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Abstract—Multichannel blind audio source separation aims
to recover the latent sources from their multichannel mixture
without priors. A state-of-the-art blind audio source separation
method called independent low-rank matrix analysis (ILRMA)
unified independent vector analysis (IVA) and nonnegative matrix
factorization (NMF). However, the spectra matrix produced
from NMF may not find a compact representation. Also, the
matrix may not guarantee that each source is identifiable. To
address the problem, here we propose a modified blind audio
source separation method that enhances the identifiability of the
source model. It combines ILRMA with a new penalty term,
named minimum volume regularization The proposed method
is optimized by standard majorization-minimization framework
based multiplication updating rule, which ensures the stability of
convergence. Experimental results demonstrate the effectiveness
of the proposed method compared with AuxIVA, MNMF and
ILRMA.

I. INTRODUCTION

Blind audio source separation separates a mixture of multi-
ple sources into their components without prior information
of the recording environments, mixing system, or source
locations [1], [2], [3]. A typical approach to blind audio
source separation is based on unsupervised learning of a
probabilistic model. It can be categorized into single-channel
source separation and multichannel source separation. This
paper focuses on multichannel source separation. A multi-
channel source separation method usually consists of a source
model representing the time-frequency structure of source
images and a spatial model representing their inter-channel
covariance structure. A widely used source model is the low-
rank model based on nonnegative matrix factorization (NMF)
for mitigating the permutation problem. The time-frequency
bins of each source in the spatial model are usually assumed
to be multivariate complex Gaussian [4].

A representative of multichannel source separation is mul-
tichannel nonnegative matrix factorization (MNMF) [5], [6],
[7], [8]. It consists of a low-rank source model and a full-
rank spatial model. The full-rank spatial model is capable
of representing a wide variety of source directivity under
an echoic condition. However, MNMF tends to get stuck
at bad local optima since a large number of unconstrained
spatial covariance matrices need to be estimated iteratively.
To address this problem, Kitamura et al. [9], [10] proposed
independent low-rank matrix analysis (ILRMA) which makes
rank-1 assumption for the spatial model. It performs well for
directional sources in practice. Essentially, the spatial model
and source model of ILRMA are independent vector analysis

(IVA) [11] and NMF respectively, which are optimized itera-
tively. The aforementioned NMF-based methods, e.g. MNMF,
ILRMA [10] and its variants [4] use NMF to decompose a
given spectrogram into several spectral bases and temporal
activations. Although the spatial properties of the source
images constrain the bases of NMF for the uniqueness of the
decomposition, it may not guarantee that the spectral content
of each source is identifiable. Therefore, a good source model
has the potential to improve the source separation performance
[10].

To improve the source identifiability of separation algo-
rithms, here we propose a new geometric inference method
for MNMF, named MinVol. It penalizes the columns of the
spectral bases of NMF by volume minimization [12], [13],
so that their convex hull has a small volume. Volume min-
imization factorizes a given data matrix into a basis matrix
and a structured coefficient matrix by finding a minimum-
volume simplex that encloses all columns of the data matrix
[14]. It guarantees the identifiability of the factorized matrices
under a so-called sufficiently scattered condition [15], [16].
We associate the minimum-volume penalty with the Itakura-
Saito (IS) divergence for MNMF. To our knowledge, this
is the first time that the minimum-volume penalty is used
in MNMF. Also, the minimum-volume constraint implicitly
enhances the sparsity of the temporal activations, so that
many frequency bands will be located on the facets of the
cone of the spectral bases. The proposed MinVol method is
optimized by a multiplicative update (MU) rule under the
standard majorization-minimization framework. Experimental
results show that the proposed method outperforms Auxiliary-
IVA (AuxIVA) [17], MNMF [6], and ILRMA [10] in speech
separation tasks.

II. METHODS

A. Problem formulation

Suppose the short-time Fourier transform (STFT) of a
multichannel mixture is xij = [xij,1, . . . , xij,m, xij,M ]T ∈
CM , where i = 1, . . . , I , j = 1, . . . , J, and m =
1, . . . ,M are the indices of the frequency bins, time frames,
and microphones, respectively, and T denotes the trans-
pose operator. Its source components are denoted as sij =
[sij,1, . . . , sij,n, . . . , sij,N ]T ∈ CN , where N is the number of
sources and n = 1, . . . , N is the index of the sources.

We assume that each source of the mixture is a point source,
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Fig. 1. Principle of the proposed MinVol algorithm.

then the mixture and its sources have the following connection:

xij = Aisij (1)

where Ai is the mixing matrix at the ith frequency bin. If
Ai is invertible and M = N , we can find a demixing matrix
(Ai)

−1 for recovering sij .
The problem of source separation is to find an estimation of

(Ai)
−1, denoted as Wi = [wi,1, . . . ,wi,M ]H , such that when

we apply Wi to xij , we obtain the separated signal yij :

yij = Wixij (2)

where H denotes the Hermitian transpose, and yij is an
estimation of sij .

