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Abstract—This paper discusses a deep neural network (DNN)-
based minimum variance (MV) beamformer suitable for the case
where the target sound source moves slightly in front of the
microphones. In practical applications of speech enhancement,
such as a guidance terminal installed in a train station, the
target sound source can be assumed to be located approximately
in front of the microphones, although it may move slightly.
Speech enhancement techniques used under such conditions
can be classified into two types: one is to enhance the sound
source while adaptively estimating its location, and the other
is to enhance the area in front of the microphone array. The
former requires localization of the target source but has a high
degree of freedom of the beamformer, which can lead to high
noise suppression performance, while the latter does not require
the source localization but has a low degree of freedom of
the beamformer. Speech enhancement experiments conducted to
compare the performance of these approaches demonstrated that
the MV beamformer based on adaptive sound source localization
can provide more accurate enhancement than that based on area
enhancement even when the sound source is moving.

I. INTRODUCTION

Speech enhancement technologies play an important role

in situations where speech interfaces are used in noisy en-

vironments. Since the position of the speaker’s mouth (i.e.,

the target source location) changes from time to time with

facial and body movements, it is necessary to provide a

speech enhancement system that is robust to movements of the

target source. On the other hand, there are many applications

where the target source can be assumed to be located in

front of the microphones [1], such as guidance terminals

in train stations and online conference systems. The speech

enhancement technologies used in such applications can be

roughly classified into two approaches: one is the localization

and enhancement, which aims to enhance the moving target

source while tracking it, and the other is area enhancement,

which aims to direct a wide beam in front of the microphones

for enhancing the area including the target source. It should be

noted that there is a trade-off between these two approaches

in terms of the robustness to sound source deviation and

the noise suppression accuracy. Specifically, the former can

achieve accurate speech enhancement if source localization

is accurate, but the localization error may adversely affect

the speech enhancement performance. The latter does not

require exact source localization, but the accuracy of speech

enhancement is limited because it enhances not a sound source

but an area including the source.

In recent years, deep neural networks (DNNs) have attracted

much attention for their high capability in source model-

ing [2]–[4]. Many attempts have been made for integrating

beamformers [5] with DNNs. In particular, minimum variance

distortionless response (MVDR) beamforming [6], which aims

to minimize noise under the constraint that makes speech

arriving from the direction of the target source distortion-

less, has been successfully integrated with DNN-based time-

frequency (TF) masking [7]–[11]. The MVDR beamformer

can be computed using the spatial covariance matrices (SCMs)

for the target speech and the interfering noise [12]. By

updating these SCMs sequentially [13], [14], it is possible to

track and enhance the target source even if it moves slightly.

Thus, this beamformer (referred to as L-MVDR) is regarded

as the localization and enhancement approach.

In MVDR, the distortionless constraint is usually given to a

single target source direction, but by extending it to multiple

directions, it is possible to direct a wider beam to enhance

a certain area around the target source [15]. This multiple-

constraint MVDR beamformer (referred to as MC-MVDR)

is regarded as the area enhancement approach. Note that the

MVDR beamformer has a trade-off between the strength of

the distortionless constraints and the degrees of freedom of the

beamformer (i.e., its noise suppression performance). There-

fore, allowing distortion in the target speech (i.e., relaxation of

the constraints) may contribute to the improvement of the noise

suppression performance [16], [17]. Considering this trade-

off, a new area enhancement approach, the relaxed multiple

constraint minimum variance (RMC-MV) beamformer, is pro-

posed to improve the denoising performance by relaxing the

constraints.

To the best of our knowledge, no multi-constrained MV

beamformer has been trained jointly with DNNs. So when

focusing on DNN-based MV beamformers, the superiority of

the localization and enhancement approach versus the area

enhancement approach is not clarified in the situation where

the target source moves slightly in the frontal direction of

the microphones. The present study therefore attempts to

identify the design of MV beamformers that are robust against

the small movement of the target source by comparing the

performance of DNN-based MV beamformers estimated with

these two approaches. Such experimental comparisons would
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Fig. 1. Schematic diagram of beamforming with DNN-based mask estimation.
x
(i) denotes microphone observations and d denotes noise-dominated signal.

DNN-based mask estimator is trained to minimize noise in beamformer output.

provide useful knowledge for achieving robust and accurate

speech enhancement in real environments.

II. OVERVIEW OF DNN-BASED BEAMFORMING

This section describes an overview of DNN-based MV

beamforming, whose schematic diagram is illustrated in Fig. 1.

For simplicity, the frequency indices are omitted in the follow-

ing equations.

A. Spatial filtering for extracting noise-dominated signal

Let x ∈ C
F×T×M be the output of the short-time Fourier

transform (STFT) of the noisy speech signal observed at an

M -channel linear microphone array, where F and T denote

the number of frequencies and that of frames, respectively.

Now, it is assumed that the target source is located in front

of the microphones (ideally, on the perpendicular bisector of

the two central microphones). The disturbance sounds arriving

from the directions other than the front direction (i.e., noise-

dominated signal), d ∈ C
F×T , can be obtained by directing

the null to the front direction [1] as:

d = x(r) − x(l), (1)

where x(l) and x(r) ∈ C
F×T denote the observed signals at

the two central microphones.

B. DNN-based mask estimation

DNN is used to estimate a TF mask for extracting the target

source. The amplitude spectrum of the noisy speech |x(r)| and

that of the noise-dominated signal |d| are input to the mask

estimator D as:

M
(s) = D(|x(r)|, |d|), (2)

where D(·) denotes a nonlinear transformation represented by

DNN (the details are explained in Sect. IV-D), and M
(s) ∈

R
F×T denotes the TF mask for the target source. The TF

mask for the disturbance M
(n) is given by subtracting each

component of M(s) from one.

C. Beamforming

Using TF masks estimated by DNNs, the SCM for the target

source and that for the interfering noise, R(s) and R(n) ∈
C

F×M×M , are calculated respectively as follows [18]:

R(s) =
1

∑
t M

(s)
t

∑

t

M
(s)
t xtx

H
t , (3)

R(n) =
1

∑
t M

(n)
t

∑

t

M
(n)
t xtx

H
t , (4)

where t denotes the time index and H denotes the Hermitian

transpose of a matrix or a vector. The filter coefficients of

beamformers w ∈ C
F×M are computed using the SCMs and

applied to the noisy speech to obtain the enhanced signal ŷ ∈
C

F×T as:

ŷ = wHx. (5)

The details of estimating beamformers are described in

Sect. III.

D. Joint training of deep neural network

A DNN for mask estimation is trained to minimize the

squared error between the clean speech signal y and the

beamformer output ŷ as:

L = ||y − ŷ||2. (6)

It should be noted that the DNN is trained to estimate a mask

that is suitable for minimizing the noise in the beamformer

output, rather than reducing the noise in the time-frequency

masking output.

III. MINIMUM VARIANCE BEAMFORMERS ROBUST

AGAINST SMALL MOVEMENT OF SOUND SOURCES

To design MV beamformers that are robust to the movement

of the sound sources, this study examines the localization

and enhancement approach, which aims to enhance the target

source while tracking it, and the area enhancement approach,

which aims to enhance the area including the target source.

This section describes the MV beamformers to be compared.

All beamformers are computed using the SCMs estimated by

DNN.

A. MVDR beamformer

The general MVDR beamformer is chosen as the localiza-

tion and enhancement approach. The MVDR beamformer aims

to minimize noise under the constraint that the sound source

arriving from the desired direction is not distorted as:

wMVDR = arg min
w

wHR(n)w s.t. wHa = 1, (7)

where a ∈ C
F×M denotes the steering vector of the target

source. Solving (7) gives the filter coefficients:

wMVDR =
R(n)−1a

aHR(n)−1a
. (8)

The MVDR beamformer can also be formulated in a form that

does not use a steering vector [12] as:

wMVDR =
R(n)−1R(s)

tr(R(n)−1R(s))
u, (9)

where tr(·) denotes the trace of a matrix and u ∈ C
F×M×1

denotes the one-hot vector to choose one output channel.

The MVDR beamformer represented in (9) simultaneously

localizes and enhances the target source by using the SCM

estimated for the target. In this paper, the beamformer in

(9) is referred to as the localization-MVDR (L-MVDR) to

distinguish from the beamformer in (8).
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B. Multiple-constraint MVDR beamformer (MC-MVDR)

By applying the distortionless constraint to multiple direc-

tions around the target source, a wider beam can be constructed

to enhance the area including the target source. The Multiple-

constraint MVDR (MC-MVDR) beamformer, which has mul-

tiple distortionless constraints [15], is formulated as:

wMCMVDR = arg min
w

wHR(n)w s.t. wHA = f , (10)

where A ∈ C
F×M×Nc is a matrix whose elements are

the steering vectors in multiple directions; Nc denotes the

number of constraints; and f ∈ R
F×Nc denotes a matrix

whose elements are all ones. Solving (10) gives the following

solution:

wMCMVDR = R(n)−1A(AHR(n)−1A)
−1

f . (11)

The MC-MVDR beamformer can enhance the target source

robustly to source movement within the given constraints.

On the other hand, the distortionless constraints in multiple

directions decrease the degree of freedom of the filter, leading

to a degradation in the noise suppression performance.

C. Relaxed multiple-constraint MV beamformer (RMC-MV)

In general, there is a trade-off between the strength of con-

straints and the degrees of freedom of a beamformer (i.e., its

noise suppression performance). Thus, relaxing the constraints

(i.e., allowing for distortion of the target source) of MC-

MVDR can improve the denoising accuracy [16], [17]. Based

on this idea, a new beamformer, the relaxed multiple-constraint

minimum variance (RMC-MV) beamformer is presented in the

form:

wRMCMV = arg min
w

wHR(n)w

s.t. |wHA− f |2 ≤ E, (12)

where E is the distortion tolerance of the target source.

Solving (12) gives the following filter coefficients as:

wRMCMV = (R(n) + λAAH)−1λAf , (13)

where λ is a hyper-parameter to adjust the aforementioned

trade-off. The smaller the value of λ is, the better the noise

suppression performance becomes, but the distortion of the

target source becomes larger due to the relaxation of the

constraint. In contrast, increasing the value of λ can reduce

the distortion of the target source but deteriorate the noise

suppression performance.

IV. SOURCE ENHANCEMENT EXPERIMENTS

To identify an appropriate MV beamformer for the case

where the sound sources move slightly but occasionally, ex-

perimental comparisons were conducted using the L-MVDR,

MC-MVDR, and RMC-MV beamformers. The first one is

considered as the localization and enhancement approach and

the other two as the area enhancement approach.

Fig. 2. Acoustic field used in experiments. One target source was placed in
front of four-channel microphones and one to three disturbance sources were
placed in directions other than front.

A. Speech materials

The simulated acoustic field is illustrated in Fig. 2. The

target speech, one to three interfering voices, and ambient

noise were observed at the microphones. The room size was

7 × 5 × 3 m, the number of microphones was 4, and the

microphone spacing was 3 cm. The sound absorption rate was

0.25, the number of reflections was 20, and the reverberation

time RT60 was 0.31 s. Pyroomacoustics [19] was used to

obtain room impulse responses.

Microphone observations were simulated by convolving the

room impulse response with the speech signal (dry source) and

then superimposing the ambient noise. The spoken utterances

for the target and disturbance sources were selected from the

TIMIT corpus [20] and different from each other. From the

Diverse Environments Multi-channel Acoustic Noise Database

(DEMAND) [21], five types of non-stationary ambient noise

(NRIVER, NPARK, DLIVING, OOFFICE, and OMEETING)

were chosen. The sampling rate was 16 kHz, the frame size

and frame shift for STFT were 1024 and 256, respectively. The

number of frequency bins was 513. The number of training

data, validation data, and testing data were 2000, 320, and

448, respectively.

During training, the target speech source was placed in

one of three directions, 80◦, 90◦, and 100◦, and one to

three disturbance speech sources were randomly placed in the

following eight directions, 0◦, 15◦, 30◦, 45◦, 135◦, 150◦, 165◦,

and 180◦. During testing, the following two types of data were

evaluated:
• matched data: the target sound source is placed in the

position used for training, and

• mismatched data: the target source may deviate from the

position used for training.
The mismatched data were used to examine the robustness of

the MV beamformers to the small movement of the sound

source. To produce the mismatched data, the simulation of

the sound field was conducted assuming a situation where

a speaker continuously speaks, changing his/her position for

each utterance. In this case, the difference in the source

direction between utterances was assumed to be zero to two

degrees. Such pseudo movement was applied to both the target

and disturbance speech sources, but not to the ambient noise.

The target source was initially placed in the 80◦ to 100◦

direction, and varied within a range of 80◦ to 100◦. The
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Fig. 3. DNN architecture for mask estimation.

disturbance sources were initially placed in the same directions

as training data, and varied within a range of 0◦ to 45◦ or 135◦

to 180◦.

B. Setups for updating spatial covariance matrices

Assuming that sound sources move, it is necessary to

localize them at certain intervals. In this experiment, the SCMs

were updated every 0.51 seconds. The formula to update the

SCMs was the same as the one applied in [13]. Let M′

l,t be

an estimate of the mask for block Bl, where l is the block

index, and R′

l be the SCM for block Bl that is computed

using M
′

l,t. The update formula of the SCM in block Bl is

represented in a recursive form as:

Rl ←−
Ml−1 ·Rl−1

Ml−1 +
∑

t∈Bl
M

′

l,t

+

∑
t∈Bl

M
′

l,t ·R
′

l

Ml−1 +
∑

t∈Bl
M

′

l,t

,

(14)

where Ml denotes the sum of the masks in all time frames

until block Bl, which is obtained as:

Ml ←−Ml−1 +
∑

t∈Bl

M
′

l,t. (15)

C. Setups for minimum variance beamformers

The number of constraints should be determined to balance

the robustness against the source movement and noise suppres-

sion performance. As a result of the preliminary experiment,

the constraints for the MC-MVDR and RMC-MV beamform-

ers were applied in two directions, 80◦ and 100◦ when the

target source was in the 90◦ direction. More constraints at 80◦,

90◦, and 100◦ may improve the robustness against the source

movement, but actually deteriorated the noise suppression per-

formance. For the RMC-MV beamformer, the hyper-parameter

λ was empirically determined to 1.0× 106.

