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Abstract—Target speech separation is the process of filtering
a certain speaker’s voice out of speech mixtures according to the
additional speaker identity information provided. Recent works
have made considerable improvement by processing signals in
the time domain directly. The majority of them take fully over-
lapped speech mixtures for training. However, since most real-life
conversations occur randomly and are sparsely overlapped, we
argue that training with different overlap ratio data benefits.
To do so, an unavoidable problem is that the popularly used SI-
SNR loss has no definition for silent sources. This paper proposes
the weighted SI-SNR loss, together with the joint learning of
target speech separation and personal VAD. The weighted SI-
SNR loss imposes a weight factor that is proportional to the target
speaker’s duration and returns zero when the target speaker is
absent. Meanwhile, the personal VAD generates masks and sets
non-target speech to silence. Experiments show that our proposed
method outperforms the baseline by 1.73 dB in terms of SDR
on fully overlapped speech, as well as by 4.17 dB and 0.9 dB on
sparsely overlapped speech of clean and noisy conditions. Besides,
with slight degradation in performance, our model could reduce
the time costs in inference.

I. INTRODUCTION

With the development of deep learning, Automatic Speech
Recognition (ASR) technology has shown promising results in
recent years. However, modern ASR systems generally assume
single active speaker conditions, and therefore may easily fail
when two or more speakers are involved simultaneously in one
talk. To enhance the robustness, a speech separation module
is usually applied as the front-end [1], [2], [3], which splits
mixed speech into different channels by speakers.

Early studies mainly focused on blind source separation,
which separates each source from multi-speaker speech mix-
tures without additional speaker information. Beginning with
deep clustering [4], [5] and permutation invariant training [6],
[7], a huge number of works have shown commendable per-
formance on the wsj0-2mix dataset [8], [9], [10], [11]. Despite
this, the weakness of blind source separation is that the number
of speakers must be fixed and known in advance. To get rid
of such restriction, some researchers turn to target speech
separation, where additional speaker identity information is
provided to filter out only the target voice. Related works
include SpeakerBeam [12], VoiceFilter [13], SpEx [14], [15],
X-TasNet [16], etc. [17], [18], and approaches in the time
domain seem to outperform those in the frequency domain.

A phenomenon is observed that current temporal target

speech separation approaches only simulate fully overlapped
speech for system training. However, in reality, most conversa-
tions happen randomly and are sparsely overlapped. Therefore,
we argue that training with sparsely overlapped speech is
meaningful for stepping forward the application of separation.
The challenge is that the widely used Scale-invariant Source-
to-noise Ratio (SI-SNR) [19] loss has no definition when
speech mixtures do not involve the target speaker. To get
over the challenge, we come up with the weighted SI-SNR
loss, which assigns the original loss with weights according
to duration of the target speech. Besides, we associate target
speech separation with another task, namely personal Voice
Activity Detection (personal VAD) [20]. A personal VAD
system is expected to output 1 when the target speaker is
present at the current moment, and 0 otherwise. It is so
similar to the target speech separation task that we believe their
network backbones can be shared and joint learning of the two
tasks benefits. The joint learning strategy solves weaknesses
in the weighted SI-SNR loss. Moreover, by generating masks
through personal VAD, we can directly set non-target speech
to silence without relying on the separation predictions.

The rest of this paper is organized as follows. Section 2 de-
fines the target speech separation task formally and describes
the problem existing in SI-SNR loss. Section 3 presents the
weighted SI-SNR loss, along with the joint learning of target
speech separation and personal VAD. The implementation
details, experimental results and discussions are shown in
Section 4, while conclusions are drawn in Section 5.

II. PROBLEM FORMULATION

A. Target Speech Separation

Assuming that s1, s2, ..., sC ∈ RT are clean signals from
different speakers, we define a speech mixture as:

x =

C∑
i=1

si + n, (1)

where n is the noise. For target speech separation, addi-
tional speaker information is provided to help filter out the
corresponding speaker’s voice. Without loss of generality, let
speaker embedding ei be the information from speaker i, the
estimated source is formulated as:

ŝi = f(x, ei). (2)
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f(·) is usually a deep learning model, and our goal is to
minimize the loss between ŝi and si. For simplicity, we
remove the indices of ŝi and si for the rest of our paper.

