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Abstract—In this work, we present the system to detect the
liveness by identifying the pop noise in the voice signal in order
to avoid the security breach of ASV systems. Pop noise is created
due to spontaneous breathing while uttering a certain phonemes,
and it has low-frequency characteristics. Given the low-frequency
characteristics of the pop noise, we have used the short-time
Fourier transform (STFT) with low-frequency contents (0-40 Hz)
as a feature set along with a convolutional neural network as
a classifier. The experiments are performed using the recently
released POp noise COrpus (POCO) dataset. We have considered
the approach given in the original POCO dataset paper as a
baseline and compared the results with the proposed architecture.
The performance of the proposed architecture is measured using
10-fold cross-validation and the customized disjoint partition
of the dataset. It is observed that the proposed architecture
shows an improvement in accuracy for voice liveness detection
in both cases. In particular, the proposed architecture obtained
19.86% and 18.22% absolute improvement in accuracy for 10-
fold cross-validation and customized data partition, respectively,
as compared to the baseline.
Index Terms: Voice liveness detection, Pop noise, CNN,
POCO dataset.

I. INTRODUCTION

In recent decades, biometric authentication has gained sig-
nificant traction in many areas, such as financial transactions,
personalized devices, such as mobile phones and laptops,
electronic applications. There are various choices of the bio-
metrics, such as fingerprint, palm, iris, gait, face, and voice [1].
Among these, voice biometric is more natural way of commu-
nication with the machines and hence, it has emerged in many
real-time applications, such as voice assistants, controlling
Internet of Things (IoT) devices, etc. This became possible due
to development of robust automatic speaker verification (ASV)
technology [2]. However, due to parallel advancement in the
other speech technologies, such as speech synthesis (SS) and
voice conversion (VC), ASV systems have become susceptible
to spoofing attacks [3], [4], [5], [6], [7]. Furthermore, high
quality recording and playback devices facilitate the replay
spoofing attack, which became difficult case for ASV to
identify spoofing [8], [9]. To alleviate the issue of spoofing
attacks on the ASV system, ASVspoof challenge campaigns
were initiated in 2015, 2017, and 2019, which were organized
as special sessions during INTERSPEECH conferences [10],
[11], [12]. These campaigns distributed the datasets, protocols,
and evaluation metrics to be able to provide the common
platform for comparison of the performances of various coun-
termeasure (CM) systems. These campaigns encompasses the

SS, VC, and replay spoofing attacks. In this study, we propose
to develop the CM system for Voice Liveness Detection
(VLD) in the context of ASV. The relationship between the
presence of pop noise in recorded speech and distance between
speaker and microphone is inversely proportional. Moreover,
the microphone can sense the breathing noise, i.e., pop noise
of the speaker if the distance is very small (approx. 5 cm).
Hence, pop noise can be attributed to the live genuine speech.

To the best of authors’ knowledge, liveness detection for
anti-spoofing is proposed for the first time in [13], where
two approaches of liveness detection are proposed: (a) low-
frequency-based single channel detection, (b) subtraction-
based pop noise detection with two channels. In the former
approach, Short-Time Fourier Transform (STFT) around lower
frequency region is utilized (as the pop noise exists in the
lower frequency regions). Whereas in the later approach,
entire frequency range of the spectrum is utilized. In [14],
phoneme-based pop noise detection is performed for VLD
along with ASV system, where pop noise duration is detected
in an utterance and estimated phonemes in that duration are
analyzed for VLD task. The similar approach of phoneme-
based pop noise detection was utilized in [15] with extended
study on Gammatone Frequency Cepstral Coefficients (GFCC)
feature set for pop noise detection.

During natural speech production, airflow travels from the
lungs to the vocal folds, excites vocal tract system and finally,
bursts out from the mouth as a sound wave. While capturing
this sound via microphone, if the distance between speaker and
microphone is small, the microphone in addition to capturing
speech signal, can also capture the friction between the lips as
bursts which is termed as pop noise. The intensity of this pop
noise detected by the microphone is inversely proportional to
the distance between the speaker and the microphone. Such
pop noise will not be recorded if the recorder is kept far away
from the speaker. An attacker who is deceptively trying to
record the voice usually may not be able to put the recording
device near to the speaker which will result in the absence
of pop noise from the recorded speech. Hence, pop noise
detection can provide reliable acoustic cues for VLD and thus,
should be able to distinguish between the live (genuine) speech
and the replayed speech [16].

