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Abstract— We propose a multi-channel speech enhancement 
approach with a novel two-stage feature fusion method and a 
pre-trained acoustic model in a multi-task learning paradigm.  
In the first fusion stage, the time-domain and frequency-domain 
features are extracted separately.  In the time domain, the 
multi-channel convolution sum (MCS) and the inter-channel 
convolution differences (ICDs) features are computed and then 
integrated with the first 2-D convolutional layer, while in the 
frequency domain, the log-power spectra (LPS) features from 
both original channels and super-directive beamforming outputs 
are combined with a second 2-D convolutional layer.  To fully 
integrate the rich information of multi-channel speech, i.e. time-
frequency domain features and the array geometry, we apply a 
third 2-D convolutional layer in the second fusion stage to obtain 
the final convolutional features.  Furthermore, we propose to 
use a fixed clean acoustic model trained with the end-to-end 
lattice-free maximum mutual information criterion to enforce 
the enhanced output to have the same distribution as the clean 
waveform to alleviate the over-estimation problem of the 
enhancement task and constrain distortion.  On the Task1 
development dataset of ConferencingSpeech 2021 challenge, a 
PESQ improvement of 0.24 and 0.19 is attained compared to the 
official baseline and a recently proposed multi-channel 
separation method. 

I. INTRODUCTION 

With the rapid development of deep learning techniques, 
speech enhancement, as well as speech separation, has made a 
great progress in recent years.  Many single channel speech 
separation and enhancement methods based on deep learning 
have been proposed, such as deep clustering [1], permutation 
invariant training(PIT) [2][3], time-domain audio separation 
network (TasNet) [4]-[6], Wavesplit [7], U-Net [8], SN-Net 
[9], DCCRN [10] and so on.  All these methods could utilize 
the information well in time domain or frequency domain. 

In practice, microphone arrays are commonly assigned to 
record multi-source multi-channel data.  Once multiple 
microphones are available, the spatial information associated 
with sources can be exploited for speech enhancement.  
Inter-channel phase differences (IPDs) are the most 
commonly used spatial features and have been proven to be 
beneficial, especially when combining with monaural spectral 
features as the input feature for time-frequency (T-F) masking 

based methods[11]-[14].  Unfortunately, it is not 
straightforward to incorporate IPDs with time-domain 
methods as IPDs are typically extracted from frequency 
domain with fixed complex filters (i.e., short time Fourier 
transform, STFT) whose window type/length and hop size are 
different from the encoders used in time domain.  In order to 
enhance the source signal from a desired direction, directional 
features associated with a certain direction which indicate the 
desired source’s dominance in each T-F bin have been 
presented in [15][16].  However, the knowledge of the target 
direction is unknown in real applications, and it is difficult to 
accurately estimate.  Spatial information can be easily 
utilized by frequency-domain beamforming methods naturally 
[17][18], which have obtained great progress when combined 
with deep neural network (DNN).  Such DNNs are usually 
incorporated into the beamforming framework to estimate 
parameters or masks [19][20][21].  In the time domain, 
spatial information such as multi-channel convolution sum 
(MCS) and inter-channel convolution differences (ICDs), 
have also been demonstrated to be beneficial [22].  Although 
using time-domain features are effective, the enhanced 
performance often degrades sharply when processing unseen 
data, while the frequency-domain features, e.g. log-power 
spectra (LPS), have strong generalization ability [23].  
Reference [24] has conducted deep fusion on different kinds 
of frequency domain features.  However, the research on the 
fusion of time-frequency domain features is not extensive in 
the multi-channel enhancement literatures. 

Apart from the feature extraction, the objective function has 
fundamental impact on the enhancement performance.  While 
most architectures combining enhancement objective and 
recognition objective mainly focus on the improvement of 
recognition accuracy [25][26], there arise recently methods 
aiming to use classification objective to aid the regression 
objective.  Reference [27] proposed to use end-to-end 
automatic speech recognition (ASR) training objectives to 
train an enhancement system without using parallel data and 
shows good effectiveness.  In [28], the authors reformulated 
speech enhancement as a classification model in an ASR 
manner instead of a regression model.  Specifically, a 
quantized speech prediction model was proposed to recover 
more realistic speech spectra against time-frequency masking 

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

564978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021



approaches. 
In this work, we propose a multi-task method to enhance 

the source signal, in which we consider the speech 
enhancement as the main task and the ASR as the auxiliary 
task.  For the main task, we train a multi-channel speech 
enhancement model with a two-stage feature fusion method, 
in which we integrate time-domain features, frequency-
domain features and spatial features together by three 2-D 
convolutional layers.  For the auxiliary task, we propose to 
constrain the output speech distortion by applying an acoustic 
model trained with clean speech data using the end-to-end 
lattice-free maximum mutual information (LF-MMI) criterion 

[29][30] which is commonly used in ASR task. 
The rest of this paper is organized as follows.  Section 2 

describes our proposed system in detail.  Data generation, 
experimental results and analysis are presented in Section 3.  
Section 4 concludes the paper. 

