ave mean-square error log-spectral amplitude estimator,” IEEE Transactions
Noisy 0.794 0.781 0.658 0.744 on Acoustics, Speech, and Signal Processing, vol. 33, no. 2, pp. 443—
445, 1985.
GCRN [11] 0.912 0.892 0.645 0.816 [3] I. Cohen and B. Berdugo, “Speech enhancement for non-stationary noise
DDAEC [9] 0.908 0.897 0.678 0.828 environments,” Signal Processing, vol. 81, no. 11, pp. 2403-2418, 2001.
MToin-MS 0912 0.889 0.676 0.826 [4] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “A regression approach to speech
n enhancement based on deep neural networks,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 23, no. 1, pp. 7-19,
It can be observed that the proposed MT-in-MS model has 2014.

bvi loritv in t f PESQ ially in th [S] A. Kumar and D. Florencio, “Speech enhancement in multiple-
obvious .superlorl y m _erms o » especia y.m ¢ more noise conditions using deep neural networks,” arXiv preprint

challenging channel mismatch case. Compared with the other arXiv:1605.02427, 2016.

—

two methods, the proposed model has an average performance  [6] Y. Wang, A. Narayanan, and D. Wang, “On training targets for super-
. . PRI vised speech separation,” IEEE/ACM Transactions on Audio, Speech,
advantage of 0.12 in PESQ. As for speech intelligibility, the and Language Processing, vol. 22, no. 12, pp. 1849-1858, 2014.

time-domain model DDAEC obtains better STOI results in the  [7] D. S. Williamson, Y. Wang, and D. Wang, “Complex ratio masking for

noise and channel mismatch cases. The GCRN model fails to monaural speech separa'tion,” 1EEE/ACM Transactions on Audio, Speech,
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K X [8] A. Pandey and D. Wang, “A new framework for supervised speech
Our MT-in-MS obtains STOI results very close to DDAEC. If enhancement in the time domain,” in INTERSPEECH, 2018, pp. 1136—
we further consider the model size and computation, the MT- 1140.
in-MS will be the optimal solution. Table IV has summarized [9] A.Pandey and D. Wang, “Densely connected neural network with dilated

. i R convolutions for real-time speech enhancement in the time domain,” in
the statistic model size and FLOPs of comparison models. ICASSP, 2020, pp. 6629-6633.

The DDAEC and MT-in-MS models have smaller model [10] J. Chen and D. Wang, “Long short-term memory for speaker general-

. . . . ization in supervised speech separation,” The Journal of the Acoustical
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TABLE IV IEEE/ACM Transactions on Audio, Speech, and Language Processing,

MODEL SIZE AND FLOPS OF COMPARISON MODELS, COUNTED IN vol. 28, pp. 380-390, 2020.
MILLIONS (M) [12] Y. Hu, Y. Liu, S. Lv, M. Xing, S. Zhang, Y. Fu, J. Wu, B. Zhang,
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R phase-aware speech enhancement,” in INTERSPEECH, 2019, pp. 2472—
Methods GCRN | DDAEC | MT-in-MS 2476,

Model size 98 M 48 M 48 M [13] K. Tan, J. Chen, and D. Wang, “Gated residual networks with dilated
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FLOPs 4717M | 7765 M 96 M tions on Audio, Speech, and Language Processing, vol. 27, no. 1, pp.

189-198, 2018.
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