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Abstract—Automatic age and height estimation of speakers
using acoustic features is widely used for the purpose of human-
computer interaction, forensics, etc. In this work, we study
end-to-end framework for age and height estimation. We first
propose a novel attention mechanism, named cross-attention.
Different from conventionally used attention, which calculates
context vector as the sum of attention only across timeframes, the
proposed approach introduces a modified context vector which
takes into account total attention across both time-frames and
encoder units. We further propose using triplet loss to enhance
the discriminative power of the encoder.

We evaluate the Root Mean Square Error (RMSE) of pro-
posed approaches on the TIMIT corpus. The proposed cross-
attention outperforms the conventional counterpart for both
age and height estimation while the triplet loss brings 8%
relative improvement for age estimation. We obtain RMSE of
6.92/6.42 cm for male/female height estimation and 7.20/7.10
years for male/female age estimation which outperforms all the
previous baselines achieving state-of-the-art performance for age
estimation on TIMIT dataset. By tracking the attention weights
allocated to different phones, we find that Vowel phones are most
important while Stop and Fricative phones are least important
for the estimation task.
Index Terms: Automatic height and age estimation, multi-
task learning, Attention, Long Short-Term Memory (LSTM),
Recurrent Neural Network (RNN), Triplet Loss.

I. INTRODUCTION

Speech is a unique physiological signal which not only con-
tains information about the linguistic content (such as words,
accent, language, etc.) but also conveys the para-linguistic
content (such as height, age, gender, emotions, etc.). This
helps us in estimating the physical parameters like height and
age of a speaker, which holds a wide variety of applications
in the real-world such as natural human-machine interaction,
speaker profiling, and forensics [1], [2]. Although speech
signals help us to estimate several speaker characteristics, we
limit ourselves to only age and height estimation of speakers
using speech signals for the purpose of this study.

A typical approach for speaker characteristic estimation is
to apply shallow learning techniques, such as linear regression
[3] or support vector machine [4], [5], [6], on top of utterance-
level representation such as i-vector [4], [6] or x-vector [7].
Such approaches are not end-to-end since the utterance-level
representation extractors are trained separately for speaker
recognition tasks which are not optimized for height and age
estimation.

Recently, end-to-end approach has been studied for age
and height estimation and produces better results than the
traditional approach [8]. In this work, we not only follow this
approach but also improve it by introducing several novelties.

Firstly, we propose a novel soft-attention mechanism for
speaker characteristic estimation task. As from our best knowl-
edge, there is not any work in the literature which studies the
use of attention for speaker age and height estimation. More
importantly, instead of performing attention across speech
frames, as done conventionally [9], [10], we perform atten-
tion across both speech frames and encoder units to obtain
two context vectors and then combine them to generate a
final context vector. We believe that the proposed attention,
denoted as cross attention, captures more information than
the conventional counterpart and hence could produce better
performance. Thus, our motivation to modify the convention-
ally used attention mechanism is to exploit the information
that may be captured across another dimension, i.e. across the
encoder units, in order to better estimate the characteristics of
a speaker.

Secondly, to enhance the discriminative power of the en-
coder, we propose using Triplet Loss [12], [13], [14] in
combination with Mean Squared Error Loss during training the
speaker profiling systems. Triplet loss enforces the encoder to
produce embeddings that have larger inter-class variation and
smaller intra-class variation, which results in better estimation.
Note that previous works used Triplet Loss with classification
problems while our task is regression task, thus, we need
to perform quantization on our data. We convert continuous
age and height labels into discrete classes so as to train the
embeddings to cluster around their own class and away from
other classes using triplet loss. Our primary motivation for
studying triplet loss is the fact that length of vocal tracts and
glottal-pulse rate (variance rate in voice quality affected by the
changes in the folds of the vocal cords during sound utterance)
vary with age and height [15], [16], [17]. For example, taller
people may be expected to have longer vocal tracts. Hence,
the vocal tract resonances present in the speech signal may be
expected to provide us information about a speaker’s height
or age. In order to capture the variation of vocal tract’s length
and structure with varied age and height, we try to obtain
embeddings from cross attention layer, after training with
triplet loss, so as to make the model capable of differentiating
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and clustering speech samples on the basis of age or height
classes.

