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Abstract—Generative probability models are widely used for
speaker verification (SV). However, the generative models are
lack of discriminative feature selection ability. As a hypothesis
test, the SV can be regarded as a binary classification task which
can be designed as a Siamese neural network (SiamNN) with
discriminative training. However, in most of the discriminative
training for SiamNN, only the distribution of pair-wised sam-
ple distances is considered, and the additional discriminative
information in joint distribution of samples is ignored. In this
paper, we propose a novel SiamNN with consideration of the
joint distribution of samples. The joint distribution of samples is
first formulated based on a joint Bayesian (JB) based generative
model, then a SiamNN is designed with dense layers to approx-
imate the factorized affine transforms as used in the JB model.
By initializing the SiamNN with the learned model parameters
of the JB model, we further train the model parameters with the
pair-wised samples as a binary discrimination task for SV. We
carried out SV experiments on data corpus of speakers in the
wild (SITW) and VoxCeleb. Experimental results showed that our
proposed model improved the performance with a large margin
compared with state of the art models for SV.

I. INTRODUCTION

Speaker verification (SV) is a task to judge whether an

utterance is spoken by a registered speaker or not, it is widely

used in many speech application systems for authentic or

security purpose [1], [2], [3]. The conventional pipeline in

constructing a SV system is composed of a front-end speaker

embedding feature extraction and a back-end speaker classifier

modeling. The front-end embedding feature extraction tries to

extract robust and discriminative speaker features, and back-

end classifier tries to model speaker features based on which

the similarity or distance between two compared features

vectors could be estimated. In most state of the art frameworks,

i-vector [4], [5], d-vector and X-vector [5], [6], have been

proposed as front-end speaker features. Particularly, the X-

vector as one of the speaker embedding representations is

the most widely used one [5]. Since the original front-end

feature encodes various of acoustic factors, e.g., speaker factor,

channel transmission factor, recording device factor, etc., be-

fore classifier modeling, a linear discriminative analysis (LDA)

or local fisher discriminative analysis [7] based dimension

reduction is usually applied to eliminate non-speaker specific

information. Based on the robust speaker features, several

back-end speaker models have been proposed, for example,

the probabilistic linear discriminant analysis (PLDA) modeling

[4], [8], joint Bayesian (JB) modelling [9], [10], support vector

machine (SVM) [13], as well as other types of discriminative

classification based modeling [14] [15], [16].

The SV problem can be defined as a hypothesis test [17]:

HS : xi,xj are spoken by the same speaker

HD : xi,xj are spoken by different speakers,
(1)

where HS and HD are the two hypothesises as the same and

different speaker spaces, respectively. (xi,xj) is a tuple with

two compared utterances indexed by i and j (as a trial in

SV tasks). In most of the SV algorithms, the hypothesis test

defined in Eq. (1) is finally formulated as a log-likelihood

ratio (LLR) function [17]. And usually the LLR is estimated

based on generative probabilistic models in a transformed

speaker feature space. However, the generative models are

lack of discriminative feature selection ability, and usually

a discriminative feature transform is independently applied

before the generative classifier modeling. As an alternative,

the hypothesis test in Eq. (1) can be regarded as a binary

classification task where neural network based discriminative

models could be applied. In most of these discriminative

models, a distance metric could be learned for the hypothesis

test defined in Eq. (1). In this distance metric learning, no

probability distribution assumption (e.g., Gaussian for most

generative models) is required, and the feature transformed

space and hypothesis test model can be optimized in a

unified neural network model. However, in most of these

distance metric learning algorithms, only the distribution of

the distances of pair-wised samples is considered without

considering the joint distribution of samples. As indicated in a

joint Bayesian (JB) analysis model, considering the joint dis-

tribution of samples could introduce additional discriminative

information compared with only considering the distribution

of distances of the pair-wised samples [9], [10]. In this paper,

we propose a novel Siamese neural network (SiamNN) based

discriminative framework for SV. Although SiamNN based

with pair-wise samples [11], or neural network with triple-wise

samples [12], have been proposed for speaker verification, our

proposed SiamNN framework is different from their studies.

In the framework, the SiamNN architecture is designed to

integrate the model structure of JB, and jointly optimized

with a discriminative feature learning process. Due to the

discriminative learning property, a direct evaluation metric

for SV is easily integrated as a learning objective function.

