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Abstract—Speech emotion recognition (SER) attracts much
attention in recent years, especially under multilingual circum-
stances because of its potential in understanding human psy-
chology and developing human-computer interaction. However,
recent works in SER task mainly focus on developing fantastic
structures to improve performance on monolingual datasets.
Little attention is paid to promote the transfer performance on
multilingual datasets. In this paper, we propose a multilingual
SER framework that utilizes the pre-training model as an
upstream to learn high-level speech representations and develop
a hierarchical grained and feature model (HGFM) as a classifier.
The proposed framework extracts speech representations based
on a cross-lingual speech representations (XLSR) model and
utilizes the HGFM structure to finish the classification task.
We validate our framework on a multilingual dataset including
IEMOCAP (English), EmoDB (German), TESS (English), SAVEE
(English), EMA (English), and EMOVO (Italian). Experimental
results show that features extracted by upstream model achieve
an average weighted accuracy (WA) of 70.6% and unweighted ac-
curacy (UA) of 73.4% in the downstream task, which outperforms
not only manual features but other upstream structures. We
also compare our results with the state-of-the-art and alternative
methods to validate our framework and evaluate the performance
of the structure in terms of F1-score.

I. INTRODUCTION

Research in speech emotion recognition has attracted a lot
of attention these years. Humans express their feelings through
diverse modalities like images, voices, and emotions. Different
attitudes correspond to various voice characteristics, so speech
emotion recognition plays an important role in understanding
speaker’s psychology and responses. With recent advances in
deep learning algorithms, acoustic signal embeddings have
evolved from manual features [1] to high-level speech rep-
resentations based on deep neural networks.

However, understanding emotions from multilingual
speeches is still a challenge. Previous work [2] has shown
a strong correlation between language and speech emotions.
Success in SER is expected to mine the appropriate features
that reflect the intrinsical character of emotion and are
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independent of languages. Besides, a downstream model is
also needed to characterize the acoustic model as well as
classifying high-level features.

The work to find appropriate speech representations has
been investigated for a long period. Traditional approaches
focused on hand-craft features [3] including Mel-frequency
cepstrum coefficients, zero-crossing rate, and constant Q
transform. To extract effective high-level acoustic features,
[7] proposed a mixed CNN-LSTM architecture, where CNN
refines local features and LSTM extracts long-term timing
features. In [4], Yeh innovatively used the Automatic Speech
Recognition (ASR) acoustic encoder layer as the feature
extractor to finsih SER task and the result shows that the
ASR encoder fine-tuned on the SER dataset can produce
great gains for downstream emotion recognition tasks. Alexei
introduced a new Wav2vec2 model in [5] and novelly utilized
Connectionist Temporal Classification loss (CTC loss) which
enabled the model to get the best performance in the ASR
task. Pepino in [6] utilized the Wav2vec2 to extract acoustic
features for SER and his experiments showed that fine-tuning
the model with the labeled data improved the accuracy of
SER by 3.4%. Conneau in [10] proposed XLSR model,
which jointly learned a quantization of the latents shared
across languages based on Wav2vec2. The experiment showed
that the cross-lingual pre-training significantly outperformed
the monolingual pre-training. Having developed the upstream
feature extractor, an effective downstream classifier is needed.
In [8], researchers compared the advantages and disadvantages
of several traditional machine learning classifiers like SVM,
KNN, and decision trees. [9] proposed the HGFM framework
which modeled the frame-level and utterance-level structures
of acoustic data.

Notwithstanding the progress made in previous works, mul-
tilingual SER still leaves room for improvement. For example,
few works have been done to improve multilingual SER
transfer performance. Most former works were evaluated on
standard monolingual datasets like IEMOCAP, while they per-
formed poor when the language of dataset was changed [2].In
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Fig. 1. Proposed framework for multilingual SER, with unsupervised pre-training model as upstream and acoustic model as downstream.
Note how the caption is centered in the column.

this paper, we propose a framework aiming for extracting
transferable representations of acoustic signals to enhance the
multilingual SER performance. We verify the superiority of
our framework’s transfer performance on multilingual SER
using a new dataset outside of the train set. The significant
contributions of our work are as follows:

• We propose a framework including an upstream feature
extractor and a downstream classifier which could im-
prove multilingual SER performance.

• We compare several upstream models’ performance and
novelly utilize the cross-lingual speech representations
(XLSR)[10] model as the feature extractor for multi-
lingual SER task, which provides a 2.0% (absolute)
improvement for WA compared with the state-of-the-art
method. We utilize parts of HGFM[9] structure to form
a classifier for high-level representations, which provides
a 9.2% (absolute) improvement for WA compared with
the state-of-the-art method.

• We analyze the effect of fine-tuning strategies on multi-
lingual SER and verify the superior performance of our
model on the new dataset.

The paper is structured as follows: Section 2 describes
the proposed framework, Section 3 presents the experimental
settings and results, and Section 4 concludes the script.

II. PROPOSED FRAMEWORK

In this section, we present our proposed framework for
multilingual SER, as shown in Fig. 1. We also discuss the
advantages of our framework to improve transfer performance
under multilingual circumstances. The proposed framework is
shown in Fig. 1.

A. Upstream Model
As shown in Fig. 1, the preprocessed acoustic signals are

fed to a convolutional feature encoder and the raw audio X

are embedded to latent speech representations Z :

[z1, z2, ..., zT ]
T = CNNblocks([x1, x2, ..., xT ]

T ) (1)

The encoder consists of several convolutional blocks, each
of which consists of three parts: one-dimension convolution
layer, normalization layer, and GELU activation layer. Then
the latent speech representations Z are fed to a context network
that is formed by Transformer-like structures [17]. In this layer,
network will output contextualized representations C, which
are features for downstream input.

[c1, c2, ..., cT ]
T = Transformer([z1, z2, ..., zT ]

T ) (2)

In [10] a quantization module is applied to discretize Z
to Q which can be regarded as targets in the self-supervised
learning objective. Pre-training the upstream model can be
time-consuming and cost significant computing resources thus
we just download the pre-trained model and fine-tune it in
the latter experiment. It has been proved in [10] that XLSR
pre-trained model shares capacity across languages and par-
ticularly so with related languages. Consequently, we choose
XLSR as the feature extractor of multilingual framework in
hope of understanding intrinsical characters of emotion and
those characters should have little correlation with languages.

B. Downstream Model

Having upstream model extracted representations of data,
which can be denoted as Co ∈ Rbatchsize×1×H , we build a
downstream structure to further explore hidden features and
classify different emotions. The output vector can be huge
dimensions, which need a lot of computing resources for
training. So the first layer of the downstream structure is a
full connector to map the input features to lower dimensions,
where Wfc ∈ RH×L denotes the paramters matrix of full
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connector layer.

F 1×L
batchsize = C1×H

batchsize ×W
H×L
fc (3)

Assume that the features extracted from the time series by
the upstream model still have long-term dependence traits, we
employ GRU [18] to encode the representations again. Where
h1 denotes the number of features in hidden state.

w1×2h1
c = BiGRU(F 1×L

batchsize) (4)

Then we utilize attention mechanism which could enable
the downstream model to run fast, gain high parallelism, and
digging long-distance dependence among extracted features
[18]. We firstly divide features wc ∈ R1×2h1 into tow parts
wl and wr, then we calculate the attention of two vectors
separately. Here Qi, Ki, Vi stand for the query vector,
key vector, and value vector of input features. There are
five forms of similarity function f :dot product, weighted
dot product, concatenating, cosine similarity, and perceptron.
Different from [9], the input features are upstream encoder
embeddings that have higher-level representations instead of
manual features. So we choose perceptron algorithm to learn
the proper similarity function.

[w1×h1

l , w1×h1
r ] = seperate(w1×2h1

c )

similarity = f(Q,Ki), i = 1, 2, ...,m

= tanh(WQ+ UKi)

αi = softmax(similarity)

attention =

m∑
i=1

αiVi

(5)

Finally, we use the composite vector vout =
[wl, wr, attentionl, attentionr, F

1×L
batchsize] for classification.

In the following formula, o denotes the emotion class numbers
and lj ∈ R1×o represents the probability vector of the j-th
sample with respect to different emotion categories :

lj = softmax(v
1×(4h1+L)
out,j ×W (4h1+L)×o

fc ), j = 1, 2, ...,m
(6)

III. EXPERIMENTAL SETUP

In this section, we present experimental setup including
dataset preparation and training details.

A. Dataset

Our mixed dataset includes English database IEMOCAP,
TESS, SAVEE, EMA, German database EmoDB, and Italian
database EMOVO. In order to maintain data consistency, raw
acoustic signals are resampled to 16kHz. In addition, the
number of emotion categories contained in different datasets
is different. This paper uses the intersection of emotion labels
from different datasets, namely happy, sad, angry, neutral. The
proportion of different emotions in our dataset is shown in the
Fig. 2.

IEMOCAP [11] dataset is an acted, multimodal and mul-
tispeaker database, which is known for SER task. The corpus

contains approximately 12 h of data consisting of five emotions
including happiness, anger, sadness, frustration and neutral.
Five female and five male actors were selected to record
emotions. In our work, we only pick four of five emotions
e.g. happiness, anger, sadness, and neutral in order to make
consistent with other datasets. TESS database [12], in which
a set of 200 target words were spoken in the carrier phrase
”Say the word” by two actresses (aged 26 and 64 years) and
recordings were made of the set portraying each of seven
emotions (anger, disgust, fear, happiness, pleasant surprise,
sadness, and neutral), containing 2800 stimuli in total. SAVEE
database [13] consists of recordings from 4 male actors in
7 different emotions, 480 British English utterances in total
and the data were recorded in a visual media lab with high
quality audio-visual equipment, processed and labeled. EMA
database [14] contains a total of 680 utterances spoken in four
differenct target emotions spoken by three native speakers of
American English: two females and one male. The two female
talkers produced 10 sentences, and the male produced 14
sentences. Each sentence was repeated 5 times for each of the
four different emotions. In EmoDB database [15] ten actors
(5 female and 5 male) simulated the emotions, producing 10
German utterances (5 short and 5 longer sentences) which
could be used in everyday communication. EmoDB database
mainly divide actors’ emotions into five categories: neutral
(neutral), anger (Ärger), fear (Angst), joy (Freude), sadness
(Trauer), disgust (Ekel) and boredom (Langeweile). Here we
regard anger and disgust emotions as the same emotion and
discard fear and boredom emotions in our mixed dataset.
EMOVO [16] is the first database of emotional speech for
the Italian language. Six actors were summoned, three males
and three females with proven expertise, and have made
them perform fourteen sentences (assertive, interrogative, lists)
based on six basic emotional states (disgust, fear, anger, joy,
surprise, sadness) plus the neutral state.

B. Training

Pre-process Because of the diversity of multilingual
datasets, we deal with various datasets separately. All acoustic
signals in the dataset are resampled to 16kHz and are padded
to the same length. Then those data storage paths and corre-
sponding tags are written in the JSON file in the form of a
dictionary. All data is allocated to the train set and test set at

Fig. 2. The proportion of four emotions in mixed dataset

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

752



a ratio of 4:1. Then training data is divided into five sessions
and the method of cross-validation is used to visualize the
performance, where every four sessions are used for training
and one session for evaluating.

Objective Cross-entropy loss is applied in our framework.
It mainly describes the distance between the predicted output
and the expected output, that is, the smaller the cross-entropy
value is, the closer the two probability distributions are.
Assuming that the vector x = [x1, x2, x3, x4]

T is the output of
our framework, the probability distribution p is the expected
output, the probability distribution q is the actual output,
and the cross-entropy loss can be expressed by the following
formula:

q(x) = log
exi∑
j e

xj
H(p, q) = − 1

N

∑
x

p(x)q(x) (7)

Fine-tuning We fine-tune our framework on two NVIDIA
GeForce RTX 3090 GPUs with multilingual speech emotion
data. AdamW optimizer is utilized to optimize our framework
and the initial value of the learning rate is set to 2 × 10−4.
There exists a question that how to determine the best fine-
tune strategy. The upstream model has several layers and the
shallow layers tend to encode more general features compared
with the deep layers. In the experiment, we compare the
performance of different fine-tuning strategies.

IV. RESULTS

As detailed in Section 2, the main novelty of our work
is utilizing the unsupervised pre-training model to embed the
acoustic signals and devising a framework to improve the mul-
tilingual SER performance. To evaluate the performance of our
framework, the experiments are arranged as following steps.
Firstly we compare the performance of various structures, and
both upstream model and downstream model are considered.
Then we discuss the fine-tuning strategies of the proposed
structure. Finally the performance on another language dataset
[22] is tested and comparision is made with the state-of-the-art
method. Macro-F1 score is applied to evaluate the performance
of the framework: F1 = 1

K

∑K
k=1 2×

Pk×Rk

Pk+Rk
(k = 1, 2, 3, 4).