Lastly, by analyzing attention weights across speech frames,
we find that that highest weights have been assigned to Vowel
phones while the lowest weights have been assigned to Stop
phones and some of the Fricative phones. Since speaker
characteristics such as height and age are correlated with the
length of speaker vocal tract and glottal-pulse rate [17], this
higher attention to vowel phones maybe attributed to the fact
that these phones involves significant vibrations of the vocal
tract folds, while utterance of stop phones do not involve such
vocal vibrations, instead, their production requires a complete
closure of the vocal tract which may be a reason for their
lower attention weights. Lesser attention for Fricative phones
may be justified because during their utterance, the vocal folds
do not vibrate and the glottis remains open with continuous
airflow which does not carry much information.

Apart from above contributions, we also study how passing
in gender information as a feature helps the model to better
estimate the height and age of a speaker.

We have organized the paper in the following format:
Section II discusses the related works from the litearture
followed by Section III which describes the dataset used for
our experiments. Section IV explains all the techniques that we
adopted for our work and Section V describes the experimental
setup that we followed and the consequent results that we
obtained with proper comparison with other works. Finally, in
Section VI, we conclude our work.

II. RELATED WORKS

Most of previous studies on height and age estimation tend
to use conventional approaches of applying shallow learning
techniques. For instance, Williams et al. [3] combine Gaussian
Mixture Models (GMM) and linear regression subsystems to
estimate the speaker height. Poorjam et al. [4] and Bahari
et al. [18] predict speaker height and age by applying least-
squares Support Vector Regression (SVR) on top of i-vector.
Mahmoodi et al. [5] use Support Vector Machines (SVMs)
while Bocklet et al. [6] use GMM supervectors with SVM
for age estimation task. Singh et al. [16] use a bag of words
representation generated from short-term cepstral features and
train a Random Forest regressor for age and height estima-
tion. The issue with the above mentioned approaches is that
none of them are end-to-end modeling techniques and thus,
are not specifically optimized to speaker physical parameter
estimation such has height and age.

More recently, Ghahremani et al. [7] propose an end-to-end
deep neural network (DNN) for age prediction while Kalluri
et al.[8] also attempt to jointly predict both height and age
of speaker using a unified end-to-end DNN model which is
initialized using a conventional system based on SVR trained
with Gaussian Mixture Model-Universal Background Model
(GMM-UBM) supervector features. Although, both of these
works employ an end-to-end architecture of their estimation
tasks, they rely more on conventional approaches.

The Attention mechanism was proposed by Bahdanau et al.
[19] who use this mechanism for the task of neural machine
translation. Shan et al. [10] use soft attention mechanism for
key-word spotting task. Apart from this, Attention has found
successful application in computer vision tasks as well such as
object recognition and image captioning [20], [21], [9]. Such
success of attention mechanism encouraged us to explore its
utility for our task as well.

Initially motivated by Weinberger et al. [12] in the context
of nearest-neighborhood classification, Triplet Loss was suc-
cessfully used by Schroff et al. [13] to train a convolutional
neural network (CNN) to learn an embedding for faces. Apart
from this, Ding et al. [22] also employ a triplet loss to get the
relative distance between images for person re-identification.

To our best knowledge, none of the past works in the
literature have used attention or triplet loss for speaker physical
parameter estimation. Our work is the first in the literature to
demonstrate the potential of attention mechanism and triplet
loss in tracking the relational dependency and importance of
different phones in estimating speaker height and age in an
utterance.

III. DATASET USED

We use the TIMIT dataset [23] for all our experiments done
in this study. TIMIT has a total of 6300 unique utterances.
There are 630 speakers of these utterances who are distributed
across 8 different dialect regions with each speaker speaking
ten different utterances. The gender distribution of the speakers
in male to female is 2:1. Moreover, the dataset also includes
time-aligned orthographic, phonetic and word transcriptions
which help us track phonetic attention.