Our experiments confirmed the advantages of the proposed
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SiamNN framework.

II. THE PROPOSED DISCRIMINATIVE NEURAL NETWORK

MODEL

The hypothesis test defined in Eq. (1) can be regarded

as a Bayesian binary classification task, and a discriminative

neural network model can be designed for the task. During

the architecture design of the neural network model, in order

to take the model structure of a generative probabilistic model

into consideration, we need to explain the conventional gen-

erative model based algorithms, and their connections to the

discriminative framework via the LLR estimation.

A. Log-likelihood ratio function based on generative proba-

bilistic models

Based on a generative probability model, a log-likelihood

ratio (LLR) with consideration of intra-speaker and inter-

speaker distances is defined as:

ri,j = r(xi,xj) = log
p(∆i,j |HS)

p(∆i,j |HD)
, (2)

where ∆i,j = xi−xj is the pair-wised sample distance. Based

on the Gaussian density distribution assumptions of p(.|HS)
and p(.|HD) , the LLR can be estimated as:

ri,j = (xi − xj)
T
M(xi − xj) (3)

where M = −(Σ−1
HS

− Σ−1
HD

) with ΣHS
and ΣHD

as the

covariance matrices of the pair-wised distance space ∆i,j for

HS and HD conditions, respectively. We can see that Eq. (3)

is in the same form as Mahalanobis distance metric except the

negativity of the M [18].

From the definition in Eq. (2), we can see that the

learned distance metric only considers the distribution of the

pair-wised sample distance space [19]. For joint Bayesian

(JB) probability distribution modeling, i.e., p (xi,xj |HS) or

p (xi,xj |HD), the LLR is estimated as:

ri,j = r(xi,xj) = log
p(xi,xj |HS)

p(xi,xj |HD)
(4)

In the JB modeling, the observed speaker feature variable x

satisfies the following formulation as:

x = u+ n, (5)

where u is a speaker identity vector variable, and n represents

intra-speaker variation caused by noise. In verification, for

given a trial with xi and xj generated from Eq. (5), with

zero mean Gaussian assumption (with covariance matrix Σu

and Σn for u and n variables, respectively), the two terms

p (xi,xj |HS) and p (xi,xj |HD) defined in Eq. (4) satisfy

zero-mean Gaussian with covariances as:

SHS
=

[

Σu +Σn Σu

Σu Σu +Σn

]

SHD
=

[

Σu +Σn 0

0 Σu +Σn

] (6)

Based on Eq. (6), the LLR defined in Eq. (4) could be

calculated based on:

r(xi,xj) = x
T
i Axi + x

T
j Axj − 2xT

i Gxj , (7)

where

A = (Σu +Σn)
−1

− [(Σu +Σn)− Σu(Σu +Σn)
−1Σu]

−1

G = −(2Σu +Σn)
−1ΣuΣ

−1

n

(8)

Comparing Eqs. (3) and (7), we can see that if we set A =
G = M, the JB model based LLR degenerates to be the

same form as the Mahalanobis distance metric (except the

negativity of the matrix). In this sense, we can regard the LLR

in Eq. (3) as a special case in JB model based estimation.

Since the LLR in Eqs. (3) and (7) are based on probabilistic

modeling with Gaussian distribution assumptions, their model

parameters could be estimated using EM (or EM-like) learning

algorithms [9], [10].

B. Connecting log-likelihood ratio in a neural network clas-

sification model

The LLR defined either in Eqs. (2) or (4) can be derived

from a generative model based classification model. Given a

training data set {(xi, yi)}i=1,2,...,N , yi ∈ {1, 2, ...,K} with

xi and yi as data feature and label, K is the number of classes,

the classification model is defined as:

p (y = k|x) =
p (x|y = k) p (y = k)

K
∑

j=1

p (x|y = j) p (y = j)

. (9)

And Eq. (9) is further cast to:

p (y = k|x) =
1

1 +
K
∑

j=1,j 6=k

exp (−rk,j (x,Θ))

, (10)

where

rk,j (x,Θ)
∆
= log

p (x|y = k) p (y = k)

p (x|y = j) p (y = j)
, (11)

is a LLR function based on the probabilistic model with Θ as

a model parameter set. In a neural network based classification

model, the classification is formulated as:

p (y = k|x) =
exp (ok)

K
∑

j=1

exp (oj)

