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Abstract—We present a low-latency beamforming method by
extending the well-known minimum power distortionless re-
sponse (MPDR) beamformer. Beamforming has been widely used
to extract a target signal arriving from a specific direction. It is
often conducted in the time-frequency domain, which causes an
algorithmic delay for frame analysis. To reduce this delay, it
was proposed to truncate the non-causal components of a spatial
filter in the time domain and convolve it with audio mixtures.
This method can reduce the algorithmic delay, but the truncated
filter was not optimal. To address this problem, we optimize
the spatial filter so that the power of the extracted signal is
minimized under the distortionless and causality constraints. We
further propose a relaxation of the distortionless constraint to
improve the extraction performance. The alternating direction
method of multipliers (ADMM) is used to solve the exact and
relaxed optimization problems. Through numerical experiments,
we investigate the performance of the causal MPDR beamforming
and demonstrate the effectiveness of the relaxation.

I. INTRODUCTION

The aim of beamforming is to extract a target signal arriv-
ing from a specific direction from audio mixtures observed
by multiple microphones [1], [2]. In the literature, various
beamformers have been presented, such as the minimum power
distortionless response (MPDR) beamformer and the minimum
variance distortionless response (MVDR) beamformer [3]–[7].
These beamformers can suppress interference signals without
distorting the sound arriving from the target direction. They
have been successfully applied to automatic speech recogni-
tion [8]–[12] and mobile communication [13].

Beamforming and other spatial filtering techniques have
been applied to real-time audio applications [14]–[19]. In such
applications, we should consider two problems: online estima-
tion of spatial information and reduction in system latency. The
first problem has been tackled by several methods, including
probabilistic-model-based methods [8]–[10] and deep-neural-
network-based methods [20]–[22]. It is thus beyond the scope
of this paper. The second problem is to reduce system latency.
While computational time has been reduced [20], spatial filter-
ing in the time-frequency (T-F) domain causes an algorithmic
delay for short-time Fourier transform (STFT). This delay
is due to buffering the signal in order to apply the discrete
Fourier transform (DFT) and becomes 128 ms when the
window length is 2048 samples with 16 kHz sampling. Such
a long delay is, however, unacceptable for some applications
including hearing aids, because the delayed auditory feedback
and the mismatch between lip movements and sounds disturb
communication [23]. Specifically, a tolerable delay is 6 ms

(a) Causal beamforming in the time domain

(b) Optimization of the causal beamformer via ADMM

ADMM for
the causal MPDR

beamformer

Causal
0

0

STFT

STFT

IDFT

IDFT

Extracted
signal

Convolution

0
0

Audio
mixture

Fig. 1. Block diagram of the proposed causal MPDR beamforming.

for open-fitting hearing aids [24]. We should thus avoid the
algorithmic delay of spatial filtering in the T-F domain.

To solve this issue, a straightforward approach is to use
a shorter window for STFT, but it degrades the extraction
performance of spatial filtering [18]. One promising method
is to truncate the non-causal components of the spatial filter
in the time domain and convolve the truncated filter with
audio mixtures [17]. Once the spatial filter is obtained in
the T-F domain, this method can reduce the algorithmic
delay to an allowable length. Although this method achieved
excellent performance with independent vector analysis [17],
the directivity and frequency response of the truncated filter
are different from those of the original filter designed in the
T-F domain. Furthermore, in the case of MPDR beamforming,
the truncated filter does not satisfy the distortionless constraint.

In this paper, we propose a causal MPDR beamformer
that simultaneously satisfies the distortionless and causality
constraints. The spatial filter is optimized to minimize the
power of the extracted signal under these constraints. By
relaxing the constraints, we further design a quasi-causal
beamformer with a slight distortion to improve the extraction
performance. These two spatial filters are obtained by solving
constrained optimization problems by the alternating direction
method of multipliers (ADMM) [25]. They are convolved with
the audio mixtures in the time domain, as illustrated in Fig. 1.
We investigated the performance of the causal MPDR beam-
former and its relaxed version in numerical experiments. The
experimental results show the effectiveness of the relaxation.