The train-test split is given in the dataset i.e. 461 speakers
(326 male and 135 female) for training and validation, and 162
speakers (112 male and 56 female) for testing. The height of
speakers in the training data ranges from 145cm to 199cm and
in testing data, they range from 153cm to 204cm. Similarly,
the age of speakers ranges from 21 years to 76 years in
training data and 22 years to 68 years in test data. There is
no overlapping of speakers between test and training datasets.
Moreover, the duration of the utterances ranges from 1- 6s
with an average of about 2.5s.

IV. METHODOLOGIES

Our proposed framework for end-to-end speaker height and
age estimation is shown in Fig. 1 with the output shape of each
layer mentioned beneath the layer’s name. First, we obtain
Filter bank energies and pitch features from raw data and
preprocess them before passing as inputs to our models. Then
these input features are encoded by an LSTM network before
feeding them to an attention layer. Subsequently, the output of
attention layer, which is a vector, is transformed by a dense
layer to make age and height predictions.

For our final model, we use triplet loss (as shown in Fig.
2) on the embeddings obtained from the cross attention layers
after passing these embeddings through an L2 Normalization
process. It maybe noted that triplet loss is primarily used for
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classification tasks while our predictions are regressive, thus,
we first quantize the age and height labels. More specifically,
we convert continuous age and height labels into discrete
classes so as to train the embeddings to cluster around their
own class and away from other classes using triplet loss.

In following subsections, we describe these processes in
detail.

A. Data Preprocessing and Augmentation
Our input for each utterance is a two-dimensional matrix

consisting of T time-frames with each timeframe consisting
of 83 acoustic features (80 filter bank and 3 pitch features)
extracted from windows of 25ms with 10ms stride. We
apply Cepstral Mean and Variance Normalization (CMVN)
to these acoustic features. The resulting features are x =
[x1, x2, . . . , xT ] where each frame, xi, contains 83 features.

Since neural network models require a huge amount of data
to train properly, we use speed perturbation as an augmentation
step to obtain the audio signals at 1.1x and 0.9x speeds as well.
Apart from this, we use spectral augmentation (SpecAugment)
[24] to enhance the robustness of our model by randomly
masking strands from feature and time axes covering approx-
imately 15-20% of the training data.

B. LSTM RNN Encoding
Although deep neural networks (DNNs) have successfully

been used for numerous speech related tasks, they primarily
rely on stacking a few frames to account for the context of
the speech sample and this restricts any long-term dependency
and results in models with a much bigger number of free
parameters that need to be trained for the same data [25].
Recurrent neural networks (RNNs) are deep neural networks
(DNNs) that solve this problem as they have connections
which form a directed cycle and thus, can exhibit dynamic
temporal behavior. However, classical RNNs suffer from the
problem of vanishing gradient [26] which implies that the
gradient of the output error with respect to previous inputs
quickly vanishes as the time lags between relevant inputs.
Long Short-Term Memory (LSTM) recurrent neural network
replaces the hidden units in a RNN with memory blocks
allowing the LSTM to capture long term dependency storing
temporal state of the network so the output depends not only
on the input but also on previous inputs.

Since LSTM has shown to be efficient to capture long
temporal dependencies, we choose this architecture to encode
acoustic features for our study. Given a sequence of input
features x = [x1, x2, . . . , xT ], the LSTM network processes
it frame-by-frame to generate the sequence of hidden states
h = [h1, h2, . . . ., hT ] where each state hi has dimension of
nunits i.e. number of LSTM units.

Once the input features are encoded, the straightforward
approach is to take the final hidden state i.e. hT as the
utterance-level representation for height and age estimation.
However, in practice, LSTM tends to forget information when
operated on longer sequences. Therefore, we propose to use
attention mechanism to solve this problem as presented in
Section IV-C.

C. Attention Mechanism

The attention mechanism was primarily introduced to help
memorizing long sentences in neural machine translation [19].
It generates a context vector as weighted sum of hidden
states of the LSTM encoder over all timeframes. Since the
attention mechanism has access to the entire input sequence,
the problem of forgetting initial parts of the sequence is solved.
We use soft attention which is typically used in previous works
[9], [10]. It maybe noted that we do not employ the popular
self attention or multi-head attention as they are intra-sequence
attention (i.e. attention relating different positions of a single
sequence in order to compute a representation of the same
sequence) while our task is predictive in nature. Multi-head
attention is primarily used in tasks such as text summarization,
image description and machine reading [11].