Recently, POCO dataset is developed which can be used
to build the system for VLD by identifying the pop noise
which causes the distortion in the speech signal introduced by
the speaker’s breath [17]. Thus, pop noise is the characteristic
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of the live speech. Identifying the pop noise for live speaker
detection might be very useful strategy in the applications,
where the testing microphone is placed at a short distance
from the speaker, and consequently this strategy may protect
the ASV system from the spoofing attacks. The architecture
proposed in [13] is the popular approach for VLD and con-
sequently, it is used to produce the results in original POCO
dataset study in [17]. With this reference study, we considered
this approach as a baseline approach. Our proposed system
uses low-frequency regions in Short-Time Fourier Transform
(STFT) spectrogram as a feature set along with convolutional
neural network (CNN) as a classifier.

The rest of the paper is organized as follows: Section II
presents the details of the proposed approach whereas Section
III gives POCO dataset details. Section IV provides details of
the experiments and the results obtained. Finally, Section V
summarizes our work along with some limitations of current
methods and future research directions.

II. PROPOSED APPROACH

A. Baseline Algorithm

In our work, detection of pop noise is considered as binary
classification task, where utterances with and without pop
noise are labelled as 1 and 0, respectively. Spectrograms are
used as input features. The baseline is implemented using the
methodology from [17]. Let x(n) be the input signal. STFT
is calculated as :

X(ω, τ) =

∞∑
n=−∞

x(n) · w(n, τ) · e−jωn,

=

∞∑
n=−∞

x(n, τ) · e−jωn,

(1)

where x(n, τ) = x(n) · w(n, τ) is the windowed speech
segment centered at τ . Now, spectrogram (spectral energy
density) is obtained by calculating the magnitude square of
X(ω, τ), i.e.,

S(ω, τ) = |X(ω, τ)|2, (2)

Seng(ω, τ) is calculated by considering spectral energy
density from S(ω, τ) ranging within the frequency bins cor-
responding to [0, ωmax], i.e.,

Seng(ω, τ) = |S(ω, τ)|0≤ω≤ωmax
. (3)

Since the pop noise is observed in the lower frequency
region of the spectrogram features, ωmax is the frequency in
rad/sec corresponding to 40Hz. ωavg is calculated as the
average of the spectral energies for each frame. Then, the
mean and standard deviation is taken for ωavg across all the
bins. This results in 1 × N vector, where N is number of
frames. Next, ωavg(i) is considered for each of the ith frame
which is calculated as :

ωavg(i) =
1

Nb

40 Hz∑
ω=0

|Seng,i(ω, τ)|. (4)

where Nb represents number of frequency bins upto 40 Hz.
Then, mean and standard deviation is estimated for averaged
spectral energies ωavg(i) in order to normalize it. Then, 10
frame indices with largest spectral energies were taken from
the normalized ωavg(i), and frames corresponding to those
indices were chosen from Seng(ω, τ ). This feature set with
appropriate labels is fed to Support Vector Machine (SVM)
for classification purpose. Further details of this baseline
algorithm can be found in [17].

B. Proposed Algorithm

We propose a deep learning-based approach for the de-
tection of pop noise. In our work, CNN is used for the
classification of pop noise. We have used spectral energy
densities of the spectrogram as input features to the CNN
classifier. The reason behind opting CNN as a classifier is
that it captures the presence of pop noise in the spectrogram
more predominantly when compared to the SVM classifier
as there is a significant change in spectral energy at the pop
noise instances in the spectrogram. Moreover, to ensure that
the learning of the model is done on the basis of pop noise
effect, we have considered spectral energy densities of the
spectrogram Seng only for the lower frequency regions, i.e.,
0− 40Hz. The window length for obtaining the spectrogram
was set as 25 ms and a hop size of 4 ms. We have considered
a frequency resolution of 1 Hz which result in 40 bins
corresponding to 40 Hz. Furthermore, Seng is modified to give
a matrix size of 40x400 by clipping the feature maps whose
size was more than 40x400 or by padding the feature maps
by concatenating the data from the same feature map to get
the required size. This provides us a uniform size matrix to
feed the CNN classifier having 40 frequency bins and 400
frames. Z-normalization is used to normalize the utterances.
These modified feature maps, all of sizes 40x400, are used as
the input to our neural network.

