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Abstract—Time-domain Audio Separation Network (TasNet)
is a deep-learning-based speech separation system that performs
end-to-end learning in time domain. By directly using speech
signal in a time domain, TasNet outperforms conventional systems
based on a time-frequency domain in terms of reconstruction
quality and latency. In TasNet, the separation accuracy is greatly
degraded when speech contains noise. We propose TasNet with
noise basis signals (TasNet-NB), a method to improve separation
performance under noisy environments by adding noise basis
signals to speaker’s basis signals. It utilizes curriculum learning
to gradually reduce the noise signal-to-noise ratio and the noise
reconstruction loss as one of the objective functions in training.
We evaluate the method on WHAM! dataset and show that it
improves SI-SDRi from 13.7 dB to 14.6 dB.

I. INTRODUCTION

Speech separation aims for separating each speaker’s speech
from each other when multiple people are speaking at the same
time. The separation is a necessary pre-processing for higher-
level speech recognition, such as automatic speech recogni-
tion (ASR), speaker identification and emotion recognition.
In conventional speech separation systems, the separation is
generally done in a time-frequency (T-F) domain into which
the original mixed signal is decomposed by discrete short-time
Fourier transform (DSTFT) using time-frequency masks [1].
Then, each individual speech source is retrieved by inverse
discrete short-time Fourier transform (IDSTFT) from the es-
timated spectrum of the original speech [2]. Those systems
utilize the frequency and amplitude of speech while its phase
is discarded. As a result, waveforms reconstructed without the
phase information inevitably result in a decrease in quality.
In these T-F domain systems, speech signals are decomposed
into a set of segments with a short time window length, and
hence, a relatively large time window length is needed for high
frequency resolution, which leads to high latency.

Recently proposed Time-domain Audio Separation Network
(TasNet) [3] and its derivatives [4], [5], [6] perform end-to-
end learning by directly using speech signal in time domain.
It avoids both of the above-mentioned shortcomings of the
T-F domain systems, i.e., the degradation of reconstruction
quality and high latency. In TasNet, a waveform is converted
into a set of features by convolutions. The filters used for the
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convolutions are called the basis signals, and they are trained
to improve the separation performance between speakers. The
network parameters including the basis signals and speaker
separation masks are trained by using the reconstruction loss
of speakers’ speeches. While TasNet generally has higher
separation performance than T-F domain systems, the perfor-
mance degrades significantly when the speech to be separated
contains environmental noise [7].

Different from speech enhancement in which accurate re-
construction of noise is not required in general, speech sep-
aration inherently requires reconstruction of noise as well as
speakers’ speeches to differentiate target signals (the speakers’
speech) from noise [7]. TasNet-based approach in noisy envi-
ronment can be benefited from explicitly adding noise basis
signals and, then, evaluating the reconstruction loss of noise
in addition to the loss for spearkers’ speeches.

In this paper, we propose TasNet with noise basis signals
(TasNet-NB), a method for creating noise basis signals to-
gether with speaker basis signals for time-domain systems.
The noise reconstruction loss is used as one of the objective
functions in training. To further improve the separation accu-
racy, we also employ curriculum learning, in which the relative
amount of noise in the dataset is gradually increased.

II. RELATED WORKS
A. TasNet

1) Overview: TasNet has a structure with an encoder and
a decoder between which a separator is inserted (Fig. 1). The
encoder directly converts a mixed input signal segment into
a feature vector. The separator decomposes it into a set of
feature vectors, each of which represents individual speaker
characteristics. Finally, from each speaker’s feature vector, the
decoder retrieves his/her speech.

Given a time window length L, a set of overlapping
segments with a stride of L/2, {x;}& |, is extracted from
incoming mixed speech signals, where x;, € R*% and K are
the k-th segment and the number of segments, respectively.
Note that L is significantly smaller than that used in time-
frequency domain systems. The objective is to separate the
discrete speech segment xy, into a set of C' speakers’ speech
{six}$_,, where s, is the i-th speaker’s speech element in
Xk-
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Fig. 1. Network of TasNet (2 speakers).

The encoder maps the segment x; to a N-dimensional
feature vector vy, € R'¥ using learnable convolution pa-
rameters. Hereafter, we call the feature vector v and the
convolution parameter as a weight vector and a basis signal,
respectively. The number of the basis signals equals to the
dimension of the v, N. Here, each element of the weight
vector should be non-negative, and hence, each mixed segment
Xy is represented by a non-negative weighted sum of the basis
signals. In the separator, the weight vector vy, is decomposed
into a set of weight vectors for individual speakers’ speech
{d; x}¥, using a set of estimated masks {m; ;}{ ;, where
d;, € RN corresponds to the segment k € {1,...,K}
of a speaker i € {1,...,C}. The j-th element in the mask
m;; € R™N m, (), represents the rate of speech of
speaker ¢ in the j-th element in v, vi(j). Finally, in the
decoder, a set of individual speakers’ speech {s;;}¥  is
reconstructed based on {d; }$ ; and learnable basis signals.

2) Encoder: The encoder converts the k-th segment xj, to
a weight vector vy as:

v, = ReLU(ConvlDRgeru (X)) © o(ConvlD,(x5)), (1)

where ® denotes the Hadamard product. ConvlDger,y and
ConvlD, are both concatenations of N 1D convolutional
layers whose outputs are transferred to Rectified Linear Unit
(ReLU) and sigmoid function (o), respectively. The weight
vectors of the 1D convolution layers are stacked to form the
encoder basis signals B¢(e!") Beig) ¢ RNXL  regpectively.
Based on the B¢(°w) and B¢Gi8) poth of the convolution
are defined by Conv1Dgeru(xk) x; ® Beleln) anqg
ConvlD, (xy) x;, ® BeGi®) | respectively, where ® is a
convolution operator. This gated CNN approach empirically
demonstrated better performance in language modeling than
using only ReLU or sigmoid [8].

Given the weight vector vi, the separator outputs masks
My, = [myg,...,mc ] by using the LSTM, the subsequent
fully connected layer, and the sigmoid function. The estimated
mask {m; ;}¢ , are used to perform the separation for vy.
Then, vj is normalized by layer normalization [9] to speed

up and stabilized the training process [3].

dip =vpOmy )

3) Decoder: The decoder converts the feature d; j, € RIXN
obtained from the separator into the waveform by

sik = di kB, 3)

where BY ¢ RV*Z is a filter of the convolutional layer named
the decoder basis signals. In this way, the waveform of the i-th
speaker’s k-th segment is obtained as s; j € RIXE,

4) Objective function: The objective function of TasNet
training is scale-invariant signal-to-distortion ratio (SI-SDR)
[10] that has been widely used in single-channel speech
separation. SI-SDR is defined in (6),

(8i,k» Si,k)Si,k

!
S 4
s 7 @
€r = Sik—Sip )]
. 87y |17
SI-SI)IQ(SLR7 Si,k) = 10 10g10 w, (6)

where §; ;. and s; ;. are the estimated and target signals of the
i-th speaker’s k-th segment, respectively. (a, 3) represents the
inner product of «, 3, and ||a|| represents the L2 norm. In the
training process, permutation invariant training (PIT) [11] is
used to deal with the uncertainty of the source order.

TasNet outperforms the conventional T-F systems in terms
of reconstruction quality and latency. However, one problem
of TasNet is that the separation accuracy is greatly degraded
when the signal contains environmental noise.

B. Replacing the basis signals

In time-domain systems such as TasNet, the basis signals
of the encoder and decoder are optimized in the end-to-
end learning process. On the other hand, [6] demonstrated
that replacing the trained basis signals with the multiphase
gammatone filter bank not only improves the SI-SDR but also
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Fig. 2. Network of TasNet-NB.

