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Abstract—Probabilistic linear discriminant analysis (PLDA)
has broad application in open-set verification tasks, such as
speaker verification. A key concern for PLDA is that the model
is too simple (linear Gaussian) to deal with complicated data;
however, the simplicity by itself is a major advantage of PLDA,
as it leads to desirable generalization. An interesting research
therefore is how to improve modeling capacity of PLDA while re-
taining the simplicity. This paper presents a decoupling approach,
which involves a global model that is simple and generalizable,
and a local model that is complex and expressive. While the
global model holds a bird view on the entire data, the local
model represents the details of individual classes. We conduct a
preliminary study towards this direction and investigate a simple
decoupling model including both the global and local models. The
new model, which we call decoupled PLDA, is tested on a speaker
verification task. Experimental results show that it consistently
outperforms the vanilla PLDA when the model is based on raw
speaker vectors. However, when the speaker vectors are processed
by length normalization, the advantage of decoupled PLDA will
be largely lost, suggesting future research on non-linear local
models.

I. INTRODUCTION

Probabilistic linear discriminant analysis (PLDA) [1], [2]
has been widely used as the scoring model in open-set
verification tasks, such as speaker verification. It represents the
data with a linear Gaussian model, where the between-class
distribution is a Gaussian and the within-class distributions of
individual classes are homogeneous Gaussians, i.e., Gaussians
with a shared covariance.

An obvious weakness of the PLDA model is the underlying
linear Gaussian assumption, which is too simple to represent
data with complex distributions. However, simply employing a
more complex model is not always recommended, as the gen-
eralization capability to unseen classes may be degraded [3],
[4]. In fact, simplicity by itself is a key advantage of PLDA.
An interesting research topic therefore is how to improve the
model capacity, while retaining its simplicity.

In this paper, we present a decoupling approach, which
views the data from two perspectives: a high-level and global
perspective that focuses on the distribution of the entire data,
including those unseen classes; and a low-level and local per-
spective that scrutinizes the distribution of individual classes.
The high-level perspective relies on a rough model pg , for
which generalization to unseen classes is the most important,

while the low-level perspective relies on a detailed model pl,
by which an accurate within-class probability can be obtained.
We combine pg and pl using the normalized likelihood (NL)
formulation of PLDA [5], [6], [7], where pg is employed to
perform enrollment and normalization, while pl is employed
to perform prediction. This leads to a decoupled model that
represents the rough/global distribution and detailed/local in a
single statistical framework.

A key advantage of the decoupling approach is that the
local model pl can be very complex and so can represent
complicated data. Investigation on this capability will be left
for future work. In this study, we focus on a simple case where
pl remains a Gaussian, but independent of the global model
pg . The resultant model will be called decoupled PLDA. We
tested the model on a speaker verification task, and the results
demonstrated that even with this simple case, the decoupling
approach can offer interesting performance improvement if
the model was based on raw speaker vectors, though this
advantage was largely lost if the speaker vectors were length
normalized [8].

II. THEORY

A. Revisit PLDA

PLDA represents data by a linear Gaussian model. To
simplify the presentation, we shall assume that the covariance
matrix of the between-class distribution is diagonal and the
shared covariance matrix of the within-class distributions of
individual classes is an identify matrix. This can easily ob-
tained by simultaneous diagonalization with a linear transform
W. Put it more formally:

p(µµµ) = N (µµµ; 000, diag(εεε)) (1)

p(xxx|µµµ) = N (xxx;µµµ, I). (2)

where xxx has been transformed by W and diag(εεε) is a diagonal
matrix constructed from εεε.

According to the hypothesis test theory [9], the following
likelihood ratio (LR) has the highest power among other scores
when determining if a test sample xxx belongs to the class
represented by the enrollment samples {xxx1, ...,xxxn}:

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

713978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021



LR =
p(xxx,xxx1, ...,xxxn)

p(xxx)p(xxx1, ...,xxxn)
. (3)

It has been found that the decision based on PLDA LR is
optimal in term of minimum Bayes risk (MBR) [7].

The parameters of the model involve εεε and W. They are
usually optimized by maximizing likelihood (ML) with the
following objective function:

L(εεε,W) =

K∑
k=1

ln p(xxxk1 , ...,xxx
k
nk

), (4)

where xxxki denotes the i-th sample of the k-th class.