II. PROPOSED METHOD 

Fig. 1 shows the overall structure of our proposed system.  
Two parts are included: speech enhancement branch and 
acoustic model branch.  We introduce them in detail as 
follows. 
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Fig. 1   The overall structure of our proposed system. 

 

A. Speech enhancement branch 
This part is implemented to produce enhancement output 

waveform.  The input features to the backbone network are 
generated by an innovative two-stage feature fusion method. 

First, we extract the time-domain and frequency-domain 
features in the first stage of fusion.  In the time domain, MCS 
and ICDs features are computed [22].  MCS and ICDs both 
take fully advantage of the inter-channel information in the 
time domain.  MCS is designed similar to the filter-and-sum 
beamforming, and the thn ( 1,...,n N=  ) MCS output is 
computed by summing up the convolution products between 
the thc  channel mixture signal cx  and filter cnk  along 
signal channel c , i.e. 

 
1

MCS ,
C

n c cn
c

x k
=

= ⊗∑  (1) 

where ⊗  denotes the convolution operation.  MCS utilizes 
the information of all input channels and is implemented by a 
2-D convolutional layer, with the kernel size ( )C L×  for the 

filter cnk , in which C is the channel number and L is the 
window length.  The stride along width axis is fixed as L/2 
in our experiments.  ICDs are designed similar to IPDs from 
the frequency domain.  The thn  ( 1,...,n N=  ) ICD 
between the thm  channel pair is computed by the 
convolution products between the thm  pair of signals and 
the corresponding filter '

nk , 

 ( )
1 2

' '
1 2ICD ( ) ( )m

n m n m nx k x kω ω= ⋅ ⊗ − ⋅ ⊗  (2) 

where 
1mx  and 

2mx  represent the signals of the thm pair, 
1

1
Lω ×∈  is fixed as full ones and 1

2
Lω ×∈ as a learnable 

parameter initialized with ones.  The ICD layer is 
implemented by a 2-D dilated convolutional layer with the 
kernel size (2 )L× .  The stride is also set to L/2, and the 
dilation is 4.  Then the MCS and ICDs are integrated with the 
first 2-D fusion convolutional layer with kernel size ( )5 3× .  
Note that all 2-D convolutional layers mentioned below are 
composed of a 2-D convolutional operation, a ReLU (rectified 
linear unit) activation, and a 2-D batch-norm activation, 
unless otherwise stated. 

As stated in section I, it is necessary to explore to extract 
frequency-domain features in addition to time-domain 
features.  STFT is performed to transform the signals from 
time domain to frequency domain, with the window size 
being L and the hop size being L/2, which are the same to that 
in time-domain features.  Then, both intra-channel and inter-
channel features are employed in the frequency domain.  The 
intra-channel features are the LPS features from original 
channels, while the inter-channel feature is the LPS feature of 
super-directive beamformer (SDBF) [31] outputs which 
utilize the array geometry information directly and assume 
spherically isotropic noise field.  The SDBF is performed in 
uniformly distributed directions, and the output Y  is 
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computed by the product of the SDBF weight vector SDw  
and multi-channel input X ,  

 H
SD ,Y w X=  (3) 

where H is the Hermitian (conjugate transpose) operator.  
The details of SDw  computation is referred to [21][31].  
Then a second 2-D fusion convolutional layer with kernel size 
( )5 3×  is used to combine the above extracted intra- and 
inter-channel frequency features. 

In the second fusion stage, a third 2-D convolutional fusion 
layer with kernel size ( )3 3×  is applied to form the final 
convolutional features as 2-D convolution operation can 
extract the local features from time and frequency domain 
simultaneously.  Then the output is reshaped and passed to 
the backbone network, a dilated convolutional neural network 
(CNN) same to the separation module in Conv-TasNet [5], 
which is denoted as TCN (temporal convolutional network).  
A complex mask is obtained as output of TCN.  Then the 
estimated speech spectrum is formed by multiplying the input 
complex spectrum of the first channel by the mask.  Finally 
inverse STFT is used to convert the estimated spectrum into 
time domain and overlap-and-add method is used. 