B. SI-SNR Loss

As a widely used loss function in temporal speech separa-
tion, the SI-SNR loss is formulated as:

lSI-SNR(ŝ, s) = −10 log10

∥∥∥ 〈ŝ,s〉s‖s‖2

∥∥∥2∥∥∥ŝ− 〈ŝ,s〉s‖s‖2

∥∥∥2 , (3)

where ŝ and s are mean normalized. The definition can be
simplified as:

lSI-SNR(ŝ, s) = 20 log10
‖ŝ− αs‖
‖αs‖

for α s.t. (ŝ− αs) ⊥ αs.
(4)

As illustrated in Fig. 1, vector ŝ, αs and ŝ − αs together
construct a right triangle, and the SI-SNR loss equals the
logarithmic value of tan(θ). It is easily understanding that there
is no definition when s = 0, which indicates absence of the
target speaker.

Fig. 1. Illustration of the SI-SNR loss.

To avoid the problem, researchers often add a very small
term eps (e.g. 10−8) to the denominator of Eq. 3 and extend
the SI-SNR loss as:

lSI-SNR(ŝ, s) = −10 log10


∥∥∥ 〈ŝ,s〉s
‖s‖2+eps

∥∥∥2∥∥∥ŝ− 〈ŝ,s〉s
‖s‖2+eps

∥∥∥2 + eps
+ eps

 .

(5)
For s = 0, the modified loss function returns a vary large
constant −10 log10 eps instead of an infinite value, which is
just a trade-off solution.

III. APPROACH

A. Weighted SI-SNR Loss

Our initial idea is to calculate the target speech regions
only and assign the loss with weights according to the target
speaker’s duration. Specifically, let z = [z1, z2, ..., zT ] ∈ RT

where zt is either 1 or 0, indicating presence or absence of the
target speaker at the t-th moment, respectively. The weighted
SI-SNR (SI-SNRw) loss is then formulated as:

lSI-SNRw(ŝ, s) = lSI-SNR(ŝ⊗ z, s⊗ z) · w, (6)

w =
‖z‖
T
. (7)

Symbol ⊗ is the element-wise multiplication, and s⊗ z indi-
cates that the non-target speech regions are masked with zeros.
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Fig. 2. Illustration of the model structure. It consists of three parts: the speech
separation branch, the personal VAD branch and the shared network backbone.
A speaker verification system (not shown here) is pre-trained to extract speaker
embeddings from the target speaker’s additional audios.

The loss weight w is in the range of 0 and 1, proportional to
the target speaker’s duration. For absence of the target speaker,
w is set to 0. In a training batch, the weighted SI-SNR loss is
modified as:

lSI-SNRw =

∑B
b=1 lSI-SNR(ŝ

(b) ⊗ z(b), s(b) ⊗ z(b)) · w(b)∑B
b=1 w

(b)
, (8)

where superscript (b) indicates the b-th sample in a batch.
However, two weaknesses exist in the weighted SI-SNR

loss. First, z is unavailable in inference. Second, the process
is basically dropping out the non-target speech regions since
they have no impact on the network backpropagation. It is a
waste of negative samples.

Joint learning of target speech separation and personal VAD
is brought up as an extension of the above idea. The model is
illustrated in Fig. 2. In addition to the familiar speech encoder-
decoder structure of temporal separation and the network
backbone, a personal VAD branch is added to generate ẑ,
a soft prediction of z. The first weakness in Section III-A is
then naturally solved by replacing z with ẑ in inference. For
the second one, since the personal VAD branch has played
the role of distinguishing target speech and non-target speech,
we can directly set non-target speech to silence without the
prediction of separation. Therefore, it is just fine for the speech
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separation branch to focus on speech where the target speaker
is involved.

B. Joint Learning with Personal VAD
Next, we will have a more specific description about the

model structure.
1) Speech Separation Branch: The separation branch

mainly includes the speech encoder, the 1 × 1 CNN and the
speech decoder. The speech encoder is 1-D CNN with kernel
size L, stride L/2 and the number of filters N . It converts
input x to a 2-dimensional feature mapping X ∈ RT ′×N .
Then X is fed into the shared network backbone and the
1×1 CNN with the ReLU activation function, generating mask
M of the same shape. After that, X performs element-wise
multiplication with mask M to reserve the target speaker’s
voice and suppress the rest:

Y = X ⊗M . (9)

Finally, the speech decoder, which is symmetrical to the
encoder, converts Y back to the time domain and estimates
the target speech ŝ.