B. Decoupling form

The LR form in (3) is equivalent to the following form [5],
[6], [7]:

NL =

∫
p(xxx|µµµ)p(µµµ|xxx1, ...,xxxn)dµµµ

p(xxx)
. (5)

This was denoted by normalized likelihood (NL) in [7] in
order to emphasize on the normalization role of the denomi-
nator. By this NL form, the LR score is decomposed into three
components:

• The enrollment component p(µµµ|xxx1, ...,xxxn) that produces
the posterior of the class mean µµµ given the enrollment
data xxx1, ...,xxxn.

• The prediction component p(xxx|µµµ) that computes the
probability that a test sample xxx belongs to a class repre-
sented by µµµ.

• The normalization component p(xxx) that computes the
probability that xxx is produced by all potential classes.

Among the three components, the enrollment and nor-
malization concern all potential classes and so are relevant
to the global distribution, while the prediction concerns the
distribution of a particular class and so is relevant to the local
distribution. In the vanilla PLDA, all the three components are
derived from the same underlying generative process, and so
are coupled together. In cases where the generative model
matches the data, the coupled model is optimal for scoring
in terms of Bayes risk.

In practice, however, the data could be more complex
than what the presumed generative model can represent. For
example, in speaker verification, it was well known that both
the between-class and within-class distributions of speaker
vectors tend to be super-Gaussian [8], [10], [11], [12]. In
this case, a linear Gaussian model such as PLDA is not
sufficient. Nevertheless, designing a more complex generative
model is not always ideal [3], [4], as it may jeopardize the
model’s generalization, another important concern for open-
set verification tasks.

The NL form provides a novel decoupling approach for the
above dilemma. The key idea is that we never assume that
the three scoring components are tied to a single generative
process. Instead, we shall assume two generative processes,
one for the global distribution, and the other for the local.

Specifically, we hope all the inference related to unseen classes
is based on a global model which should be simple, in order to
ensure generalization, and the inference related to individual
classes is based on a local model which could be complex, in
order to ensure accuracy.

Among the three components in the NL form, the enroll-
ment and normalization components are related to inference
for unseen classes and so should be based on the global
model, while the prediction component is for representing
the within-class property and thus should be based on the
local model. Intuitively, this decoupling approach can be
understood as a multi-level representation for the data: a high-
level representation that describes the holistic property of the
entire data, and a low-level representation that describes the
details of a particular class.

C. Decoupled PLDA

As the first study of the decoupling approach, we test a
simple case in this paper: the global model is a linear Gaussian,
and the local model is another independent Gaussian. This
model, which we call decoupled PLDA, is very similar to
the vanilla PLDA, with the only exception that the prediction
component is never based on the within-class distribution
learned by the global model, but a new Gaussian. Formally,
assume the global model as follows:

pg(µµµ) = N (µµµ; 000, diag(εεε)) (6)

pg(xxx|µµµ) = N (xxx;µµµ, I), (7)

and the local model supposes that after a linear transform M,
the within-class distribution follows a Gaussian:

pl(Mxxx|µµµ) = N (Mxxx;µµµ, I), (8)

where M is a transform matrix. The two models are integrated
by the NL formulation, shown as follows:

NL =

∫
pl(Mxxx|µµµ)pg(µµµ|xxx1, ...,xxxn)dµµµ

pg(xxx)
. (9)

The decoupled PLDA can be trained following the max-
imum likelihood (ML) criterion. The training involves two
steps:

• Global model training: The same as training vanilla
PLDA, following the ML criterion. More details can be
found in the original paper [1], [2].

• Local model training: Optimize the linear transform M
by maximizing the likelihood function as follows:
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L(M) =
K∏
k

nk∏
i=1

∫
pl(Mxxxki |µµµ)pg(µµµ|xxxk1 , ...,xxxknk

)dµµµ

=
K∏
k

nk∏
i=1

∫
N (Mxxxki ;µµµ, I)pg(µµµ|xxxk1 , ...,xxxknk

)dµµµ

=
K∏
k

nk∏
i=1

N (Mxxxki ;
nkεεε

nkεεε+ 1
x̄xxk, (1 +

εεε

nkεεε+ 1
)I),

(10)

where x̄xxk is the average of the samples in the k-th class.

D. Discussion

1) Difference from PLDA: One may argue that since the
decoupled PLDA and vanilla PLDA are trained using the same
data and follow the same model assumption (both pg and pl
are Gaussians), they should be identical when optimized, i.e.
M = I. This intuition however is not correct, due to two
main reasons. Firstly, since pl and pg are independent, the
posterior derived from pg , i.e., pg(µµµ|xxxk1 , ...,xxxknk

), cannot be
regarded as the posterior of µµµ in the local model. Instead,
it should be regarded as a prior for the distribution of µµµ for
each data sample. With this prior, the local model is trained by
improving the likelihood of the data on the local model. This
is the key point of the decoupled model, where we assume two
random processes, rather than a single one as in the vanilla
PLDA.

