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Abstract—Objective assessment of voice disorders is widely
explored as an early diagnosis tool for the classification of voice
disorders. Voice disorders affect the pitch, loudness and voice
quality, which are perceived at the suprasegmental-level in the
speech signal. For the detection and assessment of voice disorders,
this study explores the effectiveness of Long Term Average
Spectral (LTAS) features using four state-of-the-art filter banks
designed with critical-band, constant-Q, gammatone, and single-
frequency filtering approaches. Moreover, the performance of
the systems is compared with state-of-the-art statistical-average
and openSMILE features. Voice disorder detection experiment
was carried out on SVD and HUPA database, while only
SVD database is used for assessment task. Assessment task is
performed in clinical way, in which four binary classifiers were
trained in our study. Voice disorder detection and assessment
tasks were carried out using the support vector machine classifier.
From the results, it was observed that constant-Q filter bank
based LTAS features performed better among all LTAS features
with classification accuracy of 78% and 81.4% for voice disorder
detection task on SVD and HUPA database, respectively. Further,
the combination of LTAS features with OpenSMILE features
improved (89.6% and 86.6% for SVD and HUPA database,
respectively) the performance.

I. INTRODUCTION

Speech is a perceptual phenomenon, and its production is
a complex process that involves the coordination of various
muscles of the voice box, respiratory system, and resonating
system all controlled by the brain. Voice disorders are mainly
due to abnormalities in the larynx and its associated structure.
It is characterized by abnormal voice production, change in
voice quality, pitch, and loudness inappropriate to age and gen-
der [1]. Instrument assessment, auditory-perceptual assessment
and objective assessment are very popular methods for diag-
nosing the voice disorders [2]. In the instrument assessment
method endoscope like laryngoscope, stroboscopes are used,
but these methods are expensive and painful [3]. Auditory-
perceptual method done by Speech-Language Pathologists
(SLPs) is considered as a golden standard for the detection
of voice disorder [4]. The decision taken in the subjective
intelligibility test vary with experience of SLPs, type of scale
used, and also depend on the examiner’s experience [5]. Due
to these reasons, objective or automatic assessment of voice
disorders is explored a lot in literature. Objective assessment
derives the acoustic features from the speech signal, hence

reliable, economical and can be used by SLPs as pre-diagnosis
measure [6].

Acoustic features, used for discrimination of healthy voice
from the disordered voice include perturbation measures like
jitter, shimmer and noise measures like harmonic to noise
ratio, glottal to noise excitation [7], [8]. Further cepstrum fea-
tures like Mel Frequency Cepstral Coefficients (MFCC), and
Linear Prediction Cepstral Coefficients (LPCC) [9], excitation
source features like glottal parameters [10] and intonation
features [11] were also investigated in the research. The voice
quality like breathiness, roughness, loudness, and intonation
from the speech signal perceived is in the long term [12].
Hence these features can be captured by Long Term Average
Spectrum (LTAS). LTAS captures the static characteristic of
the speaker’s voice instead of the short time variation present
in the speech. Many researchers used LTAS in clinical applica-
tion, as well as in quantification of voice quality. Some studies
claim that LTAS can be used for voice classification [13].
Some researchers used LTAS as a good acoustic measure to
differentiate the male and female speakers [14]. In [15], LTAS
also used to study voice quality changes before and after
surgery. Other works related to LTAS were finding difference
related to age [16], professional singers, different styles of
singing [17], speaking and singing [18], and quantifying the
quality of voice [19].

For the extraction of the LTAS features speech signal should
be decomposed into the multiple frequency components for
that filter banks should be used. In the literature, LTAS features
were extracted using the critical band filter bank [14], [16], and
single frequency filter bank [20]. In our study, along with these
two filter banks, we used auditory filter bank like constant-
Q and gammatone filter banks for the extraction of LTAS
features. The highlights of this study include:

• Along with detection (which mostly done in literature),
this study also performed an assessment task for the
discrimination of voice disorders on SVD database [21].

• In light of the importance of LTAS features, various state-
of-the-art filter banks were explored.