II. MATHEMATICAL TOOLS

In this section, we briefly explain ADMM and proximity
operators since our proposed method is based on them.
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A. ADMM

Let us consider an optimization problem with two proper
lower semicontinuous convex functions g(·) and h(·):

min
β

g(β) + h(β). (1)

The ADMM algorithm [25] for this problem is given by1

β[k+1] = proxg/ρ(γ
[k] − ζ[k]), (2)

γ[k+1] = proxh/ρ(β
[k+1] + ζ[k]), (3)

ζ[k+1] = ζ[k] + β[k+1] − γ[k+1], (4)

where ρ > 0 is a hyperparameter, k is an iteration counter, and
γ and ζ are auxiliary variables. One advantage of ADMM is
that the two objective functions are handled separately through
the proximity operator:

proxg(φ) = argmin
β

g(β) +
1

2
‖β − φ‖22, (5)

where the existence and uniqueness of the minimizer of the
right-hand side are guaranteed [26].

ADMM has been applied to robust beamforming [27]–
[30] and beamforming with multiple objective functions [31].
Particularly in [31], ADMM was used to minimize multiple
objective functions including the `2 norm of the frequency-
directional second-order derivative of the spatial filter. This
objective function reduces the length of the spatial filter in the
time domain but does not enforce the causality.

B. Proximity Operator

In this subsection, we show two useful properties of proxim-
ity operators. First, if an objective function is separable across
two variables, i.e., g(β1,β2) = g1(β1)+g2(β2), its proximity
operator can be calculated as follows [26]:

proxg(φ1,φ2) = (proxg1(φ1),proxg2(φ2)). (6)

That is, we can separately calculate the proximity operator for
each objective function.

Second, if g(β) can be reformulated as g̃(Qβ) by using a
unitary matrix Q, the proximity operator is given by [26]

proxg(φ) = QHproxg̃(Qφ), (7)

where (·)H denotes the Hermitian transpose.

III. CONVENTIONAL METHODS

A. MPDR Beamforming in T-F Domain

Let us denote audio mixtures observed by M microphones
as x(t, f) = [x1(t, f), . . . , xM (t, f)]T in the T-F domain,
where t = 1, . . . , T , f = 1, . . . , F , and m = 1, . . . ,M
respectively are the time, frequency, and microphone indices,
and (·)T is the transpose. Beamforming extracts the target

1The ADMM algorithm explained in this paper is simplified to allow
a straightforward explanation of the proposed method. It can handle more
complicated problems than the problem in (1). We refer the reader to [25] for
further details of ADMM.

signal with a spatial filter w(f) = [w1(f), . . . , wM (f)]T as
follows:

y(t, f) = wH(f)x(t, f), (8)

where y(t, f) is the STFT coefficients of the extracted signal.
The MPDR beamformer [3], which minimizes the power

of the extracted signal under the distortionless constraint, has
been widely used. It can be obtained by solving the following
optimization problem:

min
(w(1),...,w(F ))

1

2T

T∑
t=1

F∑
f=1

|wH(f)x(t, f)|2 (9a)

s.t. wH(f)a(f) = 1, ∀f, (9b)

where a(f) = [1, a2(f), . . . , aM (f)]T is the relative transfer
function (RTF) of the target signal. The optimization problem
in (9) can be analytically solved by considering the Karush–
Kuhn–Tucker (KKT) condition, and its solution is given by

w(f) =
R−1(f)a(f)

aH(f)R−1(f)a(f)
, (10)

where R(f) is the spatial covariance matrix (SCM) of the
audio mixtures at the f th frequency:

R(f) =
1

T

T∑
t=1

x(t, f)xH(t, f). (11)

B. Low-latency Spatial Filtering via Quasi-causal FIR Filter

When applying beamforming to real-time audio applica-
tions, it is crucial to reduce the algorithmic delay. While
beamforming is often implemented in the T-F domain because
of efficiency, STFT inherently introduces an algorithmic delay
of at least the window length.

To reduce this delay, spatial filtering was realized in the time
domain by convolving a quasi-causal finite impulse response
(FIR) filter with audio mixtures and adding up the results [17].
Assuming that the number of DFT points F is even and the
number of non-causal components D is much less than F , a
quasi-causal FIR filter can be computed as follows:

ŵm(n) =

{
w̃m(n) (F/2−D + 1 ≤ n ≤ F )
0 (1 ≤ n ≤ F/2−D)

, (12)

w̃m(n) = (T ◦ F−1)(wm), (13)

wm = [wm(1), . . . , wm(F )]T, (14)

where T (x)(n) = x(n−F/2) represents a circular shift of x
with length F , F(·) is DFT, x is the complex conjugate of x,
and n = 1, . . . , F is the sample index.

By using the quasi-causal FIR filter ŵm(n), we can extract
the target signal in the time domain as follows:

ỹ(l) =

M∑
m=1

F/2−1∑
n′=−D

ŵm

(
F

2
+ 1 + n′

)
x̃m(l − n′), (15)

where ỹ(l) is the time-domain extracted signal, x̃m(l) is the
time-domain audio mixture observed at the mth microphone,
and l = 1, . . . , L is the sample index. We stress that the
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algorithmic delay for (15) is only D samples, which is much
shorter than that of beamforming in the T-F domain.

As one drawback of truncating the non-causal components,
the quasi-causal FIR filter does not retain the directivity or the
frequency response of the original filter. Furthermore, it does
not satisfy the distortionless constraint in (9) even though the
original filter is the MPDR beamformer.

IV. PROPOSED METHOD

In this section, we present an optimization-based method
to realize MPDR beamforming under the quasi-causality con-
straint. In addition, we propose to relax the distortionless
constraint because it is not easy to satisfy the two constraints
simultaneously. By using ADMM, we solve the optimization
problems to obtain the spatial filters efficiently.

A. Optimization Problem for Causal MPDR Beamforer

To obtain a spatial filter that simultaneously satisfies the
distortionless and quasi-causality constraints, we formulate the
following optimization problem:

min
(w(1),...,w(F ))

1

2T

T∑
t=1

F∑
f=1

|wH(f)x(t, f)|2 (16a)

s.t. wH(f)a(f) = 1, ∀f, (16b)
wm ∈ C, ∀m, (16c)

where C and C̃ are the sets of quasi-causal FIR filters (with
D samples of non-causal components) in the frequency and
time domains, respectively:

C = {v ∈ CF | T ◦ F−1(v) ∈ C̃}, (17)

C̃ = {ṽ ∈ CF | ṽ(n) = 0 if 1 ≤ n ≤ F/2−D}. (18)

Note that C becomes the set of causal FIR filters when D = 0,
and C becomes the set of FIR filters when D = F/2. In the
latter case, the optimization problem in (16) coincides with
that for the original MPDR beamformer in (9).

Before solving (16), we show the existence of its solution.
Even when D = 0, the following spatial filter satisfies both the
distortionless and quasi-causality constraints simultaneously:

wm(f) =

{
1 (m = 1)

0 (m 6= 1)
. (19)

In addition, the objective function in (16a) is bounded below.
Thus, there exists a solution for the optimization problem.

B. Relaxation of Distortionless Constraint

Although a quasi-causal filter satisfying the distortionless
constraint can be obtained by solving (16), our preliminary ex-
periment showed that its performance was significantly lower
than that of the original MPDR beamformer. To improve the

extraction performance, we relax the distortionless constraint:

min(
w(1),...,w(F ),
z(1),...,z(F )

) 1

2T

T∑
t=1

F∑
f=1

|wH(f)x(t, f)|2 (20a)

s.t. wH(f)a(f) = 1 + z(f), ∀f, (20b)
z(f) ∈ R+, ∀f, (20c)
wm ∈ C, ∀m, (20d)

where z(f) is an auxiliary variable related to the gain of the
spatial filter. In (20), the gain of the spatial filter for the target
direction is allowed to be greater than 1. This may introduce
distortion of the extracted signal, but we expect that it is not
serious because we minimize the power of the extracted signal.

C. ADMM for Quasi-causal Beamforming

In contrast to the optimization problem for the original
MPDR beamformer in (9), the optimization problems in (16)
and (20) cannot be solved independently at each frequency
owing to the quasi-causality constraint. In addition, the relaxed
problem in (20) contains inequality constraints making it
difficult to solve analytically. To solve such an optimization
problem efficiently, we apply the ADMM algorithm, which
allows us to update optimization variables independently for
each frequency or microphone.