Many MNMF methods model the power spectrogram by
Xij = xijx

H
ij , and use NMF [5], [18], [6] to decompose Xij

by:

Xij ≈ X̂ij =

K∑
k=1

(
N∑

n=1

Ri,n

)
vik,ntkj,n

∀i = 1, . . . , I, ∀j = 1, . . . , J.

(3)

where K is the number of basis vectors, vik,n is the element of
a spectral basis matrix Vn ∈ RI×K

≥0 for the nth source, tkj,n
is the element of a temporal activation matrix Tn ∈ RK×J

≥0 for
the nth source, and Ri,n ∈ CM×M is the spatial covariance at
the ith frequency band for the nth source. We denote the full
representation of Ri,n at all frequency bands for all sources
as a tensor R ∈ CI×N×M×M , and the full representation of
Xi,j at all time-frequency bins as a tensor X ∈ CI×J×M×M .

B. Minimum-volume multichannel source separation

Because there exists several valid solutions of Vn in (3), the
decomposition of the source model of MNMF is not unique.
To improve the identifiability of ILRMA (see Section II-D for
the definition of the identifiability), we propose the minimum-
volume based MNMF (MinVol). The principle of MinVol is
shown in Fig. 1. Its objective function is:

min
Ri,n,Vn,Tn

L = min
Ri,n,Vn,Tn

∑
n

λvol(Vn) +
∑
i,j

`(Xij , X̂ij)

subject to VT
n1 = 1, Tn ≥ 0

(4)

where 1 is an all-one vector and

vol(Vn) = log |det(VT
nVn + δIK)| (5)

is the minimum-volume regularization with δ as a small
positive constant that ensures vol(Vn) is bounded from be-
low, unlike the quantity log |det(VT

nVn)|. IK is the identity

matrix with dimensions K, and `(Xij , X̂ij) is the loss of the
approximation. λ is the regularization coefficient.

The reason for using the minimum-volume is that minimiz-
ing the volume of Vn makes the columns of Vn to be as
close as possible to each other within the unit simplex. For
different assumptions of data distribution, the loss ` should
be chosen differently. Because we assume that the data is
multiplicative Gamma distribution in this paper, we choose
the IS divergence as the loss. The IS divergence is the only
one in the β divergence family that has the scale-invariant
property. It implies that the distribution of the time-frequency
bins with low power is as important as that with high power
during the divergence computation [19].

C. Optimization algorithm

The objective function L based on the IS divergence is
formulated as:

L =
∑
i,j

[
tr
(
XijX̂

−1
ij

)
+ log det X̂ij

]
+
∑
n

λvol(Vn) (6)

According to ILRMA [10], the spatial covariance Ri,n can be
modeled by the rank-1 assumption. With the assumption, (6)
can be formulated as:

L =
∑
i,j

[∑
n

|yij,n|2∑
k vik,ntkj,n

+
∑
n

log
∑
k

vik,ntkj,n

− 2 log |detWi|
]

+
∑
n

λvol(Vn)

(7)

where the term
∑

i,j −2 log |detWi| is called the spatial
model, and the sum of all other terms are called the source
model. The spatial and source models of the objective are
optimized iteratively.

For each single iteration, to optimize the spatial model, an
IVA-based auxiliary function [17] is used, which results in the
following solution:

Gi,n =
1

J

∑
j

1

dij,n
xijx

h
ij

wi,n ← (WiGi,n)−1em

wi,n ← wi,n(wh
i,nGi,nwi,n)−

1
2

(8)

where em denotes the nth column vector of the M × M
identity matrix, Dn ∈ CI×J×N is the estimated spectrogram
of the nth source, and dij,n =

∑
k vik,ntkj,n is the element of

Dn.
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Substituting the solution (8) into (7) derives the following
optimization objective of the nth source model:

LnS =
∑
i,j

( dij,n∑
k vik,ntkj,n

+ log
∑
k

vik,ntkj,n

)
+ λvol(Vn)

(9)

where each source model is optimized independently as fol-
lows.