First, a scalar score et is estimated for each LSTM hidden
state ht as:

et = va
τ tanh(Waht + b) (1)

where va, Wa and b are learnable parameters. Then, the
attention weights αt are obtained by applying a softmax
function on et, i.e.

αt =
exp(et)∑T
i=1 exp(ei)

(2)

Since we use a softmax function, αtε[0, 1] and
∑T
t=1 αt =

1. After this, we obtain a context vector, c, as the weighted
average across all timeframes of the LSTM outputs h:

c =

T∑
t=1

αtht (3)

As a result, c has the same dimension as hidden states ht
i.e. nunits

Instead of considering only c as the final context vector
(which is the conventional approach [9], [10]), we propose a
cross-attention approach in which we further perform attention
across all the nunits LSTM units to generate another context
vector, denoted as c∗, and concatenate them to obtain the final
context vector f .

f = [c, c∗] (4)

Note that c∗ has dimension of nframes, hence f has
dimension of (nframes + nunits). The mechanism perform-
ing attention across both speech frames and encoder units
to capture more information is expected to produce better
performance.

f is finally passed into a dense layer which makes the final
prediction.

D. Dense Layers

For each of height or age, the estimation made as:

ŷ = ReLU(vτ f) (5)
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Fig. 1. Proposed Cross-Attention + Multitask Learning Model for simultaneous age and height estimation

where v is a learnable vector of length same as f . We use
Mean Squared Error (MSE) as our loss function:

loss = 1
N [

∑N
i=1 (yi − ŷi)2] (6)

where yi and ŷi are the actual and predicted values respec-
tively for utterance i and N is the total number of utterances.

We also study multi-task learning which aims to estimate
height and age at the same time. The training loss for our
approach is calculated as:

Losstotal = a(lossheight) + (1− a)(lossage) (7)

where a is a hyper-parameter optimized on the validation set.

E. Triplet Loss

The intuition behind employing triplet loss [13] is to learn
a Euclidean embedding per utterance using our LSTM-Cross-
Attention framework as age and height variations have shown
to be significantly correlated to vocal tract length and glottal-
pulse rate which may be captured using discriminatively
training embeddings, obtained from the cross attention layer,
using triplet loss. The network is trained such that the squared
L2 distances in the embedding space directly correspond to
height/age class similarity i.e. utterances from the same class
have smaller distance while those from distinct classes have
larger distances. Here the classes are formed based on the
height/ age group of the speaker. For instance, as shown in
Figure 2(a), utterances having speaker with height 140cm to
145cm belong to class 0, 145cm to 150cm belong to class 1
and so on. Similarly, for age, utterances having speaker with
age in the range of 20 years to 25 years belong to class 0,
25 years to 30 years belong to class 1 and so on.

The embedding is represented by f(x). Here, we want to
ensure that an utterance xai (anchor) of a specific class is closer

to all other utterances xpi (positive) of the same person than it
is to any utterance xni (negative) belonging to a different class
[13]. Thus, the loss function to be minimized is as follows:

TL =
∑N

1 [||f(xai )− f(x
p
i )||22 − ||f(xai )− f(xni )||22] (8)

where utterance xai is anchor, xpi is positive of the same
class, xni is negative belonging to a different class.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The raw inputs for our model are speech samples, all of
which are sliced or padded to attain 8 seconds in length. These
raw inputs are used to obtain filter bank and pitch features
which are then preprocessed as discussed in IV-A. As a result,
each input sample for our model is of the shape: (800 × 83)
where, 800 represents the number of time-frames i.e. nframes
and 83 represents the number of features per frame i.e. nfeats.
When gender is passed in as a binary feature (i.e. 0 or 1) in
the input layer, its shape becomes (800 × 84). The LSTM
network consists of a single layer LSTM with 64 units. Thus,
the output of the LSTM layer is (800×64) where 64 represents
the number of lstm units i.e. nunits. We use a recurrent dropout
of 20% to avoid overfitting in the LSTM layer. This encoded
output of the LSTM is passed into the cross attention layer
which creates two context vectors: c (across time-frames) with
shape (64×1) and c∗ (across lstm units) with shape (800×1).
These two context vectors are concatenated to give us the final
context vector, f , of shape (864 × 1) where 864 represents
dimension of the cross attention context vector i.e. (nframes
+ nunits). And finally, this context vector is passed into the
Dense with single output for single-task learning (height or
age) and two outputs for multi-task learning (height and age).
We apply dropout regularization of 20% on the dense layer.
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Fig. 2. Proposed Cross Attention + Triplet Loss Model for Age/ Height Estimation