Secondly, when training the local model, we treat all the
samples are independent, no matter whether they belong to
the same class or not. This is clear from the form of L(M)
presented in (10), where the integration over µµµ is conducted
for each training sample. Note that if it is not the case, the
objective would be as follows:

L(M) =

K∏
k

∫ [
nk∏
i=1

pl(Mxxxki |µµµ)

]
pg(µµµ|xxxk1 , ...,xxxknk

)dµµµ. (11)

The reason of assuming independent samples is that it
matches the scenario in the test phase, where all the test
samples are independent. The objective for the local model,
therefore, essentially encourages positive samples obtaining
higher likelihood with the hypothesized class means (inferred
by the global model) during test.

2) Single-set training: One design choice for the decoupled
PLDA is to split the training data into an enrollment set and
a test set, and train the global and local models using the two
sets respectively. This would simulate the enroll-test scenario
in a more realistic way. In this study, we choose a single-set
scheme where the global and local models are trained using
the same dataset, partly due to the limited training data in our
experiments.

3) Early stop for unideal normalization: A key problem
of the decoupled PLDA is that with the increased likelihood
pl(x|µµµ) computed by the local model, the normalization term
pg(x) computed by the global model will be not theoretically

correct. In this preliminary study, an empirical solution was
used to address this problem: we monitor the performance of
the model on the training set when training the local model,
and stop the training process when the performance reaches
the best. The resultant model trades off the gain between the
empowered local model and the loss caused by the unideal
normalization. More theoretical solution will be left for future
work.

III. RELATED WORK

Numerous techniques have been proposed to alleviate the
deficiency of vanilla PLDA in representing complicated data.
For example, the heavy-tailed PLDA [10] uses a Student’s t
distribution to handle long-tail distributions. Mixture PLDA
was proposed to handle the diverse statistics under different
conditions [13], [14], [15]. Deep normalization was pro-
posed to gaussianize the distribution of speaker vectors [11],
which was further extended to a neural discriminant analysis
(NDA) [4]. Although promising, few of the techniques can
improve modeling capacity while maintaining simplicity.

IV. EXPERIMENTS

We evaluate decoupled PLDA by a speaker verification task.
Speaker verification (SV) targets for determining whether a
speech segment is spoken by a claimed speaker or not [16],
[17], [18]. Modern SV approaches firstly convert variable-
length speech segments to fixed-dimensional vectors (a.k.a.,
speaker vectors), and then employ PLDA to score the speaker
vectors.

Two types of speaker vectors are most popular: i-vector [19]
and x-vector [20]. The former is derived based on a statis-
tical model, while the latter is based on deep neural net-
works [21], [22], [23]. In spite of other explorations presented
recently [24], [25], [26], [27], [28], [29], [30], the i-vector/x-
vector plus PLDA architecture is widely recognized as the
state-of-the-art, partly due to the standard recipe published in
the Kaldi toolkit [31]. In this paper, we will evaluate decoupled
PLDA (dePLDA for short) with both i-vector and x-vector, and
compare its performance with that of vanilla PLDA.

A. Data

VoxCeleb [32], [33]: An open-source speaker dataset collected
from media sources by University of Oxford. This dataset
contains 2,000+ hours of speech signals from 7,000+ speakers.
This dataset was used to train the i-vector and x-vector models,
as well as the PLDA model used in the test on the SITW
dataset.
SITW [34]: A standard evaluation dataset consists of 299
speakers. The core-core trials built on the SITW.Dev and
SITW.Eval sets were used for evaluation.
AIShell-1 [35]: An open-source Chinese Mandarin speech
dataset. The training set (used for PLDA and decoupled PLDA
training) involves 360, 897 utterances from 340 speakers, and
the test set involves 64, 495 utterances from 60 speakers.
HI-MIA [36]: An open-source text-dependent speaker recog-
nition dataset. All the speech utterances contain the word
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TABLE I
EER(%) RESULTS WITH PLDA AND DEPLDA.

i-vector x-vector

Model Dim SITW.Eval AISHELL-1 HI-MIA Dim SITW.Eval AISHELL-1 HI-MIA

PLDA 400 8.201 1.179 1.008 512 6.862 1.146 0.698
PLDA 128 7.381 1.372 1.318 128 5.604 1.368 0.930

dePLDA 400 7.627 1.075 0.698 512 5.820 0.792 0.465
dePLDA 128 6.998 1.278 1.240 128 4.950 1.028 0.775

‘Hi MIA’, recorded by a microphone 1 meter away from the
speaker. The training set (used for PLDA and decoupled PLDA
training) involves 15, 186 utterances from 254 speakers, and
the test set involves 5, 048 utterances from 86 speakers.