Because the first term of (9) is a difficult optimization
problem, we propose to optimize a new auxiliary function
instead of the difficult problem. The design of the auxiliary
function follows that in [20]:

Lemma 1 ([20]). Let d̃ij,n =
∑

k ṽik,ntkj,n and d̃ij,n ≥ 0,
ṽik,n ≥ 0. Then, the function:

Q(vi·,n|ṽi·,n) =

[∑
k

ṽik,ntkj,n

d̃ij,n
ρ̌(dij,n|d̃ij,n

vik,n
ṽik,n

)

]
+ ρ̄(d̃ij,n)

+

[
ρ̂′(dij,n|d̃ij,n)

∑
k

(vik,n − ṽik,n)tkj,n + ρ̂(dij,n|d̃ij,n)

]
(10)

is an auxiliary function for Q(vi·,n) at ṽik,n. where ρ̌ is a
convex function with respect to d̃ij,n

vik,n

ṽik,n
, ρ̂ is a concave

function with respect to d̃ij,n, and ρ̄ is the constant of dij,n.
ρ̂′ is the differential of ρ̂(dij,n|d̃ij,n) at d̃ij,n. Due to the
IS divergence, we have ρ̌(x|y) = xy−1, ρ̂(x|y) = log y,
ρ̄(x) = x(log x− 1), ρ̂′(x|y) = y−1.

Because the second term of (9), i.e. the minimum-volume
regularization, is also a difficult optimization problem, we use
its first-order Taylor expansion as an approximation which
constructs an upper bound of the expansion:

vol(Vn) ≤ log |det(U−1)|+ tr(UVT
nVn)−K (11)

where U = (ZTZ + δI)−1 with δ ≥ 0, Z ∈ RI×K is an
arbitrary positive definite matrix. We can set Z = Vn in the
experiments, since Vn is a positive definite matrix. Finally,
the right side of (11) is an auxiliary function for vol(Vn).
However, it is quadratic and inseparable, which makes the
problem hard to optimize over the nonnegative orthant. We use
an approximation to represent the right side of (11). The non-
constant part can be written as l(Vn) = VnUVT

n . Let U =
U+ −U− with U+ = max(U, 0) and U− = max(−U, 0),
Then, the right side of (11) can be written as:

l(Vn, Ṽn) =
1

2
∆VT

n Diag

(
2

[U+Ṽn + U−Ṽn]

[Ṽn]

)
∆Vn

+ ∆VT
n∇l(Ṽn) + l(Ṽn)

(12)

where [x]
[y] is the component division between x and y, Diag(·)

is the diagonal matrix, and ∆Vn = Vn − Ṽn.
At last, we replace the first term of (9) by (10) and the

second term of (9) by (12), which results in the following

auxiliary function at Ṽn:

F (Vn|Ṽn) =λ
(
log |det(U−1)|+ tr(UVT

nVn)
)∑

i

Q(vi·,n|ṽi·,n) + const (13)

where const is a constant for Vn. Similarly with (13), we
obtain:

F (Tn|T̃n) =
∑
j

Q(t·j,n|t̃·j,n) + const (14)

as an auxiliary function at T̃n for Tn

Setting the derivative of the auxiliary function F (Vn|Ṽn)
to zero:

∇vik,n
F (vik,n|ṽik,n) =

(∑
j

tkj,n

d̃ij,n
−
∑
j

tkj,n
ṽ2ik,ndij,n

v2ik,nd̃
2
ij,n

+ 2λ[ṽik,nU]k + 2λ[Diag(
ṽik,nU

+ + ṽik,nU
−

ṽik,n
)]k(vik,n − ṽik,n)

)
= 0

(15)

and solve (15) by Vieta’s theorem [21] derives the updating
function of Vn. Similarly, setting the derivative of (14) to zero
derives the updating function of Tn:

Tn ← T̃n �

√
|Yn|.2VT

n (VnT̃n).−2

VT
n (VnT̃n).−1

(16)

where Vn is the solution of (15). (9) is solved.
The regularization coefficient λ affects the model perfor-

mance. Here we update λ automatically. First, the variables
X̂ij and Vn are initialized with the successive nonnegative
projection algorithm [22], then λ is updated by:

λ← λ̂

∑
i,j

(
dij,n∑

k vik,ntkj,n
+ log

∑
k vik,ntkj,n

)
log |det(VT

nVn + δI)|
(17)

where λ̂ is the value of λ at the previous iteration, and
recommended to be chosen between 10−3 and 1 at the first
iteration.

D. Theoretical analysis

Similar to [23], we prove the identifiability of Vn in MinVol,
which supports the superiority of the proposed MinVol-ILRMA
over ILRMA theoretically.

Theorem 1. Let (V?
n,T

?
n) be an optimal solution of (4). If the

ground truth V\
n and T\

n satisfies the scattered condition [23]
and rank(Dn) = K. Then V?

n = V\
nB and T?

n = BTT\
n,

where B is a permutation matrix.