Fig. 1. presents the complete architecture for this model with
shapes of the output of each layer.

For extracting vector embeddings using triplet loss, we use
the output of the cross attention layer, followed by an L2
normalization to produce discriminative embeddings of size
864 i.e. (nframes + nunits) as shown in Fig. 2.

The final loss function for multi-task model is the weighted
sum of Mean Squared Error for height and age while the
final loss function for triplet loss model is the weighted
sum of Mean Squared Error and Triplet Loss for height/ age
estimation.

For the performance analysis of models, we use standard
metrics of Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE), which are defined as:

RMSE =

√∑N
i=1(yi − ŷi)2

N
; MAE =

∑N
i=1 |yi − ŷi|

N
(9)

where yi and ŷi are the actual and predicted values respec-
tively of i-th utterance and N is the total number of utterances.

For further details and for reproducing the our work, please
refer to our repository1.

B. Quantitative Results

In the subsequent experiments, we analyze the performance
of different models to show how incorporating techniques
discussed in the previous sections help obtain better estimation
models for height and age. First, we perform experiments
with models trained only for single task i.e. individual models

1Code Repository: https://github.com/manavkaushik/Speech-Analysis-for-
Speaker-Characteristics-Estimation/tree/master

for height and age. We compare the performance of single-
task models in three settings: model utilizing Conventional
Attention (attention only across time), model utilizing our
proposed Cross Attention (attention across both time and
lstm units) and model utilizing Cross Attention with Gender
as a binary input feature. Secondly, we compare the best
performing single-task model with model trained using multi-
task learning i.e. estimating height and age simultaneously
using a single model. Lastly, we show how triplet loss may
help to train and produce more discriminative embeddings
after the cross attention layer. We also compare our best results
with the previous results obtained in the literature to gain a
better idea of improvements. It is also important to note that
unlike most of the works in the literature in this area, we use a
single model for our estimation tasks for both male and female
instead of training two separate models for male and female.

In our first experiment, we compare models utilizing Con-
ventional Attention [9], [10], proposed Cross Attention and
Cross Attention with gender as a binary gender input. From
Table 1, it may be seen that our proposed cross-attention mech-
anism significantly outperforms the conventional attention [9],
[10] mechanism. Moreover, further enhancement in estimation
results is obtained when gender feature is passed in a binary
input to the cross attention model. It may be noted that all the
models shown in Table I are trained in a single-task setting
i.e. either age or height.

In our second experiment, we study the effect of training a
multi-task model which simultaneously estimates height and
age in a single model. As shown in Table II, multi-task learning
tends to enhance the generalization ability of the model and
thus, gives better results compared to single-task. RMSE of
6.95 and 6.44 cm and MAE of 5.26 and 5.15 cm for height
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TABLE I
COMPARISON FOR PROPOSED CROSS ATTENTION

Model Gender Height (cms) Age (yrs)

RMSE MAE RMSE MAE
Convent.
Attention

Male 7.12 5.56 8.08 5.84
Female 6.72 5.37 9.08 6.24

Cross
Attention

Male 7.04 5.45 7.96 5.60
Female 6.64 5.25 8.92 6.16

Cross Attn.
+ Gender

Male 6.98 5.30 7.90 5.56
Female 6.50 5.22 8.70 6.12

estimation for male and female respectively and RMSE of 7.81
and 8.60 years and MAE of 5.50 and 5.89 years for male and
female respectively are achieved using multi-task learning. It
may be noted that both the models use gender as a binary
input feature.