The CNN network consists of 3 convolution blocks (referred
to as Convolution 1, Convolution 2, and Convolution 3 in
Fig. 1), and 3 Fully-Connected (FC) layers (referred to as
FC 1, FC 2, and FC 3 in Fig. 1). Each convolution block
consists of a 2 − D convolution layer followed by a max-
pooling layer to remove the inconsistencies in the feature
map. Both convolution and max-pooling operations are done
using kernel size of 3x3. In addition, convolution operation
is performed using zero padding with a stride of 1. The
final convolution block is followed by 3 fully-connected linear
layers with different hidden units. The output of the final layer
is activated using a sigmoid function, which makes the final
decision of whether the utterance contains pop noise or not.
Rectified Linear Unit (ReLU) function is used as the activation
function in the hidden layers.

The model is trained using Stochastic Gradient Descent
(SGD) algorithm with a batch size of 64, and learning rate
of 0.001. Binary cross-entropy loss is chosen as the loss
function. The experiments are executed for a total number of
400 epochs. The experiments are performed using speaker-
independent 10-fold cross-validation strategy and customized
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Fig. 1. The customized Convolutional Neural Network (CNN) architecture for the liveness detection task. After [18].

disjoint partition of the dataset as shown in Table I.

III. DETAILS OF POCO DATASET

In realistic scenarios, if an attacker tries to attempt a spoof-
ing attack, he/she must somehow obtain the voice samples
of the target (genuine) speaker. The simplest way to do this
is by recording (eavesdropping) the voice of target speaker
and then replaying it infront of the ASV system. Since these
recordings will be done from long distances, pop noise will
not be recorded by the attacker’s microphone and this absence
of pop noise in the replayed speech will be able to flag the
spoofed speech from the genuine speech.

In this work, we have used recently released POCO dataset
[17]. There are a total of 66 speakers out of which 34 are
male and 32 are female. The words were selected from the
English language such that all the 44 phonemes are covered in
the recording. The dataset is sampled at 22050 Hz sampling
frequency with a bit-depth of 24-bits. The dataset has three
subsets, namely, RC-A (Recording with Microphone), RP-
A (Eavesdropping), and RC-B (Recording with Microphone
Array). We have excluded the RC-B subset for our experiments
as it consists of microphone array, and it’s corresponding
spoof speech utterances are not provided. In addition, the
experiments in [17] are performed using RC-A and RP-A
subsets. The details of RC-A and RC-B are as follows:

A. Recording with Microphone (RC-A)

This subset represents genuine speaker as it was recorded di-
rectly with the live speaker and hence, contains pop noise. The
recording was done with Audio-Technica AT4040 microphone.
The distance between speaker and microphone was fixed to be
10 cm.

B. Eavesdropping (RP-A)
Eavesdropping is done to imitate a scenario where replay

attack is done by an attacker from a long distance, i.e., without
pop noise. This scenario is simulated by using Audio-Technica
AT4040 microphone with a pop filter inserted between speaker
and microphone. The distance between speaker and micro-
phone was fixed as 10 cm.

TABLE I
STATISTICS OF THE POCO DATASET FOR OUR EXPERIMENTS

Subset # Utterances # Speaker # Male # Female
Training 13552 53 26 27

Evaluation 3432 13 6 7

The dataset is partitioned into training and evaluation sub-
sets as 80% and 20% utterances, respectively. Each of these
subsets consist of half of the genuine and half of the spoof
speech utterances. We also ensured that the speakers are
exclusive in each subset and the ratio between male and female
speaker is maintained. The statistics of the data distribution in
training and evaluation subset is shown in Table I.

IV. EXPERIMENTAL RESULTS

A. Spectrographic Analysis
Panel I of Fig. 3 represents the speech signal and it’s

corresponding spectrograms for the word, ’thong’ for genuine
speech, whereas Panel II shows similar plots for spoofed
speech. There is a presence of high spectral energy density at
low frequency region for genuine speech (Panel I(b)), which
is not observed in the spectrogram of spoofed speech (Panel
II(b)). Thus, the pop noise is present for genuine speech at
low frequency regions and is absent for spoofed speech. This
spectrographic difference is very well captured by the CNN
to do the classification of genuine vs. spoofed speech.
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Fig. 2. Comparison of word accuracy on test data for baseline vs. proposed algorithm.

