
Over-Determined Semi-Blind Speech Source
Separation

Masahito Togami∗ and Robin Scheibler∗
∗ LINE Corporation, Tokyo, Japan

E-mail: masahito.togami@linecorp.com

Abstract—We propose a semi-blind speech source separation
that jointly optimizes several acoustic functions, i.e., speech
source separation (SS), dereverberation (DR), acoustic echo
reduction (AE), and background noise reduction (BG). Instead
of cascade connection of SS, AE, and DR, the proposed method
performs DR, SS, and AE by a unified time-invariant filter. We
assume the over-determined condition that the number of the
microphones Nm is larger than the number of near-end speech
sources Ns. Joint optimization of DR, SS, AE, and BG can
be performed by using the Nm − Ns dimensional subspace of
the time-invariant filter for BG. Furthermore, we reveal that
this subspace can be also utilized for residual acoustic echo
reduction (RR) in which residual acoustic echo signal is reduced
by spatial filtering. Two types of joint parameter optimization
techniques for DR, SS, AE, BG, and RR are proposed based on
vectorwise coordinate descent and fast multichannel nonnegative
matrix factorization. Experimental results show that the proposed
methods perform DR, SS, AE, and BG better than a cascade
method. When the acoustic echo path between a loudspeaker and
a microphone is time-varying, performance improvement of the
proposed methods with RR is larger than the proposed method
without RR.
Index Terms: acoustic echo reduction, speech source separa-
tion, dereverberation, noise reduction

I. INTRODUCTION

Speech source separation is an important technique for
human-listening systems and automatic speech recognition
(ASR) systems. Speech enhancement and blind speech source
separation techniques have been actively studied [1]–[4]. Dere-
verberation techniques [5], [6] are also important techniques
for speech applications that are utilized under reverberant en-
vironments. An acoustic echo signal which is an output signal
of a loudspeaker is also an unwanted signal in teleconferencing
systems and AI Assistants. Thus, speech source separation
(SS), dereverberation (DR), background noise reduction (BG),
and acoustic echo reduction (AE) have been actively studied
for a long time. Cascade connection of several acoustic func-
tions is one of the solutions. However, the output signal is not
optimized. For example, when AE is performed prior to SS
and/or BG [7], a time-invariant filter of AE is poorly optimized
due to the existence of the other speech sources. Thus, joint
optimization of several acoustic functions has been strongly
required.

As joint optimization of several acoustic functions, multi-
channel local Gaussian modeling (LGM) [8] based approaches
have been considered [9]–[11]. Joint optimization of SS, DR,
BG, and AE outperformed cascade-connection based methods

[11]. In this method, the residual acoustic echo signal after
AE is also reduced by spatial filtering. It is highly effective
to prevent from howling of teleconferencing systems and
to remove an extremely large acoustic echo signal when a
loudspeaker is attached closely to a microphone. However,
the computational cost is too high due to the calculation of an
inverse matrix whose dimension is proportional to the square
of the number of the microphones and the tap-length of a
time-invariant filter. Because this matrix is an output matrix
of Kronecker product, we call this problem the Kronecker
product problem.

Recently, determined speech source separation techniques
have been actively studied [12]–[17]. Determined speech
source separation assumes that the number of microphones
Nm is equal to the number of speech sources Ns. Determined
speech source separation such as independent low-rank matrix
analysis (ILRMA) [13] is known to be more stable than the
LGM based approaches. Joint optimization of SS and DR
has been proposed [14], [16]. Kagami et al. [14] optimize a
dereverberation filter similarly to the LGM based method [10],
and the Kronecker product problem is also problematic in this
method. On the other hand, the recently proposed ILRMA-T
[16] does not require Kronecker product, and computational
cost is lower than [14]. As an extension of ILRMA-T, joint
optimization of SS, DR, and BG has been also proposed
[18], [19] (OverILRMA-T). In the OverILRMA-T, Nm is
assumed to be larger than Ns. The OverILRMA-T is based
on a determined speech source separation with a time-invariant
filter. Thus, the Ns dimensional subspace of the time-invariant
filter is sufficient for SS. The remained Nm−Ns dimensional
subspace is utilized for BG [20]–[22].

In this paper, we propose a joint optimization of SS, DR,
BG, and AE. At first, it is shown that a time-invariant filter for
AE can be naturally integrated with a time-invariant filter for
SS and DR. A unified time-invariant filter is optimized simi-
larly to the ILRMA-T framework. Thus, the Kronecker product
problem is not problematic in this framework. Similarly to the
OverILRMA-T, the proposed method assumes that the number
of microphones Nm is larger than the number of near-end
speech sources Ns. BG is performed by using the Nm −Ns

dimensional subspace. We call this framework OverILRMA-
T-AE. We further propose the utilization of the Nm − Ns

dimensional subspace for not only BG but also residual
acoustic echo reduction (RR), similarly to the LGM based
approaches [9], [11]. When an acoustic impulse response
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between a loudspeaker and a microphone is time-varying, the
acoustic echo signal is not sufficiently removed by only the
time-invariant filter. The proposed method reduces the acoustic
signal in two ways, i.e., a time-invariant filter and a time-
varying multi-channel spatial filter. We propose two parameter-
optimization techniques for joint optimization. The first one
is an extension of vectorwise coordinate descent (VCD) [23]
based approach. The second one is an extension of fast multi-
channel nonnegative matrix factorization (FMNMF) approach
with joint diagonalization [24]. Experimental results show that
the proposed OverILRMA-T-AE framework outperformed the
cascade connection of AE and OverILRMA-T. It is also shown
that the proposed joint optimization of DR, SS, AE, BG, and
RR with VCD and FMNMF outperformed OverILRMA-T-AE
especially when the acoustic echo path is time-varying. From
the computational cost perspective, the proposed method with
FMNMF is shown to be more efficient than the proposed
method with VCD.

II. MODELING

A. Microphone input signal

Speech source separation is performed in a time-frequency
domain. Multi-channel microphone input signal xlk (l is the
frame index, k is the frequency index) is modeled in the time-
frequency domain as follows:

xlk = Akslk + elk + rlk + nlk, (1)

where xlk ∈ CNm , Nm is the number of the microphones,
slk ∈ CNs is a vector which contains near-end speech source
signals, Ns is the number of the near-end speech sources, Ak

is a matrix which contains the steering vector of each speech
source, elk is the spatial image of the acoustic echo signal, rlk
is the late reverberation term, and nlk is the background noise
term. Nm is assumed to be larger than Ns. elk is modeled as
follows:

elk =

Le−1∑
τ=0

gτkdl−τ,k, (2)

where Le is the tap-length of the acoustic echo path, g is the
impulse response of the acoustic echo path, and d is the pre-
given original signal. The reverberation term rlk is modeled
with an autoregressive model [6], [25] as follows:

rlk =

Lr−1∑
τ=0

Fτkxl−τ,k, (3)

where Lr is the tap-length of the autoregressive coefficient
and F is the autoregressive coefficient that estimates late
reverberation from the past microphone input signal. elk and
rlk can be combined into one term, and the microphone input
signal xlk is re-modeled as follows:

xlk = Akslk +Gkx̃lk + nlk, (4)

where
x̃lk =

[
dT
lk x̄T

lk

]T
, (5)

dlk =
[
dl,k · · · dl−Le+1,k

]T
, (6)

xlk =
[
xT
l−D,k · · · xT

l−D−Lr+1,k

]T
, (7)

and T is the transpose operator of a matrix/vector. The objec-
tive of speech source separation is defined as the extraction
of the spatial image of each speech source silkaik (aik is the
i-th column vector of Ak) from xlk defined in (4). Because
d is known in advance, this speech source separation problem
can be interpreted as a semi-blind speech source separation
problem.

B. Probabilistic modeling

1) Overview: Speech source separation is performed in a
probabilistic way. In this paper, an over-determined model
[20]–[22] is introduced. In the over-determined model, the
spatial covariance matrix (SCM) of each source is modeled
as a rank-one matrix. The SCM of the residual signal is
modeled as a Nm − Ns dimensional matrix. Summation of
the dimensions of the speech SCMs and the dimension of
the residual SCM are Nm. Thus, speech source separation is
performed with time-invariant multi-channel filtering.

2) Speech source model and residual signal model: Each
speech source silk is modeled as the following time-varying
Gaussian distribution [13]–[17]:

p (silk) = N (0, vilk) , (8)

where vilk is the time-varying variance of the i-th speech
source, which is modeled based on the non-negative matrix
factorization (NMF) as follows:

vilk =

Nn∑
n=1

cilnbink, (9)

Nn is the number of basis vectors, bink ≥ 0 is the basis
coefficient of the n-th component, and ciln ≥ 0 is the time-
varying activity of the n-th component.

The residual signal rlk = Gkx̃lk + nlk is modeled as
the following Nm − Ns dimensional time-varying Gaussian
distribution:

p (rlk) = N (Gkx̃lk,Vlk) , (10)

where Vlk is a Nm−Ns dimensional covariance matrix of the
residual signal.