B. Acoustic model branch 
As we empirically found, neural network based speech 

enhancement methods suffer severely from the over-
estimation problem and cause obvious distortion especially 
when non-stationary noise exists.  In this context, we add a 
subsequent task of acoustic modeling to constrain the 
distortion of the enhanced waveform.  The intuition behind 
is that a fixed acoustic model trained with clean data could 
extract the structural and detailed feature of clean speech, thus 
the enhancement branch output would gradually approximate 
the clean speech by performing the backpropagation.  In the 
acoustic model branch, the LPS feature of the enhanced 
waveform is extracted and feed into the acoustic model 
branch whose architecture is the time delay neural network 
(TDNN) [32][33] designed to model both left and right 
context during training.  Note, in the inference stage, we 
remove this branch to spare unnecessary computation and 
keep the system zero look-ahead. 

C. Loss functions 
As stated above, the proposed system has two branches, 

thus the loss function totall  is composed of two objectives.  

SI-SNR (scale-invariant signal-to-noise ratio) loss [34] enhl  
is used in the speech enhancement branch, which is one of the 
most commonly used loss functions in speech enhancement 
tasks.  In the second branch, the end-to-end LF-MMI loss 

aml  [29][30] is used to ensure the recognition performance 
because of its discriminative nature, especially when the 
training set is relative small.  The total loss function totall  is 
calculated as follows, 

 ,total enh aml l lα β= +  (4) 

 

2

2
10 2

2

10 log ,target
enh

noise

x
l

e
= −  (5) 

where α  and β  are the weights for SI-SNR loss and LF-

MMI loss, respectively.  And 2

2
ˆ, /targetx x x x x= 〈 〉 , 

ˆnoise targete x x= − ,  x̂  and x  are the estimated source and 
clean waveform, respectively. 

III. EXPERIMENTAL SETUP & RESULTS ANALYSIS 

A. Data augmentation and generation 
Here the data from the ConferencingSpeech 2021 challenge 

[35] is used to evaluate our proposed system.  We focus on 
Task1 of the challenge: multi-channel speech enhancement 
with a single microphone array.  In this task, speech from a 
single linear microphone array with non-uniform distributed 
microphones is acquired to perform enhancement and no 
future information (zero look-ahead) could be used for 
practical application requirement.  Fig. 2 shows the 
experimental environment and array configuration.  The 
array is a linear array with eight non-uniformly distributed 
microphones.  The intervals among microphones could be 
referred in Fig. 2. 

 
Room

Table

M
icrophone array

15 10 1510205 5

mic1 mic2 mic3 mic4 mic5 mic6 mic7 mic8  

Fig. 2   The setup of microphone array in the room.  The unit is 
centimeter. 

The total duration of our training set is 122 hours for 
extensive experiments.  We simulate 8-channel received 
speech by convolving single-channel clean speech and noise 
with their corresponding simulated multi-channel room 
impulse responses (RIRs) and mixing them together.  The 
clean speech is select randomly from the public data sets 
(AISHELL-1 [36], AISHELL-3 [37], VCTK [38], 
Librispeech [39]), and the noise sources from MUSAN [40] 
and Audioset [41].  In order to improve the generalization of 
our enhancement model, we do three kinds of augmentation 
on the clean speech, including speed, tempo and volume 
perturbations, right before convolution with RIRs.  The 
percentage of the three kinds of augmentations is set to be 
1:2:3.  We control the ratio of small, medium, and large 
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rooms to be 2:3:3 to improve the dereverberation performance 
when processing the speech in medium and large rooms.  To 
be specific, a room with width and length in [3m, 5m) is 
defined to be small, a room with width and length in [5m, 7m) 
is defined as medium, and that with [7m, 8m] width and 
length is defined as large.  All the waveforms are resampled 
to 16 kHz. 

The 8-channel development test set is generated similarly 
to the training set, except the data augmentation.  Every 
utterance in the development test set is truncated to 6s.  The 
clean speech and RIRs used in the development test set is 
different from that in the training set. 

B. Experimental setting  
We implemented our proposed method in Pytorch.  In 

order to decrease the communication burden between parallel 
training machines, we adopted the Blockwise Model-Update 
Filtering (BMUF) algorithm [42] to accelerate the training 
progress for the proposed multi-task at the price of very small 
performance degradation. 