TABLE II
MULTI-TASK AND SINGLE-TASK PERFORMANCE

Model Gender Height (cms) Age (yrs)

RMSE MAE RMSE MAE
Cross Attn.
+ Gender

Male 6.98 5.30 7.90 5.56
Female 6.50 5.22 8.70 6.12

Multi-task
Learning

Male 6.95 5.26 7.81 5.50
Female 6.44 5.15 8.60 5.89

Lastly, we showcase how triplet loss may be employed to
train more disriminative embeddings for better estimation of
height and age. The triplet loss tends to effectively cluster
different classes of height and age and as a result makes
it easier for the final predictive dense layer to estimate the
actual height and age of a person, especially in case of female
speakers.

Although the results for height estimation show only slight
improvement, especially for male speakers, compared to pre-
vious method and are behind the current state-of-the-art, age
estimation results (for both male and female) attain the state-
of-the-art performance after incorporating triplet loss as a part
of the final loss function. From this difference in performance
gain in age estimation compared to height estimation, it may
be deduced that variation in age enables the model to produce
distinctive embeddings, especially for women’s age, while
variation in height is not being captured as distinctively in the
attention embeddings. This may be attributed to the fact that
human glottal-pulse rate and vocal tract structure significantly
vary with age [17]. Moreover, there are age-related vocal tract
dimensional changes and concomitant decreases in all the
vowel formant frequencies as people age [15] which may result
in enabling triplet loss to better discriminate when embeddings
are obtained on age classes. However, further investigation
may help to better substantiate this difference.

It may also be noted that for age estimation task, triplet loss
tends to enhance results for female characteristic estimation
more than male characteristics estimation. Even in case of
height estimation task, female height estimation shows more

significantly improvement in results (approximately 3.5% over
multi-task model) while the results for male height estimation
are only marginally better and may not always be considered
statistically significant. Exploring more prominent reasons for
these differences for age and height estimation is a topic of
further research in itself.

TABLE III
HEIGHT ESTIMATION WITH TRIPLET LOSS

Model Gender Height (cms)

RMSE MAE
Cross Attn. +
Triplet Loss

Male 6.92 5.20
Female 6.24 4.95

Singh et al. [16] Male 6.7 5.0
Female 6.1 5.0

Kalluri et al. [8] Male 6.85 -
Female 6.29 -

TABLE IV
AGE ESTIMATION WITH TRIPLET LOSS

Model Gender Age (years)

RMSE MAE
Cross Attn. +
Triplet Loss

Male 7.20 5.04
Female 7.10 5.02

Singh et al. [16] Male 7.8 5.5
Female 8.9 6.5

Kalluri et al. [8] Male 7.60 -
Female 8.63 -

Table IV shows that our model combining cross attention
and triplet loss achieves state-of-the-art performance for age
estimation on TIMIT test dataset with RMSE of 7.20 and
7.10 years and MAE of 5.04 and 5.02 years for male and
female speakers respectively giving us an overall improvement
of approximately 8% over other works in the literature. This
proves our hypothesis that triplet loss helps to train more
discriminative embeddings for enhanced estimation especially
for female age.

C. Phonetic Analysis

We study which phones are important for estimation task
by tracking the attention weights for each phone in the TIMIT
data. We note that TIMIT contains manual phone boundaries,
therefore, we can infer phone labels for each time-frame of an
utterance. We accumulate the weight across all utterances to
obtain an average weight for each phone.

There are a total of 60 different phones which have been
used in the TIMIT dataset, and a broader analysis of attention
weight distribution shows us that the highest attention weights
have been assigned to Vowel phones followed by Nasal phones
while the lowest attention is allocated to Stop phones. The
distribution of aggregated average attention weights across
different types of phones has been represented in Fig. 3 while
Fig. 4 visualizes the average attention allocated to the ten most
attended and ten least attended phones.
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From the figures, it is clear that Vowel phones such as ’ay’,
’aw’, ’aa’, ’ae’, ’ao’, ’eh’, ’ey’, etc. tend to be most attended
to while Stop phones such as ’d’, ’b’, ’p’, ’k’, etc, and some of
the Fricative phones such as ