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Abstract—In this paper, a new method to detect disfluencies
directly from speech is explored. The method makes use of
pre-linguistic automatic syllabification - the process of segment-
ing input speech signals into perceptually distinct syllable-like
regions, to develop syllable-level disfluency detection systems.
Statistical prosody features related to fundamental frequency,
energy and duration are extracted from each syllable-like region
and used to train a DNN classifier for automatic detection of
speech disfluencies. Further, complementary information useful
for the task of disfluency detection is added to the pipeline with
the help of acoustic features. A BiLSTM feature extractor is
used to get complex acoustic representation from the baseline
MFCC features for each syllable-like region. This acoustic
representation is concatenated with the prosody features and used
in the proposed system for detecting multiple speech disfluencies.
Experiments are conducted for four types of disfluencies in
the UCLASS and the IIITH-IED datasets to test the proposed
disfluency detection system. Overall, it is found that the proposed
system gives a detection accuracy of 88.75% for the disfluencies
in the UCLASS dataset, whereas for the IIITH-IED dataset,
the accuracy obtained is 91.24%, showing the effectiveness of
considering perceptually distinct syllable-like regions as repre-
sentational units for detecting disfluencies.

I. INTRODUCTION

Speech is one of the most important modes of communi-
cation for human beings. The efficiency with which humans
are able to transfer information through speech depends on its
fluency. Fluency is defined as the ease with which a person
can enunciate sounds and words to form a message [1]. But,
there are instances when abrupt breaks or disruptions affect
the normal flow of speech. These disruptions are referred
to as speech disfluencies. Disfluencies arise due to many
different reasons. For spontaneous or unprepared speech, the
speaker has to formulate the message on the fly, thinking and
speaking at the same time. In such a scenario, the speaker
might need time to think about what has to be spoken next
or need to correct an utterance that was spoken wrongly [2].
Such instances lead to the presence of speech disfluencies.
Another case is that of stuttered speech. Stuttering is a speech
impediment in which the forward flow of a speaker’s speech
is disrupted by the unintentional presence of disfluencies [3].
Some of the common types of disfluencies occurring in both
spontaneous and stuttered speech are as follows -

1) Prolongation - The lengthening of a particular word

or part of a word. For example: I want theeee pen
(lengthening of /e/ in the).

2) Filled Pause - Filler words like ‘um’ and ‘uh’ which
do not add any semantic meaning to the utterance. For
example: I want um an ice cream.

3) Part-word repetition - Repeating a particular part of a
word in order to maintain continuity with what is being
spoken. For example: I want th-the pen.

4) Word repetition - Repeating an entire word to maintain
the speech flow. For example: Give give me the book,
please.

5) Phrase repetition - Repetition of a phrase of the utter-
ance. For example: I am I am going to get it.

Detection of disfluencies in speech is an important task for
many applications. In the case of stuttered speech, automatic
detection of disfluencies can help Speech Language Pathol-
ogists (SLP) to gauge the severity of a person’s stutter and
recommend proper treatment [4]. For ASR systems, the pres-
ence of disfluencies leads to higher word error rates (WER),
deteriorating the performance of the systems [5]. Hence, the
efficient detection of disfluencies in speech is important for
the proper functioning of such applications.

The existing methods for disfluency detection in the lit-
erature can be broadly classified into the following three
categories - using lexical features extracted from the ortho-
graphic transcription for disfluency detection [6], [7]; using
features extracted from speech signal to detect disfluencies
directly in speech [8], [9]; using a combination of lexical
and speech-based features for disfluency detection [10], [11].
Methods relying on lexical features depend heavily on the
availability of the correct orthographic transcription. However,
these might not always be available due to multiple reasons
like unavailability of a proper ASR system, very high WER
in the obtained transcriptions etc. In such cases, we have to
rely only on the speech signal for performing the detection
task. This work focuses on the use of speech-based features
to detect disfluencies. A number of works have focused on
the detection of disfluencies directly from speech [8], [12].
Prosody features like signal-to-noise ratio (SNR), fundamental
frequency (F0) and duration were used to develop a rule-based
system for the detection of four types of speech disfluencies
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in [13]. The stability of the first four formants and the nasality
effect were explored in the voiced regions of speech in [8],
[14] to detect filled pause and vowel lengthening. Frame-
level automatic disfluency detection was performed in [15]
using log Mel-filterbank and F0 contour features for multiple
speech disfluencies using SVM and DNN classifiers. In [16],
[17] MFCC features and multiple modifications of the normal
MFCCs were used for developing and improving the perfor-
mance of disfluency detection systems. In [18] utterance level
detection experiments were performed directly from the speech
signal for six types of disfluencies by feeding the spectrogram
representation of 4-second audio clips to a Deep Residual
Network with BiLSTM classifier.

In this work, we present a new approach for automatic
detection of speech disfluencies at the syllable level. Sylla-
bles as representational units have been used for disfluency
detection in [19], [20] since the duration of a syllable region
(approx. 100-800ms) is similar to the duration of disfluent
regions in speech. Thus, syllables can be used to model
the characteristics of many speech disfluencies (like filled
pause, part-word repetition etc.). This is not the case with the
conventional 10-30 ms speech frames (too small to capture the
characteristics of disfluencies) or the entire speech utterance
(too big, disfluencies present only in a small region of the
utterance). In this work, instead of using the orthographic
transcription to get syllable units, we perform pre-linguistic
automatic syllabification to get perceptually distinct syllable-
like units directly from the speech signal. Each input audio
recording is segmented into chunks of perceptually different
syllable-like units. Then for each of these syllable-like units,
statistical prosody features relating to intonation pattern, the
energy of the unit and duration are extracted to develop
baseline automatic disfluency detection systems for four types
of speech disfluencies. The disfluencies considered for this
work are - filled pause (interjection), prolongation, part-word
repetition and word repetition. Further, the prosody features
used in the baseline models are combined with acoustic
representations extracted for each syllable-like unit to give
the proposed disfluency detection models. The detection ex-
periments are performed for the UCLASS and IIITH-IED
datasets to evaluate the system performance for stutter as well
as spontaneous speech disfluencies. The main contributions of
this work are -

• Using pre-linguistic automatic syllabification to develop
syllable-level disfluency detection systems. This has not
been explored yet in the literature to the best of our
knowledge.

• Developing syllable-level automatic disfluency detection
systems using prosody features for four types of speech
disfluencies. We further combine the prosody features
with acoustic representations learned at the syllable level
to obtain the proposed disfluency detection models.

The rest of the paper is organised as follows - details
about the pre-linguistic automatic syllabification process are
presented in Section 2. Section 3 describes the experimental

setup used here. This includes the datasets used, the prosody
features extracted, and the disfluency detection systems
developed. Experiments performed in this study and the
results obtained are discussed in Section 4. We conclude by
providing a summary of this work and discussing plans for
future works in Section 5.

II. PRE-LINGUISTIC AUTOMATIC SYLLABIFICATION

Studies on language acquisition and speech perception con-
sider syllable units as one of the fundamental representations
to model the underlying pre-linguistic structure of speech [21],
[22]. Pre-linguistic automatic syllabification refers to iden-
tifying and segmenting the speech signal into syllable-like
chunks, which are perceptually distinct from one another [23].
The identification of phonological syllables (actual syllables
in orthographic transcription) from speech would require the
incorporation of formal linguistic representation in terms of
language-specific rules and language-based constraints, but
since pre-linguistic information available from speech only is
being used, the syllable-like chunks obtained do not precisely
align with the phonological syllable. The perceptual differ-
ences in the identified chunks, however, provide important
cues for many speech and language-based tasks [24].

Pre-linguistic automatic syllabification has been explored
in [23], [25], [26]. Speech features like intensity and voicing
property were used in [27] to highlight the perceptual differ-
ence in various speech sounds. Existing automatic syllabifica-
tion algorithms like [28], [29] use low-pass filtered energy and
amplitude envelopes to determine the syllable boundaries in
the signal. In this work, we use the method proposed in [23] for
the task of automatic speech syllabification. The idea behind
the work in [23] is the use of sonority as the perceptual
correlate to identify syllable boundaries. Sonority is defined as
the relative audibility of speech sounds. Different definitions
of a ‘syllable’ have been used in various works [30], [31],
but there is a consensus that syllable units are related to the
rhythmic fluctuations in the sonority level of speech. A syllable
usually consists of a sonority maxima (corresponding to the
syllable nucleus, i.e. a vowel) and the sonority decreases as
we move from the nucleus to the edges of a syllable. This
idea has been used to detect syllable boundaries in the current
work.

Since sonority is a perceptual quantity, physical correlates of
sonority are needed to identify the syllable structure of speech
from sonority. Here, the amplitude modulations in the speech
signal have been for this purpose, as done in [23]. The idea
is to use harmonic oscillators to entrain the amplitude modu-
lations in speech, modelling the speech parsing mechanism in
the cortex of the human ear. Figure 1 shows a block diagram
of the automatic syllabification process used here.

First, the raw audio input (sampling frequency 16000 Hz)
is filtered using Gammatone filterbank, which consists of 20
logarithmic filters spaced in the region of 100 to 7500 Hz [32]
such that the filterbank can capture the auditory filtering
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Fig. 1. Block diagram showing the different stages of the syllabification process.

Fig. 2. Figure showing syllabification for a speech file. The orange curve
shows the sonority envelope, and the dashed red lines show the syllable
boundaries.

characteristics of the human ear. Let s(t) be the speech input.
Then -

ec(t) = s(t) ∗ gc(t), c = 1, 2......, 20 (1)

where gc(t) and ec(t) are the Gammatone filter and am-
plitude envelope obtained for the cth frequency band of
the filterbank respectively. The amplitude envelopes are then
downsampled to fs = 1000 Hz and passed through a damped
harmonic oscillator (f0 = 5Hz and ∆f = 6Hz), where
f0 is the centre frequency and ∆f is the bandwidth of the
oscillator. This is done to capture the rhythmic variations
in the envelopes—the same oscillator parameters used for
each amplitude envelope. The following equations drive the
harmonic oscillator:

ac(t) = ac(t− 1) +
uc(t)

fs
, (2)

uc(t) = uc(t− 1) +
fc(t)

fsm
, (3)

fc(t) = ec(t) − kac(t− 1) − duc(t− 1), (4)

where ac(t), uc(t) and fc(t) are the amplitude, velocity and
force of the oscillator for frequency band c at the time t. The
parameters m, k and d correspond to the mass, spring constant
and the damping coefficient of the oscillator, respectively.
These parameters are kept fixed for all bands. From the 20
oscillator amplitudes ac(t) obtained (one for each frequency
band) at each time step, the product of 10 most energetic

bands is taken to get the sonority envelope S(t). Since the
relative sonority values have to be compared to obtain the
sonority maxima and minima for syllable boundary detection,
the logarithmic sum of amplitudes is taken instead of the
product of the amplitudes. Before applying the log function,
an offset value ε is added to ac(t), such that the value inside
the log function is positive.

10∑
n=1

log10(an(t) + ε) = S(t) (5)

The sonority envelope is then normalized to a range of 0-1,

Ŝ(t) =
S(t) −min(S(t))

max(S(t)) −min(S(t))
, (6)

where Ŝ(t) is the normalized sonority envelope. From the
normalized envelope, each local minima, which is preceded by
a local maxima, is marked as the boundary for a syllable-like
chunk. Figure 2 shows the sonority envelope and the syllable
boundaries detected for the speech signal.

III. EXPERIMENTAL SETUP

This section presents presents the details of the UCLASS
and IIITH-IED datasets used for the disfluency detection
experiments, the prosody features extracted for each syllable-
like region, and the disfluency detection system used.

A. UCLASS Dataset

To perform the disfluency detection experiments for stut-
tered speech, we use the UCLASS Dataset (University College
London’s Archive of Stuttered Speech) [33]. Speech samples
are taken from Release One of the UCLASS dataset, which
consists of monologue recordings from participants aged 8 to
18 years in British English. All participants suffer from the
stuttering disorder of varying severity. The speech recordings
and transcriptions are force aligned to get timestamps for every
word and stutter spoken. The recordings are then manually
annotated for multiple speech disfluencies using a method
similar to [34]. Samples of four types of disfluencies: filled
pause, prolongation, part-word repetition (sound repetition
samples also included) and word repetition are used for the
experiments here.
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B. IIITH-IED Dataset

The IIITH-Indian English Disfluency (IIITH-IED) Dataset
is a spontaneous speech dataset for the study of speech
disfluencies in Indian English. It was introduced in [35]. The
dataset consists of 10 hours of speech in Indian English.
Lecture recordings available under the NPTEL initiative of
the Government of India have been used for the preparation
of the dataset. The lectures used in this dataset belong to the
following domains: Artificial Intelligence, Computer Science,
Database Management etc. Ten-minute audio recordings from
60 lecturers (30 male and 30 female) are taken and manually
annotated for multiple types of speech disfluencies. The anno-
tation is performed in the dataset at two levels: the word level
(identifying where the disfluencies occur in the transcription)
and the signal level (start time and end time for each disfluency
occurrence noted). Table I shows the number of occurrences
in the IIITH-IED dataset of the four disfluencies used in the
experiments in this work. Further details about this dataset can
be found here 1.

TABLE I
NUMBER OF OCCURRENCES OF THE FOUR DISFLUENCY TYPES IN

IIITH-IED DATASET.

Disfluency Type Number of Occurences
Filled Pause 1428
Prolongation 71
Part-word Repetition 164
Word Repetition 211

C. Prosody Features

The input audio is first passed through the automatic syl-
labification system, and syllable-like chunks are obtained. For
each chunk, statistical prosody features are extracted to de-
velop the baseline disfluency detection system. Local prosody
features have been used in [13], [36] for the task of detecting
disfluencies. Here, we use features related to the fundamental
frequency (F0) contour, energy and duration of each syllable-
like unit. Table II shows the list features extracted per syllable
region.

The fundamental frequency is estimated here using Praat’s
auto-correlation based F0 extraction algorithm. A frame size
of 10 ms and shift of 5 ms is used for the computation of F0.
Energy computation is performed using the Short-time Fourier
transform (STFT), with a frame size of 20 ms and a frame shift
of 10 ms. The energy of each syllable-like region is obtained
by summing up the energies of individual speech samples lying
within the region. As we can see from Table II, 15 features
corresponding to F0, 9 features corresponding to the energy in
the syllable unit and 8 features corresponding to duration and
ratios of silence, voiced and unvoiced regions are extracted.
This 32-dimensional feature vector is then used as input to our
disfluency detection system to decide whether the syllable-like
unit has a disfluency in it or not.

1https://bit.ly/3fAc3mb

TABLE II
PROSODY FEATURES EXTRACTED FOR EVERY SYLLABLE REGION. HERE
STD. DEV. STANDS FOR STANDARD DEVIATION, AND MSE STANDS FOR

MEAN SQUARED ERROR.