TABLE I
SPEECH ENHANCEMENT PERFORMANCE FOR L-MVDR, MC-MVDR,

AND RMC-MV BEAMFORMERS. NUMBERS REPRESENT SDR AND STOI
FOR OBSERVED SIGNAL, AND SDR IMPROVEMENT AND STOI

IMPROVEMENT FOR THREE BEAMFORMERS.

80, 90, 100◦ matched 80 to 100
◦ mismatched

Beamformer SDRi [dB] STOIi SDRi [dB] STOIi

Observation -1.72 0.751 -1.77 0.739

L-MVDR 7.94 0.139 7.86 0.145
MC-MVDR 4.84 0.127 4.89 0.134
RMC-MV 7.50 0.125 7.48 0.132

D. Neural network architecture

The architecture of the DNN used is shown in Fig. 3. It has

a U-Net-like architecture [22], which has been used not only in

segmentation but in speech enhancement and separation [23],

[24]. The amplitude spectrum of the observed signal |x(r)|
and that of the noise-dominated signal |d| were downsampled

through four downsampling blocks and then input to two two-

dimensional convolution layers. The outputs of the convolution

layers were concatenated and input to a fully-connected layer.

This process is expected to be equivalent to the subtraction of

noise components from the observed signal of a microphone in

the latent space. In these encoder parts, the network parameters

were shared for the observed signal and the noise-dominated

signals. Then, the output of the fully-connected layer was

upsampled through four upsampling blocks, in which the

downsampled features are concatenated as shown in Fig. 3.

The convolution with kernel size 1×1 was performed to adjust

the number of channels, and finllay, the TF mask was obtained.

The Adam optimizer [25] was utilized during training. The

learning rate was 5.0×10−3. The mini-batch size was 16, and

the number of epochs was set to 100.

E. Experimental result

The signal-to-distortion ratio improvement (SDRi) [26] and

short-time objective intelligibility improvement (STOIi) [27]

were used for evaluation criteria. Table I lists the average

values of these measures over the evaluation data.

First, MC-MVDR was compared with RMC-MV to in-

vestigate the effect of relaxing the constraints. The RMC-

MV beamformer yielded significant improvements in SDR

over the MC-MVDR beamformer. It indicates that relaxation

of the constraints contributed to the improvement of the

noise suppression performance. In contrast, since RMC-MV

allows for distortion of the target speech, no improvement was

obtained for STOI, which measures objective sound quality.

Next, the robustness of the MV beamformers against source

movement was investigated by comparing the performance for

matched and mismatched data. For the MC-MVDR and RMC-

MV beamformers, the performance difference for matched and

mismatched data was not significant. This result suggests the

effectiveness of the multiple constraints introduced to improve

the robustness of these beamformers to small source devia-

tions. The L-MVDR beamformer, which adaptively localizes

the target source, also showed no significant difference in the

performance for both data. This result suggests that DNNs are
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capable enough to enhance a slightly displaced source while

tracking it.

Finally, L-MVDR and RMC-MV were compared using

mismatched data to investigate the superiority of the local-

ization and enhancement approach and the area enhancement

approach for the MV beamformer design. The results showed

that the L-MVDR beamformer outperformed the RMC-MV

beamformer on both SDR and STOI. The results suggest that

the high representational power of DNNs enables accurate

source tracking, and that speech enhancement based on such

source tracking can work well even when the source location

changes from time to time.

V. CONCLUSION

The present paper explored how to design MV beamformers

suitable for situations where the target source moves in front

of the microphone. The MV beamformers were designed

using two approaches: one is to enhance the target source

while localizing it, and the other is to enhance the area

including the target source. For the latter area enhancement,

this paper presented a formulation to relax the constraint of

multiple-constraint MV beamformers and a method to train

multiple-constrained MV beamformers jointly with DNNs.

The experimental comparisons demonstrated the superiority of

the approach that localizes and enhances the target source in

both SDR and STOI. The robustness of the MV beamformers

for the case when the source location changes in a shorter

period needs to be investigated in the future.
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