For all models, the initial learning rate is set to 1e-3.  And 
the learning rate is determined by Adam optimizer with 
weight-decay of 1e-5.  The Hanning window size is 20ms, 
the hop size is 10ms, and FFT length is 512.  The parameters 
in TCN is the same as the best setup of Conv-TasNet in [5].  
When applied, four pairs of IPDs are computed from channel 
1 (ch1) and ch5, ch2 and ch6, ch3 and ch7, ch4 and ch8, 
respectively.  And the ICD features are also extracted among 
the four pairs of microphones.  For MSC, ICD and IPD of 
each pair, the output dimension is 257N = .  For the SDBF 
module, only the first two channels are used to do 
beamforming on seven directions ( π / 8, 1,2,...7i i = ) for 
saving computation because more channels would lead to 
narrower beam width and the directions have to be increased 
much to cover the whole spatial space.  For the proposed 
two-stage fusion, the first fusion Conv2D layer has the 
number of input and output channels ( )5, 8  with stride 

( )2,1 , the second fusion Conv2D layer has ( )15, 8  with 

stride ( )2,1  and the third fusion Conv2D layer has ( )16, 8  

with stride ( )1,1 .  When Conv1D fusion is applied, the 
number of output channels are 128, while the input channels 
are dependent on the configurations.  For all convolutional 
operations, causal convolution is applied. 

For acoustic model training, we use JIEBA [44] for word 
segmentation.  Then the CMU dictionary and MDBG 
Chinese dictionary [45] are used because the training set 
contains both English words and Chinese characters.  Nine 
TDNNs are adopted to construct the acoustic model.  In each 
TDNN, there are two feed-forward layers imitating the 
TDNN-F structure [33], where the first one has input-dim of 
1536 and output-dim of 512 while the second one has input-
dim of 512 and output-dim of 1536.  One final linear layer 
projects the TDNN output to 3920 which is the number of 
biphone modeling units.  Practically, we first train the clean 
acoustic model (AM) and then fix the parameters of it when 

doing multi-task learning with the total loss.  The loss 
weights for the two branches are equal, i.e., 1.0α β= = . 

To evaluate the quality of the enhanced speech, we use four 
kinds of objective measures, perceptual evaluation of speech 
quality (PESQ) [46] , short term objective intelligibility 
(STOI) [47][48] , extended STOI (E-STOI) and SI-SNR. 

C. Architectures comparisons 
To demonstrate the effectiveness of our proposed 

architecture, we conducted experiments in comparisons with 
two baseline systems.  Our first baseline system is the 
official baseline of the challenge.  The input feature is the 
concatenate of the frequency-domain complex spectrum of 
the first channel and the four pairs of IPDs between different 
channels.  The model structure is a 3-layer LSTM followed 
by a linear layer outputting a complex mask to be multiplied 
with the input complex spectrum.  To keep consistency, we 
use frequency-domain features in all following experiments.  
Our second baseline system is developed with the same 
structure (TCN) to [22] except that we used single-channel 
LPS instead of the time-domain single-channel encoder.  It 
concatenates four kinds of frequency and time domain 
features, namely, first-channel LPS, four pairs of IPDs, MCS 
and ICD features.  It feeds the concatenated input to a 
Conv1D layer and then the backbone TCN module.  As TCN 
architecture attains excellent performance as well as low 
computation, we use it as our backbone network in the 
following models. 

For concise presentation, we list key experimental results 
on the development test set from Table 1 to Table 3.  Please 
note that, each utterance in the development set of the 
challenge is truncated or padded repeatedly to be 6-second 
long.  In Table 1, we show the superior performance of the 
proposed system in comparisons with two baseline systems.  
B1 denotes the first baseline and B2 denotes the second 
baseline.  We can see that, the challenge is quite difficult 
because the PESQ score of the first noisy channel is low.  B2 
model combines both time and frequency domain features 
with a TCN and obtained improvement against the challenge 
baseline B1.  With our proposed model, the four kinds of 
measures were improved by a large margin with respect to B1 
and B2, e.g. the PESQ score increases by 0.24 and 0.19. 

Table 1: Four kinds of objective measures of the proposed 
system in comparisons with two baselines.  

model 
symbol PESQ STOI E-STOI SI-SNR 

noisy 1.515 0.823 0.691 4.475 
B1 1.638 0.840 0.706 6.789 
B2 1.679 0.856 0.732 7.414 

Proposed 1.873 0.880 0.768 8.265 
 
For our proposed two-stage feature fusion, the Conv2D 

layer is essential.  In Table 2, the systems with and without 
the Conv2D fusion layer are compared. SC stands for single-
channel.  In the tables, intra-channel (intra-ch) feature means 
the feature is extracted within a channel, while we refer a 
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spatial feature computed among different channels as an inter-
channel (inter-ch) feature.  The two systems in Table 2 both 
operate in the frequency domain.  For model M1, the input 
single-channel LPS is just concatenated with the IPDs along 
the frequency domain and feed into a subsequent Conv1D 
layer, where the M2 model put the two kinds of features as 
different panels to be input into a Conv2D layer and then a 

subsequent Conv1D layer.  With Conv2D fusion, M2 model 
obviously outperformed the M1 model.  We also find that 
though time-domain features are not used in M2, M2 still 
gained obvious improvements compared to the B2 model.  It 
demonstrates that Conv2d is quite useful for feature fusion. 
We then show in Table 3 how the proposed model was built 
with the two-stage fusion using three Conv2D layers.  

Table 2: Four kinds of objective measures of speech enhancement systems with and without a Conv2D fusion layer.  

model 
symbol intra-ch inter-ch fusion PESQ STOI E-STOI SI-SNR 

M1 SC LPS IPD - 1.638 0.853 0.729 7.334 
M2 SC LPS IPD Conv2D 1.756 0.860 0.736 7.875 

Table 3: Four kinds of objective measures of four speech enhancement systems with different configurations.  

model 
symbol 

feature 
backbone AM PESQ STOI E-STOI SI-SNR frequency-domain time-domain fusion-3 intra-ch inter-ch fusion-1 inter-ch fusion-2 

M3 MC LPS - - - - Conv2D TCN - 1.773 0.869 0.749 8.050 

M4 MC LPS SDBF 
LPS - - - Conv2D TCN - 1.769 0.870 0.753 8.122 

M5 MC LPS SDBF 
LPS Conv2D MCS   

+ICD Conv2D Conv2D TCN - 1.779 0.871 0.754 8.093 

Proposed MC LPS SDBF 
LPS Conv2D MCS   

+ICD Conv2D Conv2D TCN TDNN 1.873 0.880 0.768 8.265 

 
In Table 3, four systems using multi-channel LPS features 

with different configurations are compared, which are all 
better than the M2 model fusing the single-channel LPS and 
IPDs.  MC represents multi-channel, fusion-1 is the first 
fusion layer of the first fusion stage and fusion-2 means the 
second fusion layer of the first fusion stage, while fusion-3 
denotes the third fusion in the second fusion stage.  M3 
denotes a system using one Conv2D layer fusing multi-
channel LPS.  M4 model fuse MC LPS and SDBF LPS 
together.  M5 model uses two Conv2D fusion layers in the 
frequency and time domain in the first fusion stage separately 
and further combines them with the third fusion layer in the 
second stage.  During the process, the objective measures 
kept becoming better as we fully utilized the temporal-
frequency-spatial information from the array by applying the 
two-stage three fusion layers.  Moreover, in our final 
proposed architecture, the acoustic model branch is used.  
The results show that with the acoustic model, all metrics get 
substantial improvements upon the M5 model, e.g. the PESQ 
score was improved by 0.094. 

To further illustrate the progress made by out proposed 
model, we compare different processed spectrogram of 
Proposed and the two baselines in Fig. 3.  As we can see, the 
first channel of the example utterance in Fig. 3a is quite 
reverberant and noisy.  The first baseline can dereverberate 
and denoise to a limited extent in Fig. 3b, while the second 
baseline in Fig. 3c removed much reverberation and 
background noise but cancelled some formant of the original 
speech and produced a lot of distortion, especially in the 
medium and high frequency domain.  Shown in Fig. 3d, our 
proposed model performed best, reducing the noise and 
reverberation as well as constraining the distortion, as 

highlighted in the green box. 

  
(a)                             (b) 

  
(c)                             (d) 

 
(e) 

Fig. 3   Processed spectrograms of an example utterance.  (a) The 
noisy first channel.  (b) The official baseline output.  (c) The second 
baseline model output.  (d) The proposed model output.  (e) Clean 

reference.  

IV. CONCLUSIONS 

We have proposed a two-stage feature fusion approach for 
multi-channel enhancement and a novel loss function with a 
pre-trained acoustic model to constrain the speech distortion.  
In the feature fusion approach, we combine the multi-channel 
LPS features and SDBF features in the frequency domain 
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using the first fusion Conv2D layer, incorporate the MCS 
with the ICD features in the time domain with a second fusion 
Conv2D layer, and further fuse the two above outputs with 
the third fusion Conv2D layer.  In the acoustic model, a 
TDNN model is pre-trained with clean speech using the end-
to-end LFMMI criterion.  The results on the Task1 
development test set of the ConferencingSpeech 2021 
challenge demonstrate that our proposed model obtains the 
best performance on comparisons to the official baseline and 
a recently proposed method.  We also observe obvious 
source speech restoration of the utterances processed by our 
model.  In the near future, we will explore more on the 
distributed multi-array speech enhancement task assisted by 
ASR objectives. 
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