Feature Statistics Computed Dimension

F0

F0 contour - Average, Std. dev.,
Maximum, Minimum, Skewness

5

Tilt of F0 contour - Average, Std. dev.,
Maximum, Minimum, Skewness

5

MSE of F0 contour - Average, Std. dev.,
Maximum, Minimum, Skewness

5

Energy

Energy Contour - Average, Std. dev.,
Skewness

3

Tilt of energy contour - Average, Std. dev.,
Skewness

3

MSE of energy contour - Average, Std. dev.,
Skewness

3

Duration

Pause Duration - Average, Std. dev.,
Minimum, Maximum, Skewness

5

Ratio of Voiced to unvoiced duration 1
Ratio of Voiced to pause duration 1
Ratio of Unvoiced to pause duration 1

Total 32

D. Disfluency Detection System

The disfluency detection systems used here are syllable-
level detection systems. These systems detect whether a
syllable-like unit corresponds to a particular disfluency or
not. The detection of each type of disfluency is set up as
a binary classification problem to study how efficient the
developed systems are for detecting each disfluency type. The
classifier used is a DNN with 2 hidden layers, as used in [35].
The first hidden layer has 100 units and the second hidden
layer has 50 units in it, with the same architecture being
used for all four disfluencies. A 90:10 train-test split is used
in the experiments. During training, 10-fold stratified cross-
validation is performed, with 9-folds used for training and
1-fold used for validation. Hyperparameter tuning is done on
the validation set using grid search, and an optimal learning
rate of 10−2 is obtained, with the Adam optimizer and binary
cross-entropy loss function. Early stopping is applied to the
validation loss to avoid overfitting.

The UCLASS and IIITH-IED datasets are biased since
the number of syllables corresponding to normal speech are
greater than disfluent syllables. So, to ensure that the systems
developed are unbiased, Synthetic Minority Oversampling
Technique (SMOTE) [37] is used to make the number of
samples of each class equal.

E. Evaluation Metrics

To properly assess the performance of the systems devel-
oped, two metrics have been used - Accuracy and F1-score.
The F1-score is calculated as follows:

F1 =
2 ∗ Precision ∗Recall
Precision+Recall

, (7)

where,
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Precision =
TruePositives

TruePositives+ FalsePositives
, (8)

and,

Recall =
TruePositives

TruePositives+ FalseNegatives
. (9)

IV. EXPERIMENTS AND RESULTS

A. Baseline

The first set of experiments performed are for the baseline
results of disfluency detection using the aforementioned sta-
tistical prosody features with the DNN disfluency detection
system, as described above. For each disfluency type, the ex-
periments are set up as a binary classification task to determine
whether a particular syllable-like audio chunk belongs to the
disfluency type or not. Table III shows the results obtained for
the detection of the four disfluency types in the UCLASS and
IIITH-IED datasets. An accuracy of 81.26% is obtained for the
detection of filled pause in case of stuttered speech (UCLASS
dataset), whereas in the case of spontaneous speech (IIITH-
IED dataset), the accuracy obtained is 84.28%.

TABLE III
BASELINE RESULTS OBTAINED USING PROSODY FEATURES FOR THE

UCLASS AND IIITH-IED DATASET. HERE F1 SHOWS THE F1-SCORE.

Disfluency Type UCLASS IIITH-IED
Accuracy F1 Accuracy F1

Filled Pause 81.26 0.812 84.28 0.840
Prolongation 83.71 0.831 87.33 0.869
Part-word repetition 79.45 0.794 80.18 0.794
Word repetition 72.93 0.722 71.19 0.712

From the results, we can observe that the baseline system
gives good detection performance in the case of mono-syllabic
disfluencies like a filled pause. Most of the prolongations in
the UCLASS and IIITH-IED datasets are mono-syllabic as
well, so a high detection accuracy is obtained. However, the
performance of the system deteriorates in the case of multi-
syllabic disfluencies (like word repetition). This is because
the features belonging to only one particular syllable region
have been used for classification without taking into account
the context of neighbouring syllables. So, to consider the
context of neighbouring syllables, we stack up features from
one syllable region before and after the current syllable
(window of ±1 syllables). Hence, a 96-dimensional feature
vector (32 ∗ 3 = 96) is now used to represent each syllable
region. The results obtained by stacking up features with the
same detection system are shown in Table IV.

We can see from Table III and Table IV that taking
neighbouring syllables into account improves the detection
performance for all the four disfluencies. However, the in-
crease in performance is much greater for multi-syllabic
disfluencies. For word repetitions in the case of stuttered

TABLE IV
RESULTS OBTAINED BY STACKING UP PROSODY FEATURES FROM

NEIGHBOURING SYLLABLE REGIONS FOR THE UCLASS AND IIITH-IED
DATASET. HERE F1 SHOWS THE F1-SCORE

Disfluency Type UCLASS IIITH-IED
Accuracy F1 Accuracy F1

Filled Pause 82.92 0.828 85.63 0.855
Prolongation 85.11 0.848 88.97 0.890
Part-word repetition 82.73 0.826 83.41 0.831
Word repetition 79.58 0.796 77.15 0.769

speech, an improvement of 6.65% in the detection accuracy
is obtained when using stacked features compared to the case
when no stacking is done, whereas, for the IIITH-IED dataset,
the improvement in the case of word repetitions is 5.96%.
Improvements are observed for filled pause and prolongation
as well, but they are marginal (in the case of stuttered speech,
the improvement for filled pause and prolongation are 1.66%
and 1.4%, respectively).

B. Combination with Acoustic Features

Although prosody features provide important correlates for
detecting disfluencies, certain other features such as stability
of formants, nasality effect of speech etc., which have been
shown to be helpful in disfluency detection [8], [9], [14], can-
not be captured using statistical prosody features. Frame-level
acoustic information has to be added to the system for this
purpose. So, to incorporate this complementary information,
we use an acoustic representation learned for every syllable-
like unit. The following procedure is used to get the acoustic
representation:

1) MFCC features are extracted for the input audio using
a Hamming window of size 25 ms with 10 ms shift.
The first 13 coefficients, their ∆ and ∆∆ make up the
39-dimensional MFCC features for each speech frame
of size 10 ms.

2) MFCC features of the speech frames belonging to the
current syllable region, its predecessor and successor
(window of ±1 syllables) are concatenated to form a
39xT dimensional feature vector, T being the number
of frames.

3) Now, to get a complex acoustic representation of fixed
dimensions for each region, a BiLSTM feature extractor
is used. The BiLSTM feature extractor helps to take into
account the forward and backward context while learn-
ing the acoustic representation. The BiLSTM network
consists of 2 recurrent layers, each having 90 units. A
dropout rate of 0.2 is set for the first recurrent layer to
avoid overfitting.

4) Using this feature extraction network, a 90-dimensional
acoustic representation is obtained for each syllable-like
unit.

The acoustic features are then combined with the statistical
prosody features to give a 186-dimensional feature vector.
This final feature vector is then used with the DNN classifier
to detect disfluencies. Figure 3 shows the entire disfluency
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Fig. 3. Pipeline of the proposed disfluency detection system. Prosody and acoustic features are combined to produce the final feature vector.

detection pipeline used when combining acoustic and prosody
features. The results obtained by using this setup are reported
in Table V.

TABLE V
RESULTS OBTAINED BY COMBINING PROSODY AND ACOUSTIC FEATURES

FOR THE UCLASS AND IIITH-IED DATASET. HERE F1 SHOWS THE
F1-SCORE

Disfluency Type UCLASS IIITH-IED
Accuracy F1 Accuracy F1

Filled Pause 90.14 0.897 92.46 0.921
Prolongation 92.21 0.919 93.39 0.924
Part-word repetition 87.04 0.866 86.28 0.855
Word repetition 86.21 0.853 81.53 0.802

As can be seen from Table V, the detection performance
is enhanced by adding the acoustic features for all the four
disfluencies in both datasets. This shows that complementary
information is being added to the disfluency detection pipeline
through the acoustic features. For filled pause, an absolute
improvement of 7.22% and 6.83% is obtained in the detection
accuracy for stuttered and spontaneous speech, respectively,
compared to the baseline systems. In the case of prolongation,
the obtained improvement is 7.1% for stutter disfluencies and
4.42% for spontaneous speech disfluencies. Improvements are
obtained in the detection accuracy of repetition type disflu-
encies as well, but due to high intra-class variability in the
samples of repetition disfluencies, the detection performance
is lesser as compared to filled pause and prolongation.