, (12)

where a network mapping function oj = φj (x,Θ) is defined

as the output corresponding to the j-th class, and Θ is the

neural network parameter set. And Eq. (12) is cast to:

p (y = k|x) =
1

1 +
K
∑

j=1,j 6=k

exp (−hk,j (x,Θ))

, (13)

where

hk,j (x,Θ)
∆
=φk (x,Θ)− φj (x,Θ) . (14)

Comparing Eqs. (13), (14) with (10), (11), we can see that

hk,j (x,Θ) can be connected to the LLR in calculation in a

pair-wised neural discriminative training.
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C. Pair-wised discriminative training for LLR modeling

For convenience of formulation, we define a trial as a tuple

zi,j = (xi,xj), and the two hypothesis spaces are constructed

from the two data sets as:

S = {zi,j = (xi,xj) ∈ HS}
D = {zi,j = (xi,xj) ∈ HD}

(15)

Given a trial with two observation variables zi,j = (xi,xj)
(X-vectors in this study), the classification task is to estimate

and compare p(HS |zi,j) and p(HD|zi,j). As a binary discrim-

inative learning, the label is defined as:

yi,j =

{

1, zi,j ∈ HS

0, zi,j ∈ HD
(16)

Based on discriminative neural network model with reference

to Eqs. (13) and (14), the posterior probability is estimated

based on:

p(yi,j |zi,j) =

{

1
1+exp(−hHS,HD

(zi,j ,Θ)) ; zi,j ∈ HS

1− 1
1+exp(−hHS,HD

(zi,j ,Θ)) ; zi,j ∈ HD

(17)

As we have revealed from Eqs. (10), (11), and (4), we replace

the hHS ,HD
(zi,j ,Θ) with LLR function, and define a mapping

as a logistic function with scaled parameters as [20], [21]:

f (ri,j)
∆
=

1

1 + exp (− (αri,j + β))
(18)

where ri,j is the LLR as defined in either Eq. (2) or (4),

α and β are gain and bias factors used in the regression

model. In Eq. (18), we integrate the LLR score estimated

from the probabilistic model in a neural discriminative training

framework. The probability estimation in Eq. (17) is cast to:

ŷi,j
∆
= p(yi,j |zi,j) =

{

f(ri,j); zi,j ∈ HS

1− f(ri,j); zi,j ∈ HD
(19)

The model parameters can be learned based on optimizing

binary classification accuracy. Under this framework, it is easy

to directly incorporate the SV evaluation metric in the neural

discriminative leaning. In this study, an empirical Bayes risk

(EBR) based objective function is adopted with consideration

of the false alarm and miss detections, which is widely used

in hypothesis test tasks for SV[22], [24].

D. Integrating the generative probabilistic model structure in

the discriminative neural network

We design a Siamese neural network (SiamNN) within

a pair-wised discriminative learning framework for SV. In

conventional pipeline for SV, a LDA is applied before the

probabilistic modeling. Correspondingly, in the SiamNN, a

dense layer is designed for fulfilling the function of LDA, and

another dense layer is for fulfilling the transform functions

used in Eqs. (3) and (7). For more specific, the transform

matrix used in Eq. (3) is factorized as:

M = −PP
T . (20)
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Fig. 1. The proposed SiamNN framework with: (a) MD net (Mahalanobis
net) with an affine transform matrix P , and (b) JB net (joint Bayesian net)
with two branches of affine transform matrices PA and PG. LDA net with
an affine transform matrix W for fulfilling the LDA transform.

And the matrices in Eq. (7) are factorized as:

A = −PAP
T
A

G = −PGP
T
G (21)

Based on the factorizations, the LLR function in Eq. (3) is

cast to:

ri,j = 2bTi bj − bTi bi − bTj bj (22)

with affine transforms as:

bk = P
T
h̃k. (23)

And the LLR function in Eq. (7) is cast to:

ri,j = 2gTi gj − aTi ai − aTj aj (24)

with the affine transforms as:

ai = P
T
Ah̃i

gi = P
T
Gh̃i, (25)

where in Eqs. (23) and (25), k ∈ {i, j}, h̃i = hi

||hi||
is the

length normalized vector from the LDA transform as:

hi = W
T
xi, (26)

where xi is the input X-vector feature, W is the transform

in LDA. With these factorizations, the model architecture is

designed as illustrated in Fig. 1. In this figure, “LDA net” is

for the LDA transform with the affine transform “Affine T”

defined in Eq. (26), “MD net” is the Mahalanobis distance net

with affine transform defined in Eq. (23), and “JB net” is the

JB network with two branches of affine transforms defined in

Eq. (25). In training the SiamNN, we constructed “negative”

and “positive” samples as we did in pair-wised discriminative

training for language recognition task [23].
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TABLE I
PERFORMANCE ON THE DEVELOPMENT SET OF SITW.