To solve the optimization problem in (20) by ADMM, we
reformulate it with an equivalent problem2. Let us concatenate
the spatial filter w(f) and the auxiliary variable z(f) and
introduce an augmented RTF as follows:

ω(f) = [w1(f), . . . , wM (f), z(f)]T, (21)

α(f) = [1, a2(f), . . . , aM (f),−1]T. (22)

The set of spatial filters ω(f) that satisfy the constraint in
(20b) is represented by

Af = {υ ∈ CM | υHα(f) = 1}. (23)

On the basis of these notations, the optimization problems in
(20) can be reformulated as

min
(ω(1),...,ω(F ))

g(ω(1), . . . ,ω(F )) + h(ω(1), . . . ,ω(F )), (24)

where the objective functions are given by

g(ω(1), . . . ,ω(F )) =

F∑
f=1

gf (ω(f))

=

F∑
f=1

[
1

2
ωH(f)Σ(f)ω(f) + ιAf

(ω(f))

]
, (25)

h(ω(1), . . . ,ω(F ))

=

F∑
f=1

ιR+(z(f)) +

M∑
m=1

ιC(wm), (26)

2Through Section IV-C, we only explain the ADMM algorithm for the
optimization problems in (20) because that for (16) can be obtained simply
by replacing the constraint z(f) ∈ R+ with z(f) = 0.
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where ιQ(·) is the indicator function with respect to a set Q:

ιQ(x) =

{
0 (x ∈ Q)
∞ (x /∈ Q) . (27)

By using the zero vector 0 ∈ CM , Σ(f) is given by

Σ(f) =

(
(1/T )

∑T
t=1 x(t, f)xH(t, f) 0

0H 0

)
. (28)

In (24), g(·) consists of the objective function in (20a) and
the indicator function corresponding to the constraint in (20b).
Meanwhile, h(·) is the sum of the indicator functions corre-
sponding to the constraints in (20c)–(20d). We can solve the
optimization problem in (24) by ADMM using the proximity
operators for g(·) and h(·).

1) Proximity operator of g(·): The proximity operator of
g(·) can be evaluated separately for each frequency because
it is separable across all frequencies (see Section II-B). The
proximity operator of gf (·) is defined as

proxgf/ρ(φ)

= argmin
υ

ιAf
(υ) +

1

2
υHΣ(f)υ +

ρ

2
‖υ − φ‖22, (29)

where υ is an optimization variable related to ω(f). The
optimization problem in (29) can be reformulated as

min
υ

1

2
υH(Σ(f) + ρI)υ + ρυHφ (30a)

s.t. υHα(f) = 1, (30b)

where I ∈ C(M+1)×(M+1) is the identity matrix. Considering
the KKT conditions for the global minimum, we obtain the
following linear system:(

Σ(f) + ρI α(f)
αH(f) 0

)(
υ?

λ?

)
=

(
ρφ
1

)
, (31)

where υ? ∈ CM+1 is the solution of the optimization problem
in (30), and λ? ∈ C is the KKT multiplier. Since Σ(f) is
positive-semidefinite, this KKT system is nonsingular. Hence,
the solution to the linear system in (31) can be analytically
calculated. Note that KKT matrix does not change at every
iteration. That is, we can obtain υ? by multiplying the inverse
of the KKT matrix, which is calculated in advance, by the
input of the proximity operator.

2) Proximity operator of h(·): The proximity operator of
h(·) can also be evaluated separately for ιR+

(·) and ιC(·). The
proximity operator for ιR+

(·) is given by

proxιR+
(φ) = max(Re[φ], 0), (32)

where Re[·] returns the real part of its input. Meanwhile, since
both T (·) and F−1(·) are unitary operators, proxιC (·) can be
reformulated as (see Section II-B)

proxιC (φ) = (F ◦ T −1)(proxιC̃ ((T ◦ F
−1)(φ))), (33)

where proxιC̃ (·) becomes the projection onto the set of quasi-
causal FIR filters C̃:

proxιC̃ (φ)(n) =

{
φ(n) (F/2−D + 1 ≤ n ≤ F )
0 (1 ≤ n ≤ F/2−D)

. (34)

Algorithm 1 ADMM for (20)
Input: ψ[1](f), ξ[1](f), R(f), ∀f , ρ > 0
Output: ϕm, ∀f

for k = 1, 2, . . . do
for f = 1, . . ., F do
ω[k+1](f) = proxgf/ρ(ψ

[k](f)− ξ[k](f))
end for
Split ω[k+1](f) + ξ[k](f) into ϕ[k]

m and ϑ[k](f)
for m = 1, . . ., M do
ϕ[k+1]
m = proxιC (ϕ

[k]
m )

end for
for f = 1, . . ., F do
ϑ[k+1](f) = proxιR+

(ϑ[k](f))

end for
ψ[k+1](f) = [ϕ

[k+1]
1 (f), . . . , ϕ

[k+1]
M (f), ϑ[k+1](f)]T

for f = 1, . . ., F do
ξ[k+1](f) = ξ[k](f) + ω[k+1](f)−ψ[k+1](f)

end for
end for

3) Summary of Proposed Algorithm: The proposed algo-
rithm is summarized in Algorithm 1, where ψ(f) and ξ(f) are
auxiliary variables for ADMM. Here, ϕm is a spatial filter at
the mth microphone, and ϑ(f) is an auxiliary variable related
to z(f). In the proposed algorithm, we can update ω(f) and
ϑ(f) in parallel for each frequency. On the other hand, ϕm is
updated independently for each microphone. Hence, we do not
handle the spatial filter for all frequencies and microphones at
the same time. This is desirable for computationally limited
applications, including hearing aids.

The procedure for updating ϕm in Algorithm 1 is exactly
the truncation of the unallowable non-causal components in
(12). Although the truncation has been introduced heuristi-
cally [17], we show its interpretation as the projection onto
the set of quasi-causal filters C̃ in a rigorous optimization
framework. When truncating the non-causal components of
the MPDR beamformer only once, the truncated filters do not
satisfy the distortionless constraint. The proposed algorithm,
however, can find a quasi-causal FIR filter that satisfies the
distortionless constraint or its relaxed version because the con-
vergence of ADMM to the global optimum is guaranteed [25].

Once the spatial filter is obtained using Algorithm 1, we can
extract the target signal by (15). Hence, we can extract the
target signal with the algorithmic delay of only D samples.
In this paper, we focus on reducing the algorithmic delay of
MPDR beamforming. Hence, we do not explore the online
estimation of RTF or the online optimization of the spatial
filter. Implementation of the proposed methods to real-time
audio applications will be included in our future work.

V. EXPERIMENTAL EVALUATION

To confirm the effectiveness of the proposed methods,
we conducted target speech extraction by beamforming with
synthesized multichannel audio mixtures. We investigated the
effects of the number of iterations, the direction of an inter-
ference source, and the number of non-causal components.
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Fig. 2. Spatial arrangements of sound sources and a linear microphone array.

A. Relation between Performance and Number of Iterations

Audio mixtures were generated by convolving room impulse
responses (RIRs) to source signals in the evaluation set of the
Voice Conversion Challenge (VCC) 2018 dataset [32]. The
source signals were resampled at 16 kHz. The half-overlapping
Hann window with 2048 samples was used for STFT, and the
number of DFT points was 4096. The RIRs were numerically
generated by the image method [33] implemented in the
pyroomacoustics toolbox [34]. The room had dimensions
of 5.0 m × 3.5 m × 2.5 m, and the reverberation time was
randomly sampled from [0.2, 0.3] s. The spatial arrangements
of the sound sources and a microphone array are illustrated
in Fig. 2, where the four-channel linear microphone array was
located at the center of the room. In this experiment, we set
θ1 = 45◦ and θ2 = 135◦. The number of allowable non-causal
components D was set to 7. This corresponds to the time taken
for the sound to propagate from the reference microphone
(rightmost one in Fig. 2) to the microphone on the other side.

The proposed methods were compared with the MPDR
beamforming in the T-F domain [MPDR (freq)], the MPDR
beamforming in the time domain by w̃m [MPDR (time)]
and its truncated version ŵm (Truncation). The proposed
methods in (16) and in (20) are abbreviated as Prop-exact
and Prop-relax, respectively. For faster convergence, we
set ρ to 0.2 and 0.005 for Prop-exact and Prop-relax,
respectively. We initialized ψ[1](f) by converting the truncated
filter ŵm to the frequency domain and concatenating it with
0.1 as the auxiliary variable related to the gain. We used
eigenvalue decomposition to estimate the RTF of the target
signal from the SCM of the target signal itself.