where Pk denotes the precision of the k-th class and Rk

denotes the recall of the k-th class.
For upstream encoder structures, we research six algorithms

to embed acoustic signals. As shown in Table I, we first
extract 13-dimension MFCC features and 80-dimension Fbank
features (frame size 25ms, hop length 10ms with Hamming
window) and feed these two traditional features into the down-
stream HGFM model separately. The result shows that these
two traditional features have similar but poor performance in
the multilingual SER task. Then our framework’s performance
is compared with other upstream structures based on deep
learning algorithms. The proposed framework that uses XLSR
as the upstream model to extract high-level emotion repre-
sentations give us superior performance with WA of 68.8%
and UA of 69.7%. Results in Table I indicate that the XLSR
pre-trained model serves as the best upstream structure in
our framework compared with other feature extractors. After

TABLE I
COMPARISON RESULTS ON MIXED-DATASET USING DIFFERENT

MULTILINGUAL-SER STRUCTURES

Different structures WA UA F1-score
Upstream structure research

Fbank+HGFM[1] 62.3% 63.7% 62.8%
MFCC+HGFM[2] 59.7% 61.9% 60.1%
CNN-LSTM+HGFM[7] 62.7% 64.3% 63.1%
Tera+HGFM[21] 63.4% 64.9% 63.7%
Wav2vec2+HGFM[6] 66.8% 68.8% 67.1%

Downstream structure research
XLSR+FCN[19] 59.6% 61.3% 59.9%
XLSR+CNN-Self-Attention-DNN[20] 60.4% 62.5% 60.7%

Proposed structure performance
XLSR+HGFM(ours) 68.8% 69.7% 69.2%

TABLE II
FINE-TUNING STARTEGIES OF PROPOSED FRAMEWORK

Fine-tuning strategies WA UA F1-score

Upstream frozen(baseline) 68.8% 69.7% 69.2%
Upstream semi-fine-tuned 69.4% 70.9% 69.7%
Upstream completely fine-tuned 70.6% 73.4% 70.8%

analysis, the reason for the good performance of our model
is that XLSR can extract higher-order features compared with
traditional features, and absorb prior cross-lingual knowledge
in the pre-training stage compared with other deep learning
algorithms.

For downstream classifiers, 3 different structures are con-
sidered to enchance the performance of SER. FCN, which
performs well at semantic segmentation, is utilized to classify
emotions based on features extracted from the upstream model.
Then a CNN-attention network is applied to do the same
work as FCN and we test its performance on SER. Results
show that HGFM (a GRU-based model) performs better than
these two models (CNN-based model) in SER task and shows
an improvment of 4.3% absolute for WA and 4.1% for UA.
That’s because the acoustic signal feature has a strong time
dependence and the HGFM model can make good use of this
phenomenon.

The above work allows us to get the optimal architecture.
It’s believed that shallower layers of model tend to extract
general features while deeper layers of model tend to extract
task-target features, so we study the impact of fine-tuning
strategies on the performance of SER tasks during the training
process. In this experiment, we research three strategies to
fine-tune the upstream structure: Fine-tune the whole upstream
model, fine-tune the context network (as described in equation
2) only, and not fine-tune the upstream model. The results
shown in Table II indicate that the completely fine-tuned
upstream model gains the best performance in SER task with
WA of 70.6% and UA of 73.4%.

In summary, we have determined the optimal model struc-
ture (XLSR+HGFM) and the best training method (fine-tune
the whole upstream model with database). The training curve
and the confusion matrix diagram are shown in Fig. 3.

Moreover, in order to test the transfer performance of our
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TABLE III
THE COMPARASION OF MODELS’ TRANSFER PERFORMANCE ON HAPPY,

SAD, AND ANGRY EMOTIONS

SER framework WA UA F1-score

Wav2vec2+HGFM(baseline) 50.2% 52.0% 48.5%
XLSR+HGFM(ours) 70.7% 70.7% 71.0%

framework, we utilize another dataset [22] that is not in the
hybrid database to test the model performance. There is no
neutral emotion class in [22], thus we only consider the other
three emotion classes to calculate WA, UA, and F1-score.
Table III indicates that the proposed framework improves
transfer performance of the multilingual SER task compared
with the baseline.

V. CONCLUSION

In this paper, we propose a XLSR-HGFM framework to
deal with the cross-lingual SER problem. Experiments on
multilingual datasets have shown the following two advantages
of our framework. Firstly, the upstream model using the unsu-
pervised pre-training model could better extract the essential
feature representations of the acoustic signal. These feature
representations can not only summarize the low-level features
that can be manually extracted (e.g. MFCC in SER task) but
also realize the high-level features that are difficult to manually
extract. Secondly, the downstream model utilizes HGFM to
model the acoustic signal so as to gain better performance in
multilingual SER task. Our proposed framework also shows
significant potential for improving the transfer performance on
multilingual SER task.
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