Methods EER(%) minDCF1 minDCF2

LDA+PLDA 3.00 0.332 0.520

LDA+JB 3.04 0.329 0.502

SiamNN (rand init) 4.16 0.379 0.588

SiamNN (JB init) 2.66 0.297 0.447

III. EXPERIMENTS AND RESULTS

A. Experimental conditions

We carried out SV experiments to test our proposed frame-

work. The training data set is from VoxCeleb data corpus

(sets 1 and 2) [25], and the test data sets are from the data

corpus of speakers in the wild (SITW) [24]. We adopt a state

of the art pipeline for constructing the SV baseline systems.

The input speaker feature in our pipeline is X-vector which is

extracted from a well trained deep time delay neural network

(TDNN) neural network [5]. In training the TDNN model, the

training data includes two data sets from Voxceleb corpus, i.e.,

the training set of Voxceleb1 corpus by removing overlapped

speakers which are included in the test set of the SITW, and

the training set of Voxceleb2. Moreover, data augmentation is

applied to increase data diversity in TDNN model training.

Input features for training the speaker embedding model are

30 Mel band bins based MFCCs with 25 ms frame length

and 10 ms frame shift. The final extracted X-vector is with

512 dimensions. For removing non-speaker information, the

LDA is applied to transform the 512-dimension X-vectors

to 200-dimension vectors before the probabilistic modeling.

Correspondingly, in the discriminative neural network model

as showed in Fig. 1, a dense layer with 200 neurons is also

applied in the “LDA net”.

Since the discriminative neural network architecture fits well

to the conventional pipeline based on the probabilistic model

structure, the dense layer parameters could be initialized with

the conventional model parameters in training (according to

Eqs. (26) and (25)). For comparison, the random parameter

initialization method is also examined. In model training, the

Adam algorithm with an initial learning rate of 0.0005 [26]

was used. In order to include enough “negative” and “positive”

samples, the mini-batch size was set to 4096. The training X-

vectors were splitted to training and validation sets with a ratio

of 9 : 1. The model parameters were selected based on the best

performance on the validation set.

B. Results

Two testing data sets from the SITW, i.e., development and

evaluation sets are used, and each is used as an independent

test set. The evaluation metrics, equal error rate (EER) and

minimum decision cost function (minDCF) (with target prior

0.01 denoted as minDCF1, and prior 0.001 denoted as minD-

CF2) are adopted to measure the performance [22], [24]. The

results are showed in tables (I) and (II). In these two tables,

“LDA+PLDA” and “LDA+JB” represent the baseline systems

based on probabilistic models PLDA and JB, respectively.

TABLE II
PERFORMANCE ON THE EVALUATION SET OF SITW.

Methods EER (%) minDCF1 minDCF2

LDA+PLDA 3.55 0.353 0.566

LDA+JB 3.50 0.342 0.565

SiamNN (rand init) 4.51 0.392 0.600

SiamNN (JB init) 3.14 0.308 0.462

TABLE III
PERFORMANCE BEFORE THE SIAMNN DISCRIMINATIVE TRAINING (WITH

JB INIT) ON THE DEVELOPMENT SET OF SITW.

Methods EER (%) minDCF1 minDCF2

A (G=0) 47.71 1.00 1.00

G (A=0) 6.35 0.826 0.981

A, G (set G to A) 3.12 0.360 0.584

A, G (set A to G) 3.50 0.398 0.632

“SiamNN” denotes the proposed system which takes the prob-

abilistic JB model structure in designing the neural network

model (as illustrated in (b) of Fig. 1), and model parameters are

with random initialization (“SiamNN (rand init)”) or with EM

algorithm learned JB model parameters (“SiamNN (JB init)”).