Comparing the performance of the proposed method to [18],
which uses acoustic features as well to detect disfluencies in
the UCLASS dataset, it is found the current system outper-
forms [18] by a margin of 8.74% in the detection of filled
pause. This is because in [18], audio files of fixed duration
(4 seconds) are used to extract features using a ResNet. This
4-second duration of each file is large as compared to the
duration of filled pause (usually between 100ms - 500ms), so

robust modelling of filled pause is difficult. In our proposed
method, since acoustic and prosody features are extracted for
each syllable-like region (duration of each region is usually
between 100 ms - 800 ms), the modelling of filled pause using
the extracted features is better. In the case of prolongation
and part-word repetition, the performance of our system is
comparable to that of [18]. Our proposed system performs
better by a small margin of 2.94% for part-word repetition
and for prolongation [18] performs better marginally (1.87%).
However, [18] outperforms our system in the case of word
repetition because occurrences of word repetition can exceed
the 3-syllable duration used for extracting features in our
experiments. This causes more samples to be misclassified.
High detection accuracies are obtained for filled pause and
prolongation in [38], [39] as well, but a very small subset
of the UCLASS dataset was used. This prevents us from
performing a fair comparison with our proposed system.

C. Disfluency vs Non-Disfluency Classification

The proposed disfluency detection system is also evaluated
on its performance in discriminating disfluent syllables from
non-disfluent or normal syllables. For this, syllable-like units
belonging to any of the four disfluency types are considered
as one class and the normal syllable units as the other class.
Binary classification is then performed to check the system
performance in discriminating disfluent syllables from normal
syllables. The results of the experiments are reported in
Table VI.

The results show that the model performs well in classifying
disfluent and normal syllable-like units. A combination of
acoustic and prosodic features gives a detection accuracy of
88.75% for the UCLASS dataset. For the IIITH-IED dataset,
the obtained accuracy is 91.24%.
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TABLE VI
RESULTS OBTAINED FOR THE DISFLUENCY VS NON-DISFLUENCY

CLASSIFICATION IN THE UCLASS AND IIITH-IED DATASETS. HERE F1
SHOWS THE F1-SCORE

Input Features UCLASS IIITH-IED
Accuracy F1 Accuracy F1

Prosodic 81.80 0.821 83.89 0.836
Prosodic + Acoustic 88.75 0.886 91.24 0.914

V. CONCLUSION AND FUTURE WORKS

In this paper, a new method to detect disfluencies in speech
was discussed. Syllable-level disfluency detection was per-
formed using a pre-linguistic automatic syllabification system
to segment an input speech signal into perceptually distinct
syllable-like units. Statistical prosody features related to F0,
energy and duration were extracted from each syllable-like
unit and used to train baseline automatic disfluency detec-
tion systems for four types of disfluencies. The experiments
were conducted for stuttered speech disfluencies (UCLASS
dataset) as well as spontaneous speech disfluencies (IIITH-
IED dataset). To further enhance the performance of the
baseline detection systems, acoustic representations learned
using MFCC features with a BiLSTM network were used
along with the prosody features to provide complementary
information to the system. Detection accuracy of 88.75% was
obtained for all disfluencies using the proposed system in
the case of the UCLASS dataset, whereas for the IIITH-IED
dataset, the detection accuracy obtained was 91.24%.

Future works will be aimed at exploring different methods
for automatic syllabification from speech signals to improve
the disfluency detection pipeline further. We also plan to
explore better prosody representations for each disfluency type
and perform model-level adaptations to enhance the system
performance.
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