B. Experimental setup

The i-vector and x-vector models were implemented using
the Kaldi toolkit [31], following the SITW recipe. Although
the recipe does not produce the best performance known so far
on the SITW dataset, it is the most popular and reproducible,
and so suitable for concept demonstration in our preliminary
study.

The dimensionality of i-vectors and x-vectors was set to
400 and 512, respectively. The PLDA and dePLDA models
were trained based on the produced i-vectors and x-vectors.
PLDA was trained using the Kaldi toolkit, and decoupled
PLDA was implemented by PyTorch1. The transform matrix
M in decoupled PLDA was constrained to be diagonal and
was initialized as an identity matrix. The Adam optimizer [37]
was used to optimize M, and the best M is selected using
SITW.Dev for the SITW test, and their own training sets for
the AIShell-1 test and HI-MIA test. The selection is based on
the performance in terms of the equal error rate (EER).

C. Training process

The change of the EER results on SITW.Dev core-core trials
with dePLDA trained on VoxCeleb are reported in Fig. 1. It can
be seen that the performance was improved with the training
proceeding, and reached the best result after 10 iterations.
After that, more iterations lead to performance degradation.
This is the expected pattern, and reflects the trade-off between
the empowered local model and the mismatch between the
local and global models.

D. Main results

The EER results on SITW.Eval, AISHELL-1 and HI-MIA
are reported in Table I. Two configurations were tested:
(1) in the full-dimensional case, the PLDA/dePLDA models
were trained with the raw speaker vectors; (2) in the low-
dimensional case, the dimensionality of the speaker vectors
was firstly reduced to 128 by LDA (as recommended in
the Kaldi recipe), and then the PLDA/dePLDA models were
trained using the low-dimensional speaker vectors. The results
show that with both the configurations, dePLDA outperforms

1https://gitlab.com/csltstu/enroll-test-mismatch

PLDA PLDA

Fig. 1. The trend of the EER results in the dePLDA training process. Note
that at the beginning M is initialized as I, which is equivalent to the vanilla
PLDA.

PLDA in a consistent way, demonstrating that the decoupling
approach is rational and effective. Note that the dimension
reduction does not improve the performance in the AISHELL-
1 and HI-MIA tests, which we attribute to the unreliable LDA
model with the limited training data, as well as the suboptimal
dimensionality (128) that was tuned on SITW.

E. Inconsistence with length normalization

Length normalization (LN) [8] is a standard preprocessing
in speaker verification. It projects speaker vectors to a spheri-
cal surface, so that the (marginal) distribution tends to be more
Gaussian. This simple operation has been demonstrated highly
effective for both i-vector systems and x-vector systems [8].
Unfortunately, LN and dePLDA are inconsistent, as the local
model shrinks the speaker vectors, which may counteract the
effect of LN.

A possibility is to use a partial LN, i.e., conducting LN
within the global model only. This is not theoretically correct
as it may cause additional mismatch between the local model
and the global model. Nevertheless, we found the partial LN
may lead to performance gains in some cases.

The results with i-vectors and x-vectors are shown in
Table II and Table III respectively. It can be seen that LN
consistently improved the performance of the vanilla PLDA
in all situations. The partial LN, however, lead to improved
performance with dePLDA in some cases, but in other cases,
the performance was degraded. Accompanied by LN, vanilla
PLDA generally outperformed dePLDA, although in some
situations dePLDA accompanied by partial LN showed better
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TABLE II
EER(%) RESULTS WITH PLDA AND DEPLDA BASED ON THE I-VECTOR

MODEL.

Model Dim LN SITW.Eval AISHELL-1 HI-MIA

PLDA 400 8.201 1.179 1.008
PLDA 400 X 6.315 1.071 0.698
PLDA 128 7.381 1.372 1.318
PLDA 128 X 5.878 1.335 1.008

dePLDA 400 7.627 1.075 0.698
dePLDA 400 X 6.014 1.056 0.775
dePLDA 128 6.998 1.278 1.240
dePLDA 128 X 5.987 1.349 0.775

TABLE III
EER(%) RESULTS WITH PLDA AND DEPLDA BASED ON THE X-VECTOR

MODEL.