From these two tables, we can see that the performance of the

baseline system with probabilistic JB model is comparable or

a slight better than that of the PLDA based model. In the

SiamNN based model, if model parameters are randomly ini-

tialized (“SiamNN (rand init)”), the performance is worse than

the original baseline model based results. However, when the

SiamNN parameters are initialized with the JB based baseline

model parameters, the performance is significantly improved.

These results indicate that the discriminative training could

further enhance the discriminative power of the conventional

JB based probabilistic model.

C. Effect of A and G on SV performance

In our SiamNN discriminative training, the LLR of the JB

model defined in Eq. (7) is integrated. With different settings

of A and G in Eq. (7), we could obtain:

r(xi,xj) =















−2xT
i Gxj ; for A = 0

x
T
i Axi + x

T
j Axj ; for G = 0

(xi − xj)
T
G(xi − xj); for A = G

(xi − xj)
T
A(xi − xj); for G = A

(27)

TABLE IV
PERFORMANCE AFTER THE SIAMNN DISCRIMINATIVE TRAINING (WITH

JB INIT) ON THE DEVELOPMENT SET OF SITW.

Methods EER (%) minDCF1 minDCF2

A (G=0) 50.29 1.000 1.000

G (A=0) 4.78 0.421 0.634

A, G (set G to A) 2.81 0.298 0.456

A, G (set A to G) 3.08 0.313 0.451

TABLE V
PERFORMANCE OF THE SIAMNN DISCRIMINATIVE TRAINING WITH

“MD NET” ON THE DEVELOPMENT SET OF SITW

Methods EER (%) minDCF1 minDCF2

Random init P 3.97 0.374 0.554

Init P with PA 3.62 0.369 0.547

Init P with PG 4.01 0.406 0.600

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

772



Based on this formulation, the two matrices A and G are

connected to the two dense layers of the SiamNN model

with weights PA and PG (refer to Fig. 1). In our model,

the dense layers were first initialized with the parameters

from the learned JB based baseline model, then the model

was further trained with “negative” and “positive” pair-wised

samples. Only in testing stage, the different parameter settings

according to Eq. (27) are examined for experiments, and the

results are showed in tables III and IV for the dev set of SITW.

In these two tables, by comparing conditions with A = 0 or

G = 0, we can see that the cross term contributes more to

the SV performance, i.e., the dense layer with neural weight

PG contributes the most discriminative information in the SV

task. Moreover, when keeping the cross term either by setting

A = G or G = A, the performance is better than setting

any one of them to be zero. As a special case of the JB model

based SiamNN, we also test the “MD net” on dev set of SITW

with different settings, and show the results in table V. From

this table, we can see that when the model parameters are

initialized with the PA parameters, the performance is the

best for this “MD net” based model. However, no matter in

what conditions, comparing results in tables I and V, we can

confirm that the model structure inspired by the JB model is

the best when the model parameters are initialized properly.

IV. DISCUSSION AND CONCLUSION

In this study, we regard SV problem as a Bayesian bina-

ry classification task, and propose a SiamNN discriminative

learning framework with “positive” and “negative” sample

pairs (as from the same and different speakers). Rather than

only considering the distributions of pair-wised intra- and

inter-speaker distances, the joint distribution of samples is

taken into consideration via the formulation from JB based

generative modelling. With the help of matrix factorization, we

reformulate the LLR estimation of the JB model to a distance

metric as used in the discriminative learning framework. In

particular, the linear transform matrices in the JB model are

implemented as dense layers of the neural network model

hence the JB based model structure is effectively connected

to the SiamNN framework. Moreover, the SiamNN framework

takes the speaker feature transform and classification model

parameters learning in a unified optimization framework. Our

experiments confirmed that the SV was benefitted from the

unified discriminative learning framework.

In a discriminative learning framework, many loss functions

have been investigated for speaker recognition as a distance

metric learning task [27]. Our study may be further extended

to integrate those different distance metrics or losses with the

specially designed network architecture. In this study, the net-

work architecture was derived from JB based generative model

with a simple probability distribution assumption, i.e., a single

modal Gaussian distribution assumption of speaker features

and noise. In real applications, the probability distributions are

much more complex. Although it is difficult for a generative

probabilistic model to fit complex probability distributions in

a high dimensional space, it is relatively easy for a neural

network learning framework to do it. In the future, we will

consider model structures for dealing with more complex

probability distributions in SV tasks.
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