Fig. 3. Spectrograms for word ’thong’. Panel I.(a) and (b) show the speech
signal and spectrogram for the genuine utterance. Panel II.(a) and (b) show
similar plots for spoofed utterance. The pop and non-pop locations are high-
lighted by rectangle and circle box, respectively, for both the spectrograms.

B. Word-wise Performance

Fig. 4. Average accuracy (in %) for different types of sounds.

We have obtained an overall accuracy of 80.51% when
the training and evaluation was done according to the data
mentioned in Table I for proposed CNN-based approach, as
compared to overall accuracy of 62.29% for the baseline
algorithm. In addition, we have also performed 10-fold cross-
validation and obtained overall accuracy of 82.15% for the
proposed approach. It can be observed that the absolute

improvement of 18.22% and 19.86% is obtained by the
proposed algorithm over the baseline for evaluation done using
customized dataset and 10-fold cross-validation, respectively.
The experiments are also performed by increasing the ωmax

in eq. (3) upto 100 Hz. However, we obtained relatively better
performance for ωmax = 40 Hz.

In addition, accuracy is also analyzed for the individual
words in the dataset. Fig. 2 represents the word-wise accuracy
for baseline vs. proposed algorithm on the evaluation set.
Here, we can observe that for words which have the higher
probability of presence of pop noise (such as, ’division’, ’fat’,
’funny’, ’five’, ’thong’, ’shout’, ’wolf’, ’you’), our proposed
architecture performs relatively better than the baseline. The
proposed architecture shows the average accuracy of 85 %
for these words as opposed to 70 % accuracy for the baseline.
This 15 % absolute improvement in average accuracy for these
words indicate the capability of our proposed architecture for
pop noise detection. For the other words, our approach still
outperforms the baseline, though with comparatively lower
improvement in accuracy. We have also analyzed the perfor-
mance of both the approaches on different types of speech
sounds. Fig. 4 shows the plot for average accuracy for fricative,
affricate, plosive, and nasal sounds. Here, it can be observed
that average accuracy for fricative and affricate sounds is
higher (around 65 %) for the baseline and 80 % for proposed
approach than that for plosive and nasal sounds (i.e., around 60
% for baseline and 75 % for the proposed approach). This is an
expected result because fricative and affricate will have higher
accuracy as there is higher probability of presence of pop noise
in these types of speech sounds [19]. This is because during
the production of fricative, the air turbulence creates a chaotic
mix of random frequencies which lasts for very short time
due to which there is momentary burst of energy occurring at
random frequencies, and since pop noise is perceived as the air
burst, pop noise characteristics are obtained predominantly for
fricative sound. In addition, affricate is produced by stopping
the airflow initially in the vocal tract system and then releasing
it in the same manner as in fricative and hence, presence of pop
noise is also captured for affricate sound. On the other hand,
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while producing plosive sounds, there is a release of burst
which looks like a very thin fricative and hence, as the burst
duration is very thin when compared to the fricative, detecting
pop noise in plosive sounds is difficult and hence, average
accuracy is relatively lower for plosive sounds. Whereas,
in case of nasal sounds, spectral energy density is mostly
cohenrent at lower frequency region [19] and also suffer from
poor spectral resolution caused by higher −3dB bandwidth of
nasal cavity, as its impulse response gets quickly damped due
to its highly complex surface of the nasal cavity [19]. Hence,
it may be possible that both the algorithms are confused as
to whether the speech contains actual pop noise or the nasal
sound resulting in significant misclassification.

V. SUMMARY AND CONCLUSIONS

In this paper, we have used pop noise as an indicator of
the liveness of genuine speech and its ability to be used as
a potential acoustic cue for replay spoof attack detection in
the context of ASV. For VLD task, we proposed a novel
deep learning-based approach for the classification of genuine
vs. spoofed speech. Spectrogram features extracted from the
recently published POCO dataset were used as input to the
baseline and our proposed approach. It was observed that
our proposed approach provides significantly better results
indicating that CNN was able to learn the pop noise from
the utterances successfully. However, our approach is based
on the assumption that the distance between the speaker and
the recorder is large enough so that no significant amount
of pop noise can be captured. It can help in improving the
robustness and sophistication of current voice privacy and
spoof detection systems. In the future, it will be interesting to
analyze the performance of more sophisticated neural network
architectures for the pop noise detection task, which are
explored in the ASVSpoof PA (physical access) dataset, and
more baseline systems can be added for further research.
Furthermore, the performance can be analyzed on different
spectral feature sets for possible improvement in results.
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