Model Dim LN SITW.Eval AISHELL-1 HI-MIA

PLDA 512 6.862 1.146 0.698
PLDA 512 X 4.511 0.806 0.698
PLDA 128 5.604 1.368 0.930
PLDA 128 X 3.636 1.019 0.620

dePLDA 512 5.820 0.792 0.465
dePLDA 512 X 4.292 0.740 0.853
dePLDA 128 4.950 1.028 0.775
dePLDA 128 X 4.019 1.198 0.620

performance (e.g., results on SITW with 512-dim x-vectors or
400-dim i-vectors).

The loss of the comparative advantage of dePLDA when LN
is employed can be attributed to the improved Gaussianality
of the length-normalized data. Notice that if the data is truly
linear Gaussian and perfectly matches the PLDA assumption,
the vanilla PLDA is optimal. The decoupling approach can
contribute only if the data is complex and deviate from linear
Gaussian. LN arguably regulates the speaker vectors and
makes them more Gaussian, which may reduce the potential
contribution of the decoupling approach.

V. CONCLUSIONS

This paper reported a preliminary study towards decoupled
scoring for open-set verification tasks, where a global model
is designed to provide a bird view for the entire profile of
the data, and a local model to provide a detailed view for
individual classes. To verify its effectiveness, we tested a
simple decoupled PLDA model (dePLDA), where both the
global and local models are Gaussian. Compared to the vanilla
PLDA, the new model uses a separate Gaussian to match the
within-class distribution, and simulates sample independence
in the test phase.

We verify the decoupled PLDA model with a speaker veri-
fication task on three datasets. The results show that working
on raw speaker vectors, the decoupled PLDA consistently out-
performed the vanilla PLDA, confirming that the decoupling
approach is effective. However, when length normalization is
employed, the comparative advantage of dePLDA was largely
lost. This is probably attributed to the improved Gaussianality
of the speaker vectors after length normalization, which dimin-

ishes the potential of the decoupling approach. Nevertheless,
our experiments indeed demonstrated that the decoupling
approach is rational and effective, and the performance might
be significantly improved if the local model is more expressive,
especially when it is non-Gaussian.
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[3] J. Villalba, N. Brümmer, and N. Dehak, “Tied variational autoencoder
backends for i-vector speaker recognition.” in INTERSPEECH, 2017,
pp. 1004–1008.

[4] L. Li, D. Wang, and T. F. Zheng, “Neural discriminant analysis for deep
speaker embedding,” arXiv preprint arXiv:2005.11905, 2020.

[5] B. J. Borgström and A. McCree, “Discriminatively trained bayesian
speaker comparison of i-vectors,” in 2013 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing. IEEE, 2013, pp.
7659–7662.

[6] A. McCree, G. Sell, and D. Garcia-Romero, “Extended variability
modeling and unsupervised adaptation for PLDA speaker recognition.”
in INTERSPEECH, 2017, pp. 1552–1556.

[7] D. Wang, “Remarks on optimal scores for speaker recognition,” arXiv
preprint arXiv:2010.04862, 2020.

[8] D. Garcia-Romero and C. Y. Espy-Wilson, “Analysis of i-vector length
normalization in speaker recognition systems,” in INTERSPEECH, 2011.

[9] J. Neyman and E. S. Pearson, “Ix. on the problem of the most efficient
tests of statistical hypotheses,” Philosophical Transactions of the Royal
Society of London. Series A, Containing Papers of a Mathematical or
Physical Character, vol. 231, no. 694-706, pp. 289–337, 1933.

[10] P. Kenny, “Bayesian speaker verification with heavy-tailed priors.”
in Proceedings of Odyssey: The Speaker and Language Recognition
Workshop, 2010, p. 14.

[11] Y. Cai, L. Li, A. Abel, X. Zhu, and D. Wang, “Deep normalization
for speaker vectors,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 29, pp. 733–744, 2020.

[12] D. Wang, “A simulation study on optimal scores for speaker recogni-
tion,” EURASIP Journal on Audio, Speech, and Music Processing, vol.
2020, no. 1, pp. 1–23, 2020.

[13] M.-W. Mak, X. Pang, and J.-T. Chien, “Mixture of PLDA for noise
robust i-vector speaker verification,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 24, no. 1, pp. 130–142, 2015.

[14] J. Xie, S. Sia, P. Garcia, D. Povey, and S. Khudanpur, “Mixture of
speaker-type PLDAs for children’s speech diarization,” arXiv preprint
arXiv:2008.13213, 2020.

[15] M. Senoussaoui, P. Kenny, N. Brümmer, E. d. Villiers, and P. Du-
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