. . . B = Bclean (7)

keeps the performance the same even if the size of the basis ) » o
signals is reduced. Next, we introduce additional basis signals B) ., €
. . RN %L designed for decomposing noise in a noisy environ-
C. Noise reconstruction loss ment. N’ is the given number of noise basis signals. The noise

Methods of separating noise as well as speakers based on basis signals BY , . are combined with the original basis
masks estimated by the reconstruction loss has been used in  signals as follows,
speech enhancement [12], [13]. It has also been described that

. L . . B, .. = Conc(B,
noise estimation serves as a regularization for learning robust
models [13]. Noise separation based on masked estimated by  where Conc denotes the union of vectors. During the training
reconstruction loss has not been investigated in time-domain  of B2, . for noisy speech separation (“Noisy”), only B
speech separation systems. is updated while the “Clean” part B, is frozen (Fig.
3). By training in this way, B2, . is expected to acquire
noise separation function while maintaining separation ability
between speakers by preserving B ie.,

clean’ Bzxtend) € R(NJrN )XL7 (8)

extend

D. Curriculum learning

Curriculum learning [14] imitates the learning strategy of
humans to gradually understand difficult concepts starting
from easy ones. The goal is to improve the learning efficiency B g = Bliices 9
and performance through a curriculum in which students are
gradually trained from easy to difficult tasks. For example,
in speech and speaker recognition, multi-stage training in
which the models are trained under step-by-step environments
gradually increasing signal-to-noise ratio (SNR) are proved to
be effective [15], [16], [17].

clean’

where B] . is the noise basis signals specialized for noise
separation.

Given a segment xj, the encoder outputs an (N + N’)-
dimensional weight vector Conc(vy,v}) € RN,
where v, € RN and v} € RN are weight vectors for
speakers and noise, respectively.

III. TASNET WITH NOISE BASIS SIGNALS . .
B. Noise reconstruction loss

Inspired by the ideas of the post-training manipulation of
basis signals [6] and the noise estimation based on noise
reconstruction loss [12], [13] mentioned in Section II, we
propose TasNet with noise basis signals (TasNet-NB, Fig. 2).
It improves the separation performance between speakers in
a noisy environment by introducing the noise basis signals
in addition to the speaker basis signals. We further apply

Based on the concatenated weight vector Conc(vg,vy),
the separator computes masks for decomposing the con-
catenated weight vector into C speakers and noise,
COHC(Mka mnoise,k) = [ml,k7 -, IOk, mnoise#k]’ where
m,; ; and My, are masks for ¢-th speaker and noise
separations, respectively. In the decoder, we restrict Bextend €

N’'xL
iculum learni . h . f R to be used only for noise reconstruction and BY_, €
curriculum learning to improve the separation performance. NxL
R for speaker reconstruction,
sirx = (diiP )B¢
A. Noise basis signals vk = i,k% speech/ Zclean
: / d
= COHC(ka Vk) O] mzk) PspccchBC]eam (10)

In the end-to-end learning process of TasNet, the basis sig- ( 4
nals of the encoder and decoder are updated in the same way Snoisek = (Anoise,k Proise) Bextend
as the other parameters. First, we pre-train the basis signals = (Conc(v, v},) ® Mpoise k) Pooise B (ondd1)
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where dyoise,; € RIXWVHENY g g weight vector of noise.
Pypeech is an (N 4+ N') x N orthogonal projection matrix
whose (i,4) elements are 1 while the other elements are 0.
Poise is an (N+N') x N’ orthogonal projection matrix whose
(¢4 N, %) elements are 1 while the other elements are 0. In the
end-to-end learning process of TasNet-NB, the basis signals of
the encoder and decoder as well as the separator are updated
so as to minimize a sum of the source and noise reconstruction
loss defined by SI-SDR (6) with respect to s; ; and Spgise,k

defined in (10) and (11):
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utterances without cropping, while “min” crops the utterances
to the shorter length of the two selected utterances and then
mixes them. In this paper, as in many other studies, we use
the “min” version at 8§ kHz.

2) WHAM!: In order to create a situation that is closer to
the real environment than the wsjO-2mix dataset, we created a
dataset that mixes the wsj0-2mix dataset with environmental
sounds as noise. The noises were collected in coffee shops,
restaurants, bars, office buildings, and parks in the San Fran-
cisco Bay area. Those containing speech above -6 dB, which is
considered to interfere with speech separation, were not used.

K C
Y SI-SDR(s; 1, 8 ) First, the SNR of the noise is randomly selected in the range of
k=11i=1 -6 to +3 dB, and the gain is set to achieve the selected signal-
K to-noise ratio for one of the two loud speakers to be mixed.
+ZSI—SDR(snoise_’k,énoise’k), (12) Next, the same gain is used to mix the other speaker. The

k=1 number of training sets, validation sets, and evaluation sets is
where SI-SDR(s; &, ;%) and SI-SDR (Spoise.: Snoise.:) are SI- the same as for the wsjO-2mix dataset. As for the verification

SDRSs of the i-th speaker’s speech signal and a noise in the based on the test sets, we assume that types and SNRs of noise
k-th segment are equivalent of the training sets.

C. Curriculum learning B. Experimental settings

TasNet in the Asteroid Toolkit [20] was used as a baseline.
The frame length L for speech segmentation is 40 that
corresponds to a time window length of 5 ms. The number
of basis signals for encoder and decoder N is 512, while the
number of basis signals for noise N’ is 128. The total number
of basis signals is 640. A four-layer LSTM with 600 units in
each direction is used as the separator, and a dropout of 0.3 is
applied to the output of the LSTM except for the last layer. All
implementations and parameter manipulations are done in the
framework PyTorch [21]. The learning rate is halved when the
validation loss does not improve for three consecutive epochs,
with an initial value of 1.0e~3. In addition, early stopping is
employed to stop learning when the validation loss does not
improve for 10 epochs. A weighted decay of 1.0e~> was used
for normalization. Adam [22] was used as the optimization
algorithm.

In this experimental setting, we assume that the number
of speakers is known, and in particular that there are two
speakers. However, when the number of speakers is unknown,
separation can be achieved by recursively performing the
operation of extracting the voices one by one in a time-domain
system [23].

In our study, the curriculum consists of three steps in which
the tasks are made progressively more difficult by decreasing
the SNR in steps. In each step, we use the model trained in
the previous step as the initial model.

Step 1. SNR of louder speaker to noise is 20dB
Step 2. SNR of louder speaker to noise is 10dB
Step 3. Original “Noisy” dataset

Referring to [16], SNRs are selected from a range of 8§ dB
and 20 dB. Considering the fact that one step (200 epochs)
takes approximately 80 hours (in Section V), we restrict the
maximum number of stages to 3. Because SNRs of the original
“Noisy” dataset in the experimental setting (Section IV-A2) at
the third step range from —6 to +3 dB, 10 dB and 20 dB are
selected for SNRs at the first and second steps, respectively.

IV. EXPERIMENTS
A. Datasets

We use a dataset wsj0-2mix [18] of two-speaker mixed
speech and a dataset WHAM! [7] to evaluate the proposed
method. The former is for normal speech separation without
noise (“Clean”) and the latter is for noisy speech separation
(“Noisy”).

1) wsjO-2mix: wsj0-2mix, which is widely used in single-
channel speech separation, consists of two utterances randomly
selected from the WSJO corpus [19] and mixed with a ran-
domly selected signal-to-noise ratio in a range of -5 to +5
dB. The training set consists of 20,000 mixed utterances, and
the validation set consists of 5,000 mixed utterances, which
are selected from the WSJO corpus, si_tr_s, and some of
the speakers are common. The evaluation set, on the other
hand, consists of 3,000 mixtures of speech and uses only
the speakers in the WSJO corpus, si_dt_05 and si_et_05, and
does not have any speakers in common with the other sets.

There are two versions, “min” and “max”. “max” mixes the

V. RESULTS

Table I shows the results of noisy speech separation using
TasNet and TasNet-NB, where TasNetsq2, TasNetgs9, NB1osg,
NL, CL represent TasNet with 512 basis signals, TasNet with
640 basis signals, additional 128 noise basis signals, training
with noise reconstruction loss and training with curriculum
learning, respectively. The scale-invariant signal-to-distortion
ratio improvement (SI-SDRi) is the evaluation measure of
the separation accuracy. For fairer comparison considering the
difference in the number of basis signals between TasNet and
TasNet-NB, results of TasNet with N = 512 and N = 640 are
listed in the second (TasNets12) and third (TasNetgsg) rows,
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Fig. 4. Network of TasNets12 + NBj2s.

respectively. The effect of the additional basis signals is a 0.1
dB increase in SI-SDRIi. In the table, TasNets12 + NBiog +
NL corresponds to the proposed TasNet-NB.

TasNet-NB (TasNets12 + NBiog + NL) outperforms the
baseline TasNet (TasNets;2) by 0.5 dB in SI-SDRi. Further
improvement is demonstrated when it is combined with cur-
riculum learning (TasNets12 + NBiog + NL + CL), i.e., 14.6
dB in SI-SDRI.

Our ablation experiments on the effects of NBj,g, NL and
CL are also shown in Table I. After pre-training of TasNets;2
based on “Clean” dataset, the training of TasNets12 + NBjog
is done by updating basis signals other than B and

. clean
B°®®®) without using noise reconstruction loss (Fig. 4).

clean
In TasNets;2 + NBiag, both BY . and BY . are used
for the speaker reconstruction, i.e., s;x = d;;Bd . =

d; xConc(BY,,, B (onq)- TasNetsi2 + NL updates B)_
by evaluating both signal and noise reconstruction loss while
the number of basis signals equals to the baseline, i.e.,
B (onqg = @ (Fig. 5). Note that a weight vector of noise,
dioise, k> 1S added in TasNets12 + NL for noise reconstruction.

The improvements in SI-SDRi of TasNetsio + NBjog
compared with TasNetgyo indicates that basis signals related
to noise are implicitly stored in the additional NB;og without
noise reconstruction loss. The results demonstrates that the
two-step curriculum learning successfully restricts the noisy
elements to the additional NB;og, while preserving the source
separation accuracy of TasNetso.

On the other hand, we observe that TasNets15 + NL is 0.5-
dB superior to TasNets;2 in SI-SDRi without additional basis
signal. The results indicate that the basis signals trained by
the “Clean” dataset is updated so as to learn basis signals of
noise as well as sources in the fine-tuning phase by evaluating
noise reconstruction loss.

Interestingly, we see no significant SI-SDRi improvement
in TasNets12 + NBjgs + NL compared with TasNetsi1o +
NL. The results indicate that source separation accuracy is not
deteriorated by updating the pre-trained B”, _ using “Noisy”

clean
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TABLE 1
SI-SNR1 ON WHAM! DATASET.
TasNets12: TASNET WITH 512 BASIS SIGNALS.
TasNetgao: TASNET WITH 640 BASIS SIGNALS.
NBj2g: 128 NOISE BASIS SIGNALS.
NL: NOISE RECONSTRUCTION LOSS.
CL: CURRICULUM LEARNING.

Method | SI-SDRIi (dB)
TasNet512 13.7
TasNet640 13.8
TasNet512 + NBlgg 14.0
TasNet512 + NL 14.2
TasNet512 + NB128 + NL 14.2
(proposed TasNet-NB)

TasNet512 + NBlgg + CL 14.6
TasNet512 + NB128 + NL + CL 14.6
(proposed TasNet-NB + CL)

dataset. Based on the results of TasNetso + NL, NByog +
NL and TasNets12 + NBigog + NL, we can conclude that
512 basis signals has sufficient capacity to model not only
speakers’ speeches but also background noise.

Curriculum learning contributes to further improvement in
SI-SDRI, i.e., both TasNet512 + NB128 + NL + CL and
TasNets12 + NBiog + CL demonstrate highest SI-SDRis of
14.6. Note that there is no difference in SI-SDRi due to the
existence of noise reconstruction loss. An interpretation of the
results is that gradual multi-step learning approach is beneficial
to implicitly eliminate noisy elements, B, ;. after update
of Conc(BY, ., B ..q) Without explicit guidance of noise
reconstruction loss.

Training for 200 epochs takes approximately 80 hours with
a NVIDIA Tesla P100. While effectiveness of curriculum
learning is confirmed, learning 200 epochs at each stage
requires a huge amount of time.
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VI. CONCLUSIONS

In this paper, we have proposed TasNet-NB to improve
the the separation accuracy of the original TasNet in noisy
environment. SI-SDRi in the experimental setting using the
WHAM! dataset was improved from 13.7 dB to 14.6 dB
by TasNet-NB combined with curriculum learning. We also
confirmed the effectiveness of using the reconstruction loss of
noise as one of the learning criteria. In the future, we would
verify the effectiveness using the dataset WHAMR![24], which
includes not only additive noise but also reverberation.
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