3) Probabilistic model of microphone input signal: The
microphone input signal is modeled as a time-varying Gaus-
sian distribution, because all components, i.e., speech sources
and residual signal, are modeled as time-varying Gaussian
distributions. The time-varying Gaussian distribution of the
microphone input signal is modeled as follows:

p (xlk) = N (Gkx̃lk,Rxlk) , (11)

where Rxlk is the following time-varying covariance matrix
of the microphone input signal:

(12)Rxlk = Akdiag
(
v1lk · · · vNslk Vlk

)
A

H

k ,
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where H is the Hermitian transpose of a matrix/vector, and
Ak =

(
Ak Ank

)
. Finally, the negative log-likelihood func-

tion of the microphone input signal Llk = − log p (xlk) can
be modeled as follows:

(13)Llk =

Ns∑
i=1

∣∣pH
ikx̃lk

∣∣2∑Nn

n=1 cilnbink
+ (Pnkx̃lk)

H
V −1
lk Pnkx̃lk

+ log |detVlk| − 2 log |detWk| ,

where Wk = A
−1

k and

(14)Pk = [ Wk −WkGk ]

= [ p1k · · · pNsk PH
nk ]H .

pik is a unified time-invariant filter which extracts the i-th
speech source by performing DR, SS, and AE jointly.

III. PROPOSED METHOD

All parameters are optimized to minimize L =
∑

lk Llk.
However, there is no closed-form solution for parameter
optimization. The parameters are updated based on the
majorization-minimization (MM) algorithm [26] iteratively. A
monotonical decrease of the cost function is assured in each
iteration.

A. Parameter optimization of NMF parameters

NMF parameters are updated to minimize the cost function
L in an iterative manner as follows:

bink ← bink

√√√√√√
∑

t |ŝilk|
2
ciln

(∑Nn

n=1 cilnbink

)−2

∑
t ciln

(∑Nn

n=1 cilnbink

)−1 , (15)

ciln ← ciln

√√√√√√
∑

k |ŝilk|
2
bink

(∑Nn

n=1 cilnbink

)−2

∑
k bink

(∑Nn

n=1 cilnbink

)−1 , (16)

where ŝilk is the separated signal defined as ŝilk = pH
ikx̃lk.

B. Parameter optimization with orthogonal constraint

When the covariance matrix of the residual signal Vlk is a
time-varying matrix with no constraint, some speech sources
in Ns sources are mistakenly assigned in the residual signal
term, and these sources are missing in the output signal. In the
conventional over-determined model, Vlk was set to a time-
invariant matrix Rnk under the assumption that the residual
signal is the stationary background noise. In this case, although
x̃lk contains not only the past microphone input signal but also
the acoustic echo signal, Pk can be updated similarly to the
conventional over-determined ILRMA-T model (OverILRMA-
T) with orthogonal constraint [18], [19]. The first Ns rows of
Pk can be updated based on the ILRMA-T based separation
filter update [15], [16] as follows:

pik ←
Q−1

ik zik√
zH
ikQ

−1
ik zik

, (17)

where

Qik =
1

LT

LT∑
l=1

x̃lkx̃
H
lk∑Nn

n=1 cilnbink
, (18)

zik =

(
W−1

k ei
0

)
, (19)

LT is the number of time-frames, and ei takes 1 in only the
i-th element and takes 0 in the other elements. The remained
term of Pk, i.e., Pnk, is updated with the orthogonal constraint
[18], [19] as follows:

Pnk ←

 Cnk

−I
Jnk,3J

−1
nk,1Cnk − Jnk,3J

−1
nk,1En

 , (20)

where (
Jnk,1,Nm×Nm

Jnk,2

Jnk,3 Jnk,4

)
= Q−1

nk , (21)

Qnk =

LT∑
l=1

x̃lkx̃
H
lk

LT
, (22)

Cnk = (Ws,kJ
−1
nk,1Es)

−1Ws,kJ
−1
nk,1En, (23)

and Ws,k is a Ns ×Nm dimensional submatrix of Wk. The
output Pk is optimized to perform DR, SS, AE, and BG jointly.
We call this model OverILRMA-T-AE-OC.

C. Parameter optimization with time-varying residual covari-
ance matrix model

In the OverILRMA-T-AE-OC, the acoustic echo signal is
reduced by only time-invariant linear filtering. However, when
the impulse response between a loudspeaker and a microphone
is time-varying, there is a residual acoustic echo signal af-
ter the time-invariant linear filtering. We propose a residual
acoustic echo reduction (RR) by using multi-channel spatial
filtering. We introduce a time-varying covariance matrix which
is correlated with the power of the acoustic echo signal so that
the residual echo signal is correctly assigned in the residual
signal term similarly to LGM based methods [9], [11]. The
time-varying covariance matrix is modeled as follows:

Vlk = Rnk +

Le−1∑
τ=0

|dl−τ,k|2 Uτk, (24)

where Uτk is the multi-channel covariance matrix of the τ -
th tap of the residual acoustic echo signal. Even though Uτk

is updated with no constraint, |dl−τ,k|2 Uτk is not correlated
with the power of the Ns speech sources under the assumption
that the acoustic echo signal and the Ns speech sources are
independent of each other. Thus, it is expected that any speech
source is not assigned mistakenly in the residual signal term.
For optimizing the proposed time-varying residual covariance
matrix model and Pnk, we propose two optimization algo-
rithms. In each method, each low vector of Pnk is updated
sequentially.
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1) Vectorwise coordinate descent based optimization: We
extend the vectorwise coordinate descent (VCD) based opti-
mization algorithm [23] for optimization Pnk with the time-
varying covariance matrix of the residual signal. When the t-th
row vector of Pnk is updated, terms which are related to ptk

in L are summarized as follows:

F (ptk) = pH
tkQttkptk + λH

tkptk + pH
tkλtk − 2 log |detWk| ,

(25)
where

λtk =

∑
l

∑
s̸=t

(
V −1
lk

)
st
xlkx

H
lkpsk

LT
, (26)

Qttk =

∑
l xlkx

H
lk

(
V −1
lk

)
tt

LT
, (27)

âtk =

[ (
Ŵ−1

k eNm+t

)T

0

]T
. (28)

ptk which minimizes F (ptk) under the condition that the
other parameters are fixed is obtained as follows:

ptk = Q−1
ttk (αâtk − λtk) , (29)

where α is a variable. α is obtained as follows:

α =

{
1√

âH
tkQ

−H
ttk âtk

if λH
tkQ

−H
ttk âtk = 0

−β
(
λH
tkQ

−H
ttk âtk

)∗
otherwise

. (30)

where

β =
−r +

√
r2 + 4c

2c
, (31)

r =
∣∣λH

tkQ
−H
ttk âtk

∣∣2 , (32)

c =
∣∣λH

tkQ
−H
ttk âtk

∣∣2 âH
tkQ

−H
ttk âtk. (33)

Optimization of Rnk and Uτk is done based on multi-
channel nonnegative matrix factorization (MNMF) [27], [28]
under the condition that Pk is fixed and that a Nm − Ns

dimensional vector ylk = Pnkx̃lk is regarded as the input
signal of the MNMF. We call this algorithm OverILRMA-T-
AE-VCD.

2) Fast MNMF based optimization: We extend the Fast
MNMF based optimization [24] for semi-blind speech source
separation. We assume that Rnk and Uτk are jointly diago-
nalized as follows:

Rnk = Dkdiag
(
r1k · · · rNm−Nsk

)
DH

k , (34)

Uτk = Dkdiag
(
g1τk · · · gNm−Nsτk

)
DH

k , (35)

where
Dk ∈ CNm−Ns×Nm−Ns . (36)

The i-th low vector of Pnk, pH
Nm+i,k, is updated as follows:

pNm+ik ←
Q−1

Nm+ikzik√
zH
ikQ

−1
Nm+ikzik

, (37)

TABLE I
AVERAGED TIME [SEC] FOR ONE ITERATION

Nm = 3 4 5

AE+OverILRMA-T 1.74 2.88 4.58
OverILRMA-T-AE-OC 2.60 4.12 5.94

OverILRMA-T-AE-VCD 7.65 13.72 29.53
OverILRMA-T-AE-FMNMF 2.53 5.10 8.14

where

QNm+ik =
1

LT

LT∑
l=1

x̃lkx̃
H
lk

rik +
∑

τ |dl−τ,k|2 giτk
, (38)

zik =

(
W−1

k eNm+i

0

)
. (39)

r is updated similarly to NMF as follows:

rik ← rik

√√√√√∑
l

|yilk|2

(rik+
∑

τ |dl−τ,k|2giτk)
2∑

l
1

rik+
∑

τ |dl−τ,k|2giτk

, (40)

giτk ← giτk

√√√√√√
∑

l
|dl−τ,k|2|yilk|2

(rik+
∑

τ |dl−τ,k|2giτk)
2∑

l
|dl−τ,k|2

rik+
∑

τ |dl−τ,k|2giτk

. (41)

We call this algorithm OverILRMA-T-AE-FMNMF.

D. Output signal with projection back

The spatial image of the separated signal is estimated with
the projection back. The steering matrix Ak is obtained as
W−1

k . The spatial image of the i-th speech source is estimated
as follows:

cilk = silkaik. (42)

IV. EXPERIMENT

A. Experimental setup

Performances of DR, SS, AE, BG, and RR were evaluated
with simulated data made by Pyroomacoustics [29]. The
sampling rate was 16000 Hz. The frame size was 1024 pt.
The frame shift was 512 pt. Ld was 4. Le was 4. D was
1. Nn was 2. The number of iterations was 100. Ns were
2. Nm were 3, 4, and 5. The speech sources were extracted
from the WSJ1 dataset. The number of the evaluation data was
333. RT60 was randomly selected from 0.5 [sec] to 0.8 [sec]
for each data. The microphone alignment was also randomly
selected. SNR between speech sources was randomly selected
from -5 dB to 5 dB. SNR between speech sources and the
acoustic echo signal was randomly selected from -10 dB to 0
dB. SNR between speech sources and background noise was
randomly selected from 10 dB to 30 dB. The background noise
was selected from the CHiME3 dataset [30]. Two acoustic
conditions were simulated, i.e., a time-invariant condition and
a time-varying condition. In the time-invariant condition, the
impulse response of the acoustic echo signal (echo path)
was time-invariant. In the time-varying condition, the echo
path changed only once during each utterance by changing
randomly the location of the loudspeaker up to 0.05 m. The
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change-time was randomly selected. Evaluation measures were
differences of Cepstrum Distortion (CD), SI-SDR, and SI-SIR
between before processing and after processing. The lower
value is better in ∆ CD. The higher value is better in ∆ SI-
SDR and ∆ SI-SDR.

B. Experimental results

We compared the proposed methods with the cascade
connection of AE and OveILRMA-T [18], [19]. In Fig. 1,
the experimental results when the impulse responses be-
tween a loudspeaker and microphones are time-invariant are
shown. In Fig. 2, the experimental results when the echo
path is time-varying are shown. The OverILRMA-T-AE-OC
outperformed the AE+OverILRMA-T. It can be said that
the joint optimization of time-invariant acoustic echo re-
duction filter in the ILRMA-T framework is effective. The
OverILRMA-T-AE-VCD and the OverILRMA-T-AE-FMNMF
outperformed the OverILRMA-T-AE-OC. Especially when the
echo path is time-varying, the performance improvement of the
OverILRMA-T-AE-VCD and the OverILRMA-T-AE-FMNMF
is larger. Thus, it can be said that RR in the OverILRMA-
T-AE-VCD and the OverILRMA-T-AE-FMNMF is effective.
When Nm is larger, the difference between the OverILRMA-T-
AE-OC and the OverILRMA-T-AE-VCD or the OverILRMA-
T-AE-FMNMF is larger. The OverILRMA-T-AE-VCD and the
OverILRMA-T-AE-FMNMF can utilize the excess dimension
effectively for RR.
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Fig. 1. Box plot when echo path is time-invariant

In Fig. 3 and Fig. 4, convergence speed was evaluated.
It is shown that the convergence speed of all methods are
approximately equivalent even though maximum performances
of the OverILRMA-T-AE-VCD and the OverILRMA-T-AE-
FMNMF are higher than those of the AE+OverILRMA-T
and the OverILRMA-T-AE-OC. Computation cost was also
evaluated in Table I. A server with Intel Xeon Silver 4114
CPU @ 2.20GHz and 128 GB RAM was used. It is shown that
OverILRMA-T-AE was slower than AE+OverILRMA-T at the
expense of performance improvement. From the comparison
between the OverILRMA-T-AE-VCD and the OverILRMA-T-
AE-FMNMF, it is shown that by using FMNMF, the computa-
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Fig. 2. Box plot when echo path is time-varying
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Fig. 3. Convergence speed when echo path is time-invariant

tional cost was heavily decreased even though the performance
difference between these two methods was not so much.

C. Conclusion

We proposed a joint optimization of multi-channel speech
source separation, dereverberation, background noise reduc-
tion, and acoustic echo reduction. To remove acoustic echo
signal sufficiently, residual echo reduction is done in a multi-
channel spatial filtering way. Two types of parameter op-
timization algorithms have been proposed based on VCD
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Fig. 4. Convergence speed when echo path is time-varying
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and FMNMF. Experimental results showed that the proposed
approach outperformed a cascade-connection based method.
When acoustic impulse responses between a loudspeaker and
microphones are time-varying, it is shown that residual echo
reduction is effective. It is also shown that FMNMF achieved
the equivalent performance with VCD even though the com-
putational cost of the FMNMF is much smaller than that of
the VCD.
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