Proof 1. The method can be repeated here

min
Vn,Tn

log |detVT
nVn|

s.t. Dn = VnTn, VT
n1 = 1, Tn ≥ 0

(18)

Denote the optimal solution of (18) as V′n and T′n. There
exists a permutation matrix B such that V′n = V?

nB,T′n =
BTT?

n. Because rank(Dn) = K, there exists a non-singular
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Fig. 2. Average SDR improvement of the comparison methods over mixed
speech in anechoic environments. (a), (c), (e) are the results in condition 1.
(b), (d), (f) are the results in condition 2.

matrix C such that V′n = V?
nC, T′n = C−1T?

n. Because we
assume V′n and T′n are the optimal solution, we have

|detV′Tn V′n| = |detCT detTT?
n detT?

n detC| ≤ |detVT?
n V?

n|
(19)

On the other hand, because T′n is an optimal solution of (19),
we have:

C−1T?
n ≥ 0,TT?

n (C−1)T1 = 1 (20)

We assume that T?
n is sufficiently scattered, therefore ‖C(:

, k)−1‖2 ≤ 1TC(:, k)−1. Then, due to the Hadamard inequal-
ity, we have:

|detC−1| ≤
K∏

k=1

‖C(:, k)−1‖2 ≤
K∏

k=1

1TC(:, k)−1 = 1 (21)

Combining (20) and (21) derives that |detC| = 1. The above
conclusions imply that the columns of C can only be selected
from the columns of the identity matrix. So C should be a
non-singular and permutation matrix.

III. EXPERIMENTS

Experimental settings: We followed the environment of the
SISEC challenge [24] to construct a determined multichannel
speech separation task with M = N = 2. We used the Wall
Street Journal (WSJ0) corpus [25] as the speech source. We
evaluated the comparison methods on all gender combinations.

We generated two test conditions, denoted as condition
1 and condition 2. In both conditions, the room size was
set to 6 × 6 × 3 m; the two speakers were positioned 2
m from the center of the two microphones. The differences
between the two conditions are that (i) the microphone spacing
is 5.66 cm and 2.83 cm respectively, and (ii) the incident
angles of the two speakers follow [4, Figs. 9a and 9b]. The

TABLE I
THE AVERAGE SDR IMPROVEMENT (DB).

Condition 1 Condition 2

f+f m+m f+m f+f m+m f+m

AuxIVA [17] 2.98 3.40 2.95 5.92 7.55 7.60
MNMF [6] 1.25 1.84 1.97 1.47 2.00 2.11
ILRMA [10] 5.03 6.89 5.72 5.17 7.31 6.00
MinVol 7.39 8.77 7.87 8.31 10.06 9.29

image source model [26] was used to generate the room
impulse responses with the reverberation time T60 selected
from [130, 150, 200, 250, 300, 350, 400, 450, 500] ms. For each
gender combination and each T60 in each condition, we
generated 200 mixtures for evaluation. The sampling rate was
set to 16 kHz.

The parameter δ of MinVol in (5) was set to 0.5. Note
that MinVol is insensitive to the selection of δ, since it is
only used to prevent (5) from infinity. We compared MinVol
with AuxIVA [17], MNMF [6], and ILRMA [10]. For each
comparison method, we set the frame length and frame shift
of STFT to 64 ms and 32 ms respectively. Hamming window
was also applied to each frame. The number of basis vectors
were set to 10 in MNMF, ILRMA and MinVol by default. The
evaluation metric is signal-to-distortion ration (SDR) [27].

Results We first conducted an experiment in anechoic
environments. Fig. 2 shows the average SDR improvement
of the comparison methods over the mixed speech. From the
figure, we see that the performance of the proposed MinVol is
significantly better than that of MNMF. Compared to AuxIVA
and ILRMA, MinVol achieves an SDR improvement of about
3 dB on average.

Then, we studied the performance of the comparison meth-
ods in reverberant environments. Fig. 3 shows the SDR im-
provement over the mixed speech with respect to T60. From
the figure, we see that the curves of the SDR improvement
produced by MinVol are always higher than those produced
from the comparison methods.

To clearly show the general improvement of MinVol over
the referenced methods, we average the SDR improvement
with respect to different gender combinations and T60 for each
condition. The average results are listed in Table I. From the
table, we see that the average SDR improvement brought by
the proposed MinVol is 2 dB higher than ILRMA in condition
1, and 3 dB higher in condition 2.

IV. CONCLUSION

This paper proposes MinVol source separation method. It
constrains ILRMA with the volume minimization to improve
the identifiability of the source model estimation of ILRMA.
It further unifies the IVA-based blind spatial optimization and
the minimum-volume constrained MNMF. It is optimized by
the alternating fast projected gradient algorithm. We have also
proved the identifiability of the volume minimum regularizer.
Experimental results show that the proposed algorithm out-
performs three representative blind audio source separation
methods.
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Fig. 3. The curves of the SDR improvement of the comparison methods in
reverberant environments. (a), (c), (e) are in condition 1. (b), (d), (f) are in
condition 2.
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