• Further, this study compared the performance of LTAS
features with state-of-the-art open-SMILE features and
statistical features obtained from the vocal-tract system
and excitation source components of speech.
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• Moreover, N-way analysis of variances (ANOVA) was
performed to investigate the relationship between the
LTAS features and perceptual scale available for HUPA
database.

This paper is organized as follows: In Section II, filter banks
used for LTAS feature extractions is discussed. The experi-
mental setup which describes feature extraction, database and
classifier is discussed in the Section III. Results obtained are
presented in the Section IV. Conclusion and summary of this
study are described in Section V.

II. FILTER BANKS FOR LTAS FEATURE EXTRACTION

In this paper, LTAS based features are used to capture
information related to voice disorders. This section describes
four state-of-the-art filter banks used in this study for voice
disorder detection and assessment, along with the extraction
of the LTAS features.

A. State-of-the-art Filter banks

The filter banks considered in this study, namely critical
band, gammatone, Constant Q, and single frequency filter
banks, are described as follows.

1) Critical band filter bank: Critical band filter bank
(CBFB), also referred to as octave band filter bank, is used
to mimic human perception. Octave band filters are set of
bandpass filters in which highest frequency is twice of the
lowest frequency [14]. Octave band is mainly used in music,
in which one octave is difference between same notes with
double it’s frequency.

2) Gammatone filter bank: The gammatone filters are the
most widely used auditory filters to model the human auditory
system. In the term gammatone, gamma is referred to function
mostly used in probability, and tone refers to the cosine
term. Gammatone filter bank (GFB) models the cochlea by
overlapping bandpass filter with impulse response given by
the product of a rising polynomial, a decaying exponential
function, and a cosine wave [23]. The impulse response of a
gammatone filter g(t) is given by,

g(t) = at(N−1)e−2πbtcos(2πfct+ φ) for t ≥ 0. (1)

Here, N is the order of the filter which determines the slope
of the filter’s skirts, b is the bandwidth of the filter, fc is
center frequency, a and φ are the scaling factor and phase
of the cosine wave, respectively. In general, the order of the
gammatone filter is chosen in between 3 to 5 to model the
human auditory system [24]. The bandwidth b correspond
to each fc, is obtained using the Equivalent Rectangular
Bandwidth (ERB) scale which is given by [25],

b = ERB(fc) = 24.7(4.37fc + 1) (2)

where, b is in Hz and fc is in kHz.

3) Constant-Q filter bank: Constant-Q filter bank (CQFB)
is geometrically spaced filter bank with constant-Q factor (i.e.
ratio of center frequency to the resolution is constant), such
that resolution of the filters can be approximated to musical
notes [26]. The kth center frequency of constant Q transform
is given by

fk = f0 2k/B (3)

where, f0 is minimum frequency, and B is number of bins per
octave. The bandwidth of the filter b is given by

b = fk (21/B − 1). (4)

Constant-Q filters has high temporal resolution at high fre-
quency and high frequency resolution at low frequency which
also mimic the human auditory system.

4) Single frequency filter bank: The single frequency fil-
ter bank (SFFB) (as discussed in [27]), is based on single
frequency filtering which provides good time-frequency res-
olution [28]. In single frequency filter bank approach speech
signal is passed through a set of complex band pass filters to
decompose signal into different frequency bands. The transfer
function of the kth filter is given by,

Hk(z) =
1

1− akz−1
k = 0, 1, 2, ...M (5)

where, ak = ae−jwk , a represents pole location, wk is kth

frequency component, fs corresponds to sampling frequency
and M is total number of filters. The value of a which can be
selected in between 0 to 1, determines the bandwidth of the
filter. The narrow filters are designed to provide high spectral
resolution by choosing the value of ’a’ between 0.95 to 0.995.

