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Abstract—Emotion recognition from speech is gaining popu-
larity amongst the research community. Speech Emotion Recog-
nition (SER) systems have applicability in variety of application
scenarios like health-care systems, monitoring systems and auto-
matic driving systems to name a few. However, interpreting the
results of the SER system and providing human understandable
reasoning is a topic very few have touched upon. We propose a
SincNet based emotion recognition engine which makes use of
the interpretable filters of the first layer to explain the reasoning
behind the model inference. We use the IEMOCAP dataset and
compare our results of emotion recognition with the state of the
art algorithms. We also propose an explainability technique to
provide understanding of the model as well as the inferences.
To the best of our knowledge, the proposed scheme is novel and
achieves good performance for emotion recognition using speech.

Index Terms: speech emotion recognition, explainable Al,
SincNet

I. INTRODUCTION

With the ever growing use of smart automated machines
built using artificial intelligence, in day to day life, it is
becoming all the more important for the research community
to work on all types of data users can offer. There has been
plenty of research on structured data and research on visual
data has also grown exponentially in the past few years. Now
is the time of incorporating speech into Al. There has been
good amount of interest of the community towards this area.
Significant progress has been made in terms of understanding
speech signals and training the machine to make decisions
according to that.

Recognizing emotions from speech signals is an active area
of research and has gained a lot of attention in recent
times. Emotion is a conscious mental reaction subjectively
experienced as strong feeling, usually directed towards a
specific object and typically accompanied by physiological
and behavioral changes in the body. Understanding emotions
is vital in designing systems that take decisions on the behalf
of users. Speech Emotion Recognition (SER) systems try to
make machines understand the emotions of the speaker and
the affective state she is in. It is important to make Human-
Machine interaction more accessible. SER systems have a vast
number of applications in daily life. SER can also become an
essential part of health-care systems, monitoring systems and
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automatic driving systems.

Early work in emotion recognition concentrated on identifying
prosodic features like pitch and formants (spectral peak) to
name a few [1], [2], [3]. Other works considered spectral
features like Mel Frequency Cepstral Coefficients (MFCC),
Linear Predictive Cepstral Coefficients (LPCC) [4], [5] to aid
in classification. These features were fed to classifiers like
HMM [6], GMM [7], SVM [8] followed by more sophis-
ticated neural networks [9], [10] to identify the emotions.
Recent advances in deep learning techniques allow us to get
a representation from the raw audio waveform for emotion
classification. [11] provides a good overview of state of the art
techniques for emotion recognition. Deep learning techniques,
though state of the art miss out on providing interpretability
of the results. SincNet [12] proposed by Bengio et. al provides
an architecture to interpret the filters for a speaker recognition
task.

Explainable AI (XAI) is an area focusing on providing in-
terpretability to black box deep learning models. A plethora
of work has been done to provide interpret ability to models
involving text, image and tabular data as input. [13] provides
a good overview of the current trends in XAL

Our work involves combining the power of SincNet and XAI
to provide a human centric interpretation of the black box
model. We take up the task of emotion recognition using the
SincNet architecture and follow it up to provide interpretation
of the inferences provided by the SincNet model. We see an
improvement over the state of the art in the classification accu-
racy for the four emotion classification task on the IEMOCAP
[14] dataset. We also try to explain the model in the global as
well as local context with global explainability interpreting
what the model says as a whole and local interpretability
explaining the output of a given input sample.

Section II provides an overview of SincNet whereas Section
IIT provides an overview of model explainability. Section IV
presents the ideas behind our work on classification and inter-
pretation. We also discuss the dataset and the implementation
details in Section IV. Section V focuses on the conclusion and
ideas for future work.
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Fig. 1: SincNet Architecture

II. SINCNET

Convolutional Neural Networks (CNN) based filtering is
becoming popular in tasks involving speech recognition. CNNs
learn low-level speech representations from waveforms, po-
tentially capturing important characteristics such as pitch and
formants. However, there are two problems with this. One,
the design of neural networks become crucial for getting a
good representation. And second, the dimensionality of input
waveform is very high. SincNet allows us to replace the
first convolution layer with meaningful filters. This offers
a very compact and efficient way to derive a customized
filter bank specifically tuned for the desired application. Fig
1 captures the SincNet architecture proposed in [12]. The
first layer of a standard CNN performs a set of time-domain
convolutions between the input waveform and some Finite
Impulse Response (FIR) filters

L-1

yln] = a[n] * h[n] = > a[l].h[n — 1] (1)

=0

where L is the length of the filter. SincNet however performs
convolution with a pre-defined parametric function say g

y[n] = z[n] * g[n, 6] 2)

A reasonable choice of g would be a filter bank of rectangular
band pass filters. A band-pass filter is designed as a difference
of two low pass filters with different cut-off frequencies say
f1 and f5. The time domain representation of such a filter will
yield the difference of two sinc functions

gln, f1, 2] = 2fasinc(2m fan) — 2f1sinc(2n fin)  (3)
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Fig. 2: Cumulative Frequency Response

The function g is fully differentiable and hence the cut-
off frequencies can be jointly optimized through gradient
descent methods. These result in providing an interpretable
filter response to the input speech.

III. MODEL EXPLAINABILITY

Model explainability is gaining traction in the research
community as Al penetrates more and more into our lives.
For example, in the current context Al is being used to
diagnose Covid-19 through CT-scan reports. Once the Al
engine identifies a patient as positive from the scan, need of the
hour is to provide an explanation to the patient as to why the
engine interpreted it to be positive. Large amount of work in
this regard has been done in the area of image classification
with various techniques available to provide an explanation.
However, very little work has been seen in the context of
explaining speech models. Model explainability as a whole
can be divided into two categories

¢ Global Explanation: This involves explaining what the

model has learnt as a whole with respect to the training
data.

« Local Explanation: Interpret the output of a particular test

input and provide the explanation in a human understand-
able form.

IV. WHAT ARE THE FILTERS LEARNING?

SincNet provides interpretable filters as the first layer of the
model. We use the SincNet architecture to solve the emotion
recognition problem.

A. Dataset

We use the IEMOCAP dataset provide by University of
Southern California for our experiments. The IEMOCAP
dataset has 12 hours of audio-visual data. It includes video,
speech, text transcriptions and motion capture of the face. It
consists of sessions where hired actors perform improvisations
or read scripted dialogues, specifically selected to suggest
emotional expressions of the speaker. The dataset is annotated
by multiple annotators. There are 10 classes in the database
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Fig. 3: Cumulative Frequency Response for individual emotions

such as anger, happiness, neutral etc. Although the data has
video and text too, we focus only on speech signals. This is,

« To remain consistent with prior research [15], [16]
o In daily life use-cases of SER, video and text data will
not be easily available.

B. Implementation

We restrict our analysis to 4 emotion classes viz. angry,
happy, sad and, neutral, to compare our results with the state of
the art algorithms. IEMOCAP official release provides us with
dialogue level classification. There are approximately 10,000
dialogues in the whole dataset with respective classes. Due
to the imbalance in the data points of these 4 classes, we
combine signals with happy and excited into one class to make
it balanced. The modified 4 classes contain approximately
7,000 utterances. We also consider only the improvised speech
conversations to be consistent with the state of the art. This
provides us a dataset of 2943 utterances. The duration of the
utterances range from as small as 0.5 seconds to as large as
37 seconds. Each utterance is given one of the 4 labels.

We use a sliding window length of 200ms chunks with 50%
overlap over the input speech. We consider each chunk to have
the same label as the overall utterance. The first layer performs
convolutions based on the sinc filters learnt during training.

We use 80 such filters of length 251 followed by 2 layers of
CNN with 60 filters each of length 5. This is followed by three
fully connected layers of length 2048. All layers use leaky-
Relu as the activation function. The model is trained using
RMSprop optimizer with a learning rate of 0.001. We divided
the dataset in the ratio 80:20 where 80 percent was used for
training and 20 for validation. A sentence level classification
was computed by averaging the predicted probabilities over
all the chunks of the input speech and choosing the one with
the maximum posterior after averaging. We also performed
a 3-fold validation for the dataset. We achieved an overall
accuracy of 77.19%. Table I summarizes the comparison of
our implementation with the state of the art.

We see that the SincNet architecture produces better overall ac-
curacy as compared to the existing state of the art techniques.
What is also important to note is that we were able to achieve
better accuracy by not including any other modalities apart
from speech. Fig 2 shows the cumulative frequency response
of the filters. This is obtained by summing up the response of
all the learnt filters in the first layer of the model.
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Method Overall Accuracy
Lee [17] (Bi-LSTM) 62.8
Satt[18] (CNN + LSTM) 68.8
Ramet [19] (Attn. Bi-LSTM) 68.8
Zhang [20] (Attn. CNN) 70.4
Yenigalla [15] (CNN) 71.3
MHA + PE + MTL [16] 76.4
SincNet (Ours) 77.19

TABLE I: Comparison with state of the art

C. Interpretation

1) Global Explainability: The cumulative frequency re-
sponse can be interpreted as the response of the filter over
all the four emotions. We try to see if we can interpret the
frequency response with respect to individual emotions. To
do this, we consider the samples in the training dataset over
individual emotions. We then pass these samples to the learnt
model. For every sample we feed as input, we try to understand
the importance of every filter in the first layer. We have 80
filters in the first layer and we mask each filter one by one
and see the effect it has on the final classification. If the
classification accuracy varies by more than 10% of the baseline
(With all filters present), we consider the filter to be important
for the input. For example, consider a speech signal labeled
as angry. We pass the speech through the model to get a
classification as angry with a confidence score of 0.99. We
now start removing the filters in the first layer one at a time
and observe the classification output. If we see a particular
filter affecting the classification output by more than 10% i.e
if classification confidence drops below 0.9 in the case of this
example, we term the filter to be important. We maintain a list
of all the important filters and plot the cumulative frequency
response of the important filters over all the training examples.
We then average the cumulative response over all examples to
visualize the responses over individual emotions.

We make the following observations from the plots in Fig.3.

« We see identifiable formants in the neutral speech with

first formant around 1KHz followed by second around
2KHz

e Angry emotion is quantified by a single predominant

formant around 2 - 2.5KHz

o Sad is characterized by no particular formant

« We see a set of frequencies from 2KHz to SKHz which

appear to be important for Happy emotion

2) Local Explainability: We now turn our attention to
explaining the inference of a particular speech input. We repeat
the same experiment of masking the filters and checking their
response with respect to classification accuracy. A comparison
of the filters selected as important by the masking technique
are compared with the most frequently selected filters of the
emotions. Automatic identification of the emotion based on
the selected filters helps us in providing an explanation of
the inference. We consider the average cumulative frequency
response of the filters for each emotion based on the training
data. We then identify the most important filters for a particular
input speech by masking technique. We then compute the
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Emotion | Accuracy
Happy 71.83%
Angry 70.83%
Neutral 47.05%

Sad 40.29%

TABLE II: Accuracies for Explainability

Mean Squared Error (MSE) between the average frequency
response of all emotions with respect to the cumulative fre-
quency response of the input speech. We then try to check
if the minimum MSE obtained corresponds to classification
output which would then provide a good base for explainability
of the result. Table II provides a quantitative analysis of the
results we obtained for local explainability over validation
dataset for each emotion. We get an overall accuracy of 57.3%
over all emotions.

We consider an example from the validation set of a neutral
emotion which has been classified correctly by the model.
Fig. 4 gives the frequency response of the filters identified
as important. We can see that we are able to identify 2
formants around 1KHz and 2KHz which is similar to the
plots we obtained over the training data for a neutral emotion.
Similar plot was obtained for an sad emotion which is seen
in Fig. 5 where we do not see any predominant formant. A
sample explanation for sad emotion would be “The model has
inferred that the emotion is sad because of the absence of any
predominant formant in the frequency response”.
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Fig. 4: Frequency response for local explanation for neutral
emotion

V. CONCLUSION & FUTURE WORK

We propose an explainable SincNet based model for emo-
tion recognition from speech signals. We find that we are able
to achieve an overall accuracy better than the state of the art
without using any other modalities apart from speech on the
IEMOCAP dataset for a four emotion classification problem.
There is scope to look at recurrent architecture which would
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emotion

also involve identifying relationships between patches of the
samples in the input speech to improve the performance. We
also propose means to provide explainability for the model in
both global and local sense. We propose a method to identify
the cumulative frequency response over individual emotions to
describe the model. We also propose to use those responses as
references to provide explanation for inferences obtained from
the model. There is a scope to improve the explainability of
the results by considering other masking techniques. In future,
we would like to extend the work to more emotion classes as
well as other speech processing tasks.
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