The signal-to-noise ratio (SNR) of the extracted signal
per iteration is illustrated in Fig. 3. As a result of truncat-
ing the non-causal components, Truncation resulted in a
much lower performance than MPDR (time). The SNR for
Prop-exact decreased with increasing number of iterations.
In ADMM, the quasi-causal filters obtained at the beginning
of iterations do not satisfy the distortionless constraint, and
they exactly satisfy the constraint only at the convergence
point. The decrease in SNR should be due to insufficient
degrees of freedom in the spatial filter that simultaneously
satisfies both the distortionless and quasi-causality constraints.
On the other hand, Prop-relax achieved a comparable
performance to that of MPDR (time) owing to the relaxation
of the distortionless constraint.

0 0.5 1 1.5 2 2.5 3

# of iterations #104

5

6

7

8

9

10

11

S
N

R
[d

B
] MPDR (freq)

MPDR (time)

Truncation

Prop-exact

Prop-relax

Fig. 3. SNR of the extracted signals averaged over 10 audio mixtures. Solid
and dashed lines are for the quasi-causal and non-causal methods, respectively.

B. Effect of Direction of Interference

The position of the interference source affects whether
the interference signal observed by the reference microphone
reaches the other microphones within D samples. It is impor-
tant that the interference signal reaches the other microphones
in order to suppress the interference signal in the audio
mixture observed at the reference microphone. We thus in-
vestigated the extraction performance with different directions
of θ2 ∈ {0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦} with various
numbers of non-causal components D. For each condition, 10
audio mixtures were evaluated. The number of iterations was
set to 20000 in accordance with Fig. 3, and other experimental
conditions were the same as described in Section V-A.

Table I shows the SNR of the extracted signals under
each condition. When the interference source was close to
the reference microphone, i.e., θ2 < 90◦, Truncation
resulted in a significantly lower performance for D ≤ 10.
This result indicates that the truncated non-causal compo-
nents were essential for beamforming, especially when the
interference signal reached the reference microphone first. On
the other hand, Prop-exact and Prop-relax essentially
maintained their extraction performance. We expect that the
optimization under the quasi-causality constraint helps low-
latency beamforming to be robust to the direction of the
interference source. In particular, Prop-relax outperformed
the other quasi-causal filtering methods under all conditions
and numbers of non-causal components.

VI. CONCLUSIONS

In this paper, we presented the causal MPDR beamformer
that minimizes the power of the extracted signal under both the
distortionless and causality constraints. We further proposed to
relax these constraints to improve the extraction performance.
Experimental results confirmed the robustness of the proposed
method to the interference direction and the effectiveness of
the relaxation. Our future work includes the application of the
proposed methods to hearing aids by integrating them with
online RTF estimation methods.
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TABLE I
SNR OF THE EXTRACTED SIGNALS WITH DIFFERENT DIRECTIONS OF
INTERFERENCE θ2 AND NUMBERS OF NON-CAUSAL COMPONENTS D.

SNR [dB]

D θ2 0◦ 30◦ 60◦ 90◦ 120◦ 150◦ 180◦

- MPDR (freq) 10.0 8.5 8.8 11.9 13.1 11.3 12.1
- MPDR (time) 10.2 8.3 8.7 12.3 13.2 12.0 12.8

0
Truncation 0.6 -1.0 0.3 4.7 4.4 3.4 4.2
Prop-exact 3.4 2.0 3.1 4.8 6.0 6.3 6.6
Prop-relax 7.5 5.5 7.2 11.7 12.3 11.7 12.4

10
Truncation 0.3 -1.9 1.9 6.0 7.1 4.7 6.1
Prop-exact 4.3 2.5 3.3 5.1 6.2 6.5 6.9
Prop-relax 9.7 7.3 7.6 11.9 12.5 11.9 12.6

100
Truncation 4.6 3.2 3.0 7.5 8.4 7.0 6.9
Prop-exact 5.1 3.4 4.9 6.6 7.9 7.7 8.4
Prop-relax 10.6 8.5 9.4 12.9 13.7 12.2 13.1
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