B. Extraction of Long term average spectral features

The long term average spectrum features capture the static
information like voice quality, gender information and age-
related features from the speech signal [14]. To extract these
features, first, the speech signal s[n] is passed through the
bank of filters (design of various filter banks will be discussed
in Section 3) to decompose it into multiple time-frequency
components. If hi[n] is filter’s impulse response then the
output of the filter is given by

si[n] = hi[n] ∗ s[n] i = 1, 2.....N (6)

where N is the number of filters. All the N band signals along
with original full-band signal in total N + 1 components are
framed using a non-overlapping rectangular window of 20 ms.
Then root mean square energy is calculated for each frame
denoted by sRMSi[k] correspond to the kth frame of ith band.
Finally, 10 statistical averages like normalized mean, standard
deviation, range, skewness and kurtosis are calculated, the
resulting ((N+1)∗10−1) dimension feature vector is denoted
as LTAS feature.
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III. EXPERIMENTAL SETUP

This section describes the method to extract the various
features used for studying voice disorder detection and assess-
ment. In our previous work [11], voice disorder assessment
task was performed in the clinical perspective where disor-
ders were categorized into structural, neurogenic, functional
and psychogenic from SVD database. Further details of the
database, baseline features, and classifier used for this study
are presented in the following section.

A. Database

Databases used in our study are saarbruecken voice disorder
(SVD) dataset [21], and Hospital Universitario Prıncipe de
Asturias (HUPA) database [22].

• The SVD1 dataset contains voice recordings of more
than 2000 subjects and 71 different voice disorders.
Recordings are available for three vowel /a/, /i/, and
/u/ in normal, high, low and rising-falling pitch. More-
over, the speech samples are also recorded using the
German sentence ”Guten Morgen, wie geht es Ihnen?”
(”Good morning, how are you?”). In this study, the
speech samples corresponding to voice disorders from
SVD database were grouped into four classes as used in
our previous study [11], namely, Structural, Neurogenic,
Functional and Psychogenic. In this study 625 samples
were considered from healthy class and total of 950 voice
samples were considered from different voice disorders
category for vowel /a/, /i/, and /u/ in normal, high, low
and rising-falling pitch.

• The HUPA database contains recordings of the vowel /a/
for a total of 440 subjects. Out of total 366 recordings,
239 recordings are from pathological subjects, and 201
recordings are from normal subjects. It contains organic
pathologies like Bilateral Reinke’s edema, Polyp, Cyst,
Bilateral nodule, Recurrent nerve paralysis etc. Auditory-
perceptual ratings according to GRBAS scale is available
for HUPA database. It contains the five different compo-
nents, Grade of hoarseness (G), Roughness (R), Breathi-
ness (B), Asthenia (A), and Strain (S). Each component
is rated as 0,1,2 or 3, where 0 indicates normal, 1 mild,
2 moderate and 3 indicates more severe degree of voice
disorder.

Table I describes the number of healthy and voice disorders
samples of SVD and HUPA database used for detection task.
Table II describes the different categories of voice disorders
available for SVD database used in our study for the assess-
ment of the voice disorders.

TABLE I
DETAILS OF THE NUMBER OF SAMPLE USED FOR THE DETECTION TASK IN

OUR STUDY FROM SVD AND HUPA DATABASE.

SVD database HUPA database
Healthy Voice Disorder Healthy Voice Disorder

659 950 239 201

1It is freely available at http://www.stimmdatenbank.coli.uni-saarland.de/

TABLE II
DETAILS OF THE DIFFERENT CLASSES OF SVD DATABASE AND NUMBER

OF SAMPLE USED IN OUR EXPERIMENT FOR THE ASSESSMENT TASK.
HERE SD: STRUCTURAL VOICE DISORDER, NVD: NEUROGENIC VOICE
DISORDER, FVD: FUNCTIONAL VOICE DISORDER, PVD: PSYCHOGENIC

VOICE DISORDER

Disorder type Disorder name #Samples

Organic Voice Disorder SD 352
NVD 253

Non-organic Voice Disorder FVD 254
PVD 91

B. Feature Extraction

The features explored in this study include the LTAS
features obtained by using the state-of-the-art filter banks,
statistical averages of the short time features (LPCC, MFCC,
PLP, etc.) and state-of-the-art openSMILE features such as
eGEMAPS and ComParE. The extraction of these features is
presented as follows.

1) LTAS based features: The parameters of each filter bank
considered for extracting the LTAS features are described in
the following subsection.

• CBFB-LTAS feature is calculated using 9-octave band
signals and one full band speech signal. To get the time-
frequency decomposition of the speech signal, first, the
signal is passed through 9-octave band filters with the
minimum centre frequency of 30 Hz and a maximum
frequency of 3840 Hz. Finally, 99 (10*10-1) dimension
CBFB-LTAS vector is obtained.

• For extraction of CQFB-LTAS feature vector, the speech
signal is passed through the CQFB with 106 constant
Q spaced filters. The CQFB is realized using fmin of
10Hz, fmax of 4000Hz, and number of bins per octave
b of 12 [29]. In total, 107 components are used, resulting
in 1069 (107*10-1) dimension LTAS feature vector.

• In case of GFB-LTAS feature extraction, the speech signal
is decomposed by passing it through the 32 gammatone-
tone filters [30]. The minimum and maximum frequency
are selected as 0 Hz and 4000 Hz, respectively, which
results in 329 (33*10-1) dimension feature vector.

• To extract the SFFB-LTAS feature vector, the speech
signal is passed through 201 single pole band pass
filter with minimum center frequency fmin = 0Hz and
maximum frequency fmax = 4000Hz. The pole location
a of 0.98 and frequency resolution of 20 Hz were used to
realize the SFFB (as in [20]). Total of 202 components
(201 filter responses and speech signal) are used, results
in 2019 (202*10-1) dimension LTAS feature vector.

2) Statistical averages of the state-of-the-art features: To
compute the statistical averages, first, frame-level features
were computed using a hamming window of size 25 ms with
10 ms frame shift. First m static cepstral coefficients and
their delta, and delta-delta features were computed yielding in
d = 3∗m dimension feature vector. Finally, statistical averages
such as mean, standard deviation, kurtosis and skewness were
derived from these frame-level features resulting in D = (d∗4)
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dimension feature vector named as STAT features as in [20].
Conventional MFCC, LPCC, PLP, and CQCC features, which
captures the vocal tract information are used to compute
corresponding STAT features, namely MFCC-STAT, LPCC-
STAT, PLP-STAT, and CQCC-STAT. CQCC features were
calculated from the CQT-transform with fmin of 100 Hz, fmax
of 4000 Hz and bins per octave of 192 [26].

Along with the system features, we also explored the excita-
tion source evidence such as LP-residual and zero frequency
filtered (ZFF) signal to compute the STAT features. In this
regard, MFCC features were computed from LP-residual and
ZFF-signal as in [10]. Then corresponding STAT features
were computed and are named as MFCC-WR-STAT and
MFCC-ZFF-STAT, respectively. MATLAB implementation of
the features used along with supporting material is provided
in https://github.com/Purva-Barche/LTASfilterbankcodes.

3) OpenSMILE features: This work explored two state-of-
the-art feature sets obtained from openSMILE tool kit [31]
as baseline features. The first feature set is extended Geneva
Minimalistic Acoustic Parameter Set (eGeMAPS) which is
low dimension knowledge-based acoustic feature [32]. It is 88
dimension feature set mainly used for extraction of emotion.
The second set used is Computational Paralinguistic Challenge
(ComParE) feature set which is brute-forced set [33]. It has
a dimension of 6373 feature which are usually designed to
extract paralinguistic information from the acoustic signal.

C. Classifier

The classifier used in our study for detection and assessment
of voice disorders is the support vector machine (SVM) which
is a supervised binary classifier. The detection and assessment
of voice disorders were also done by using several other
classifiers like decision tree, k-nearest neighbour, ensemble
classifier and logistic regression. SVM is selected among
all other classifiers due to its best classification accuracy.
Among all different kernels like linear, radial basis functions,
and polynomial, polynomial kernel with a polynomial degree
of 2 outperformed in this study. Moreover, the grid search
algorithm was performed to select the optimum value of kernel
parameters. Further, five-fold cross-validation was performed
to find the classification accuracy.

IV. RESULTS AND DISCUSSION

In our previous study [11], we have performed assessment
of voice disorder in clinical way by using excitation source
evidences. Among the individual excitation source features the
intonation features derived from ZFF signal and MFCC-WR
provided best classification accuracy of 69.3% and 70.8% for
detection and assessment task, respectively. In continuous to
our previous studies, the present study explored the signif-
icance of long term average spectral features using state-of-
the-art filter banks for voice disorder detection and assessment
tasks in the similar way to improve the performance of both
the tasks.