2) Personal VAD Branch: The personal VAD branch in-
cludes logfbank extraction, the 1 × 1 CNN and the speech
decoder. In the early design, we just took the speech encoder
in the separation branch to encode input waveforms, but
experiments showed severe overfitting in the training process.
Therefore we turn back to the traditional logfbank features
instead. The frame length of logfbank features is set to 512
samples (32 ms for 16k sample rate), while the frame step
is L/2 to keep the number of frames the same as X . After
the shared network backbone, outputs are fed into the 1 × 1
CNN with ReLU, the speech decoder and the Sigmoid function
sequentially. Prediction ẑ indicates the probability of the target
speaker’s presence along time.

3) Shared Network Backbone: Feature mapping X and
logfbank features are concatenated over the feature dimen-
sion and then fed into a global layer normalization layer
(Norm) along with the 1 × 1 CNN. The followings are 4
Temporal Convolutional Network (TCN) stacks. Each stack
consists of 8 TCN layers, with a growing dilation factor of
2b (b ∈ {0, 1, ..., 7}). In the first TCN layer, the speaker
embedding is repeatedly concatenated with inputs over the
feature dimension to impose speaker identity information. The
structure and hyperparameters of the TCN layer are the same
as those in SpEx [14], [15]. We skip the details of TCN due
to the space limitation.

For simplicity, a pre-trained speaker verification system is
applied to extract speaker embeddings from additional target
speaker’s audios. The details are listed in Section IV-B.

4) Loss Functions: For the separation task, we apply the
weighted SI-SNR loss to measure the difference between the
estimated source ŝ and ground-truth label s. As for personal
VAD, the Binary Cross Entropy (BCE) loss employed. The
overall loss function is defined as:

loss = lSI-SNRw(ŝ, s) + λ · lBCE(ẑ, z), (10)

where λ is the scale factor to balance two losses.

5) Inference: In inference, ẑ is smoothed by a mean filter
of 100 ms and converted into binary values given a threshold
of γ. Then ŝ performs element-wise multiplication with ẑ to
mask non-target speech to silence and generates the estimated
source, as shown in Fig. 3.

Smothed Personal VAD Output

Separation Output

Binarize

Estimated Source

Fig. 3. The inference process.

IV. EXPERIMENTAL RESULTS

A. Data
The model is trained on the LibriSpeech corpus [21]. We

employ the same training tuples derived from VoiceFilter 1.
Each tuple includes a clean utterance and an embedding
utterance of the same speaker, and an interference utterance
from another speaker. VAD labels for the clean utterance
are obtained by running forced alignment with a pre-trained
ASR model. The mixture is generated by mixing the clean
and interference utterances, and the embedding utterance is
taken to extract the speaker embedding. Two mixing modes
are discussed here:
• min mode: The speech mixture has the same length as

the shorter utterance, and the longer one is randomly
truncated.

• max mode: The speech mixture has the same length as
the longer utterance, and the shorter one is randomly
padded with zeros on both sides.

In the training process, speech mixtures are clipped to 3
seconds. The min mode always generates fully overlapped
speech, while the max mode generates mixtures of different
overlap ratios randomly. We use the max mode to train our

TABLE I
SDRI (DB) AND SI-SNRI (DB) OF RELATED WORKS AND OUR PROPOSED

METHOD ON FULLY OVERLAPPED LIBRISPEECH MIXTURES.

Model SDRi SI-SNRi

VoiceFilter [13] 7.8 -
Atss-Net [17] 9.3 -
X-TasNet[16] 13.8 12.7

X-TasNet with LoD AT [16] 14.7 13.8

Baseline 13.46 12.36
Joint Learning 15.19 14.59

1https://github.com/google/speaker-id/tree/master/publications/VoiceFilter
/dataset/LibriSpeech
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TABLE II
PERFORMANCE ON SPARSELIBRI2MIX OF CLEAN (2SPK-C) AND NOISY (2SPK-N) CONDITIONS.

2spk-C 2spk-N
Baseline Joint Learning Baseline Joint Learning

Overlap SDRi SI-SNRi SDRi SI-SNRi SDRi SI-SNRi SDRi SI-SNRi

0% 32.34 31.49 51.49 52.43 12.42 11.58 12.69 13.29
20% 19.59 18.77 21.27 20.78 12.36 11.40 13.55 12.77
40% 17.43 16.69 18.67 18.22 12.28 11.38 13.14 12.45
60% 16.73 16.05 17.59 17.14 12.02 11.18 13.00 12.30
80% 15.56 14.81 17.04 16.59 11.54 10.69 12.74 12.13
100% 15.30 14.58 16.54 16.09 11.66 10.82 12.56 12.01

Average 19.49 18.73 23.66 23.43 12.05 11.17 12.95 12.44

model and the min mode for the baseline due to the problem
described in Section II-B. Before mixing up, the two utterances
are rescaled to a random Signal-to-noise Ratio (SNR) between
-5 and 5 dB; after that, noises from the WHAM!’s training
set [22] are added by 0.5 probability so that SNRs between
speech mixtures and noises are in the range of 10 and 20 dB.