Also, the performance of the detection and assessment
system is compared with state-of-the-art openSMILE features

TABLE III
PERFORMANCE OF VOICE DISORDER DETECTION AND ASSESSMENT

SYSTEMS IN TERMS OF CLASSIFICATION ACCURACY (IN %) FOR
INDIVIDUAL FEATURE SET ON SVD DATABASE. HERE, EXP. 1:
CLASSIFICATION OF HEALTHY AND VOICE DISORDER, EXP. 2:

CLASSIFICATION OF ORGANIC AND NON-ORGANIC VOICE DISORDERS,
EXP. 3: CLASSIFICATION OF STRUCTURAL AND NEUROGENIC VOICE

DISORDERS, EXP. 4: CLASSIFICATION OF FUNCTIONAL AND PSYCHOGENIC
VOICE DISORDERS, S1 STATISTICAL AVERAGE FEATURE SET, S2

OPENSMILE FEATURE SET, S3 LTAS FEATURES.

Feature Exp.1 Exp.2 Exp.3 Exp.4

S1

MFCC-STAT 76.1 71.6 69.9 68.2
PLP-STAT 78.4 71.2 74.7 66.2
LPCC-STAT 75.6 68.6 70.4 65.3
CQCC-STAT 74.4 70.3 71.2 70.8
MFCC-WR-STAT 72 70.1 66.3 65.9
MFCC-ZFF-STAT 71.3 69.3 70.6 69.1

S2 eGeMAPS 80.7 71 70.6 64.5
ComParE 85.9 75.7 76.5 69.4

S3

CBFB-LTAS 74.3 69.9 68.6 66.2
GFB-LTAS 76.9 71.4 69.9 67.9
CQFB-LTAS 78 70.8 71.2 65.9
SFFB-LTAS 76.8 69 69.1 65.9

and statistical averages of frame-level features. The detection
system performs a binary classification to discriminate the
speech samples corresponding to healthy and voice disorders.
On the other hand, assessment is a multi-level classification
problem in which three binary classifiers were used to identify
the type of voice disorder. Total of four experiments were
carried out in our paper.

• Experiment 1 (Voice disorder detection) was performed
to discriminate healthy voice samples from the voice
disorder sample of all the classes.

• In experiment 2, organic voice disorder samples were
classified from non-organic voice disorder samples.

• In experiment 3 Organic voice disorder samples were
further classified into structural and neurogenic voice
disorder .

• Experiment 4 was conducted to classify functional voice
disorders from psychogenic voice disorder category.

Voice disorder detection and assessment experiments were per-
formed on the SVD dataset, whereas only detection task was
performed on HUPA dataset as samples of different categories
of voice disorders are not available for HUPA database. All
the experiments were performed using the SVM classifier.
Performance of the detection and assessment systems with
individual baseline features and LTAS features obtained from
various filter banks is reported in Table III for SVD database.
Table IV shows the voice disorder detection (experiment 1)
result for HUPA database. In addition, the performance of
detection and assessment systems was evaluated using the
combination of filter bank features with the state-of-the-art
openSMILE features, and the results are presented on SVD
and HUPA database in Table V. Further, the relation between
the LTAS features and perceptual scale was evaluated using
N-way analysis of variances (ANOVA).

From Table III, it is evident that, among all STAT features
PLP-STAT features shows better classification accuracy of
78.4% and 74.7% for experiment 1 and 3 respectively . Further,
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TABLE IV
PERFORMANCE OF VOICE DISORDER DETECTION SYSTEMS IN TERMS OF
CLASSIFICATION ACCURACY ( IN %) FOR HUPA DATABASE. HERE, S1

STATISTICAL AVERAGE FEATURE SET, S2 OPENSMILE FEATURE SET, S3
LTAS FEATURES.