Two datasets are employed for evaluation. The first dataset
takes the dev tuples from VoiceFilter. Audios are mixed by 0
dB, fully overlapped and without noise. We take it to compare
our model with the recent works on fully overlapped speech.
The other dataset, SparseLibri2Mix [23], covers two-speaker
talks with overlap ratios ranging from 0% to 100% under clean
and noisy conditions.

B. Experimental Setup

We employ the Adam optimizer for system training. The
learning rate is initialized as 0.001, and halves if the validation
loss does not improve for 3 consecutive epochs. The training
process terminates after 50 epochs. As for model hyperparam-
eters, we set L = 40 and N = 256 for the speech encoder.
The number of filters for logfbank features is 80. The TCN
stacks follow the same configurations in SpEx, and the speech
decoder is symmetrical to the encoder. λ is set to 5 for the
overall loss. The threshold γ equals 0.4 for inference.

We apply the open-source pre-trained speaker verification
system ResNetSE34V2 in [24], [25] to speaker embedding
extraction 2. It is trained on the voxceleb2 development
data [26] with online augmentation, and achieves an EER of
1.17% on the original voxceleb1 test set.

C. Baseline

In our baseline, the personal VAD branch in Fig. 2 is
removed, and we employ the original SI-SNR loss instead.
Since the loss cannot deal with silent sources, audios are mixed
with the min mode.

D. Results on Fully Overlapped Speech

Results on the fully overlapped evaluation set are reported
in Table I. Metrics include the improvement of Source-to-
distortion Ratio (SDRi) and SI-SNR (SI-SNRi). The baseline
achieves a SDRi of 13.46 dB and a SI-SNRi of 12.36 dB,
outperforming VoiceFilter and Atts-Net by a large margin. Our

2https://github.com/clovaai/voxceleb trainer

joint learning strategy further improves the metrics to 15.19
dB on SDRi and 14.59 dB on SI-SNRi, which successfully
beats the state-of-the-art X-TasNet.

E. Results on Sparsely Overlapped Speech

The SparseLibri2Mix dataset is initially generated for blind
source separation, and no embedding utterance is provided.
Therefore, we randomly select 3 extra utterances of the target
speaker to extract the speaker embedding. Each speaker in
the mixture is chosen as the target speaker in turn, which
doubles the total evaluation set size from 3000 to 6000 cases.
Results are shown in Table II. Noticing that a few estimated
sources from our joint learning model are fully silent and not
calculable by the metrics (12 clean cases and 26 noisy cases),
we set their improvement to 0 dB. Under the clean condition,
our proposed model outperforms the baseline by a SDR of
4.17 dB on average. Specifically, the gain mainly comes from
audios without overlap, which is close to 20 dB. For the rest
audios, the SDR improvement ranges from 0.86 dB to 1.68
dB. Besides, the SDR decreases as the overlap ratio increases.

In the noisy condition, however, the conclusions are sig-
nificantly different. The average SDRs are much lower in
comparison with those under the clean condition, and the gap
between the two models has narrowed to 0.9 dB. There is only
a little gain obtained from audios without overlap. In addition,
the SDRs decrease more smoothly with the increase of overlap
ratios. We believe that simply adding noisy samples in the
training process is far from enough to build a noise-robust
system, and noisy speech separation is still a challenging task.
We list it as one of our future directions, and will make efforts
to push target speech separation towards application.

F. Faster Inference

A common VAD module is expected to be light, fast
and works as the front-end to pass speech to more complex
systems. We hope to make the same demands on the personal
VAD. In Fig. 2, the personal VAD branch is connected with
the final TCN stack, and the four TCN stacks contribute to
the major computational complexity. Our proposed idea is
to put the branch after the front TCN blocks and head off
the guessed non-speech frames. Only the target speech is fed
forward into the next TCN stacks, and thus time costs reduce
in inference. The behavior unavoidably results in degradation
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TABLE III
THE AVERAGE SDRI (DB), SI-SNRI (DB) AND RTF ON CLEAN

SPARSELIBRI2MIX WHEN THE PERSONAL VAD BRANCH IS CONNECTED
AFTER DIFFERENT TCN STACKS.

After the k-th TCN stack SDRi SI-SNRi RTF

k = 1 18.94 18.53 0.45
k = 2 22.19 21.90 0.47
k = 3 23.32 23.04 0.53
k = 4 23.66 23.43 0.61

of system performance, so we carry out experiments on the
clean SparseLibri2Mix dataset to estimate the influence.

The inference process is done on a single core of Intel(R)
Xeon(R) CPU E5-2650 v4 @ 2.20GHz, and results are re-
ported in Table III. As expected, connection with the last
TCN stack results in the largest real-time factor (RTF) of
0.61. When we put the personal VAD branch after the first
TCN stack, the RTF significantly reduces to 0.45. However,
the modification also leads to severe performance degradation,
by -4.72 dB in terms of SDR. Considering the balance between
performance and computational complexity, we recommend
setting k = 2. In this case, the SDR and SI-SNR are still com-
petitive, and meanwhile the RTF reduces by 23% relatively
in comparison with the best-performing system. Moreover,
that is not the full potential because the average overlap ratio
of SparseLibri2Mix is 50%, much higher than audios in the
real world. Theoretically, for non-target audios, our proposed
model could run 50% faster by heading off them early with the
personal VAD branch. In other words, the model will work in
a low-resource mode until the target speaker activates it, which
is attractive for real-world application.

V. CONCLUSIONS

In this paper, we emphasize sparsely overlapped speech
training and propose weighted SI-SNR loss together with joint
learning of target speech separation and personal VAD. Ex-
periments show that our proposed method brings considerable
improvement on both fully and sparsely overlapped speech
compared with the baseline. Moreover, with tolerable loss in
system performance, we reduce the inference time by 23%
relatively on the clean SparseLibri2Mix dataset. We believe it
is a beneficial step towards the real-world application of target
speech separation.

REFERENCES

[1] Z. Wang and D. Wang, “On spatial features for supervised speech
separation and its application to beamforming and robust asr,” in
2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2018, pp. 5709–5713.

[2] Z. Chen, T. Yoshioka, L. Lu, T. Zhou, Z. Meng, Y. Luo, J. Wu, X. Xiao,
and J. Li, “Continuous speech separation: Dataset and analysis,” in
2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2020, pp. 7284–7288.

[3] T. von Neumann, C. Boeddeker, L. Drude, K. Kinoshita, M. Delcroix,
T. Nakatani, and R. Haeb-Umbach, “Multi-talker asr for an unknown
number of sources: Joint training of source counting, separation and
asr,” in Proc. Interspeech 2020, 2020, pp. 3097–3101.

[4] J. R. Hershey, Z. Chen, J. Le Roux, and S. Watanabe, “Deep clustering:
Discriminative embeddings for segmentation and separation,” in 2016
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), 2016, pp. 31–35.

[5] Y. Isik, J. L. Roux, Z. Chen, S. Watanabe, and J. R. Hershey, “Single-
channel multi-speaker separation using deep clustering,” in Proc. Inter-
speech 2016, 2016, pp. 545–549.

[6] D. Yu, M. Kolbæk, Z. Tan, and J. Jensen, “Permutation invariant training
of deep models for speaker-independent multi-talker speech separation,”
in 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2017, pp. 241–245.

[7] M. Kolbæk, D. Yu, Z. Tan, and J. Jensen, “Multitalker speech separation
with utterance-level permutation invariant training of deep recurrent neu-
ral networks,” IEEE/ACM Transactions on Audio, Speech, and Language
Processing, vol. 25, no. 10, pp. 1901–1913, 2017.

[8] Y. Luo and N. Mesgarani, “Tasnet: Time-domain audio separation
network for real-time, single-channel speech separation,” in 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2018, pp. 696–700.

[9] Y. Luo, Z. Chen, and T. Yoshioka, “Dual-path rnn: Efficient long
sequence modeling for time-domain single-channel speech separation,”
in 2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2020, pp. 46–50.

[10] Y. Luo and N. Mesgarani, “Conv-tasnet: Surpassing ideal
time–frequency magnitude masking for speech separation,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 27,
no. 8, pp. 1256–1266, 2019.

[11] N. Zeghidour and D. Grangier, “Wavesplit: End-to-end speech separation
by speaker clustering,” arXiv preprint arXiv:2002.08933, 2020.
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