Features Accuracy (%)

S1

MFCC-STAT 69.2
LPCC-STAT 69.2
PLP-STAT 73.7

CQCC-STAT 62.3
MFCC-WR-STAT 70.2
MFCC-ZFF-STAT 69.9

S2 eGeMAPS 76.1
ComParE 82.1

S3

CBFB-LTAS 75.9
CQFB-LTAS 81.4
GFB-LTAS 79.2
SFFB-LTAS 74.9

ComParE feature set outperformed for all the experiments.
Among all LTAS features, CQFB-LTAS performed better for
experiment 1 and 3, while GFB-LTAS performed better for
experiment 2 and 4. Moreover, the performance of the CQFB-
LTAS features (78%, 70.8% and 71.2%) is comparable to the
baseline eGeMAPS features (80.7%, 71% and 70.6%) for three
experiments.

Table IV shows the voice disorder detection (only experi-
ment 1) results on HUPA dataset using the different baseline
features and LTAS based features. From the table it is evident
among all the STAT features PLP-STAT features shows better
classification accuracy of 73.7% for HUPA datset. Further, the
best performance is obtained in term of classification accuracy
of 82.1% for ComParE feature sets. Among the filter bank
based LTAS features, CQFB-LTAS performed best with a
classification accuracy of 81.4%.

Among baseline feature sets, the openSMILE features
showed better classification accuracy compared to statistical
feature sets; hence, the performance was also observed by
combining the LTAS feature sets with openSMILE feature
sets as reported in Table V for SVD (all the experiments)
and HUPA (only experiment 1) database. It can be observed
from the Table V for the detection task best classification
accuracy of 89.6% is obtained when CBFB-LTAS features
combined with eGeMAPS features for SVD database. For
HUPA database the best classification accuracy of 86.6% is
observed when constant-Q based LTAS features were com-
bined with ComParE feature sets. SFFB-LTAS features when
combined with ComParE performed best among all other (for
SVD samples) combinations for experiment 2 and 3. It can
also be observed that even by combining the different features,
classification accuracy for the experiment 4 is not increased
significantly, as psychogenic voice disorder samples mostly
confused with functional voice disorder.

To assess the relationship with the perceptual scale used by
SLPs, statistical analyses were computed with N-way ANOVA
by considering the LTAS feature as a dependent variable
and perceptual ratings of Grade of hoarseness, Roughness,
Breathiness, Asthenia and Strain as independent variables.
ANOVA was computed on the HUPA dataset which has a

TABLE V
PERFORMANCE OF VOICE DISORDER DETECTION AND ASSESSMENT

SYSTEMS IN TERMS OF CLASSIFICATION ACCURACY (IN %) FOR
COMBINATION OF FEATURE SETS ON SVD AND HUPA DATABASE. HERE,

EXP. 1: CLASSIFICATION OF HEALTHY AND VOICE DISORDER, EXP. 2:
CLASSIFICATION OF ORGANIC AND NON-ORGANIC VOICE DISORDERS,
EXP. 3: CLASSIFICATION OF STRUCTURAL AND NEUROGENIC VOICE

DISORDERS, AND EXP. 4: CLASSIFICATION OF FUNCTIONAL AND
PSYCHOGENIC VOICE DISORDERS.

Features SVD HUPA
Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 1

CBFB-LTAS+eGeMAPS 89.6 71.9 72.9 69.1 80
CBFB-LTAS+ComParE 86 76.1 77.2 67.1 85.4
GFB-LTAS+eGeMAPS 87.5 73 70.2 64.5 82.1
GFB-LTAS+ComParE 85.8 77.2 77 69.7 81.1
CQFB-LTAS+eGeMAPS 84.2 72.9 69.9 67.6 83
CQFB-LTAS+ComParE 87.2 78.3 75 67.9 86.6
SFFB-LTAS+eGeMAPS 84.1 68.7 69.9 64.5 78.2
SFFB-LTAS+ComParE 86.9 78.9 77.4 68.5 81.3

perceptual rating according to the GRBAS scale. Out of 99
LTAS features, 35 features show the minimum value of p for
the perceptual scale of Roughness, 31 features indicate the
minimum value for Asthenia. Remaining 14 features out of
99 LTAS features indicates the least value of p (very smaller
than 0.5) for overall degree of hoarseness, while 11 LTAS
features and 8 LTAS features shows the minimum value of
p for perceptual scale of breathiness and strain, respectively.
Moreover, multivariate ANOVA was also obtained for different
frequency ranges. Two frequency ranges were considered, one
from 0 to 1 KHz and other above 1 KHz. It was observed
that for the frequency range below 1 KHz, 31 and 27 LTAS
features out of 69 features indicate the minimum value of p for
perceptual scale R (Roughness) and Asthenia respectively. For
the frequency range above 1 KHz perceptual rating, G(Overall
severity) and S (Strain) indicate the minimum value of p for
most of the LTAS features. Thus from this ANOVA analysis
we can conclude that LTAS features indicate the stronger
correlation with roughness (which might be due to degradation
in the voice quality) and asthenia (indicates the degree of vocal
weakness) compared to other perceptual characteristics.

V. SUMMARY AND CONCLUSION

This paper explores the state-of-the-art filter bank-based
LTAS features for the detection and assessment of voice
disorder. From the experimental results, it can be verified
that classification accuracy for an assessment system is less
compared to detection system, as different disorders may share
a common acoustic space. More interestingly, it was observed
that the choice of filter bank in the extraction of LTAS features
play an important role in the classification of voice disorders.
In [20], SFFB based LTAS features showed the best perfor-
mance for hyper-nasality detection, whereas, in this study, the
SFFB-LTAS features showed better performance than CBFB-
LTAS for the detection task. The CQFB-LTAS and GFB-LATS
features showed better classification accuracy for the detection
and assessment of voice disorders, perhaps due to the under-
lying filter banks (constant Q filters and Gammatone filters)
that were designed to mimic the human auditory system. In
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addition, an improvement in the performance of detection
and assessment systems was observed with the combination
of feature sets, which highlights the complementary nature
of filter bank-based LTAS features. Further, we evaluated
the relation between LTAS features and perceptual measure
(GRBAS scale available for HUPA database) using ANOVA
analysis. The results from this experiment suggested that, most
of the LTAS features have least value of the p (less than 0.5)
for roughness and asthenia compared to grade, breathiness
and strain. Compared to our previous study [11], significant
improvement of performance for all the experiments was
observed which might be due to the reason that, long term
features can capture the voice disorders information in a better
way as compared to the short term variations.

In future work, we intend to study which frequency band are
more important for voice disorder detection and assessment
system. LTAS feature may capture age and gender-related
information which should be normalized to improve the per-
formance.

ACKNOWLEDGMENT

Authors would like to thank IHub-Data Technology Innova-
tion Hub (TIH) @ IIIT Hyderabad for providing the research
fellowship.

REFERENCES

[1] A. E. Aronson, “Clinical voice disorders,” An Interdisciplinary Approach,
1985.

[2] B. Barsties and M. De Bodt, “Assessment of voice quality: current state-
of-the-art,” Auris Nasus Larynx, vol. 42, no. 3, pp. 183–188, 2015.

[3] L. Sulica, “Laryngoscopy, stroboscopy and other tools for the evaluation
of voice disorders,” Office Procedures in Laryngology, An Issue of
Otolaryngologic Clinics-E-Book, vol. 46, no. 1, p. 21, 2012.

[4] M. P. Karnell and et al., “Reliability of clinician-based (GRBAS and
CAPE-V) and patient-based (V-RQOL and IPVI) documentation of voice
disorders,” J. of Voice, vol. 21, no. 5, pp. 576–590, 2007.

[5] R. D. Kent, “Hearing and believing: Some limits to the auditory-
perceptual assessment of speech and voice disorders,” American J. of
Speech-Lang. Pathology, vol. 5, no. 3, pp. 7–23, 1996.

[6] D. D. Mehta and R. E. Hillman, “Voice assessment: updates on percep-
tual, acoustic, aerodynamic, and endoscopic imaging methods,” Current
opinion in otolaryngology & head and neck surgery, vol. 16, no. 3, p.
211, 2008.

[7] J. Laver, S. Hiller, and J. M. Beck, “Acoustic waveform perturbations and
voice disorders,” Journal of Voice, vol. 6, no. 2, pp. 115–126, 1992.

[8] J. I. Godino-Llorente, V. Osma-Ruiz, N. Sáenz-Lechón, P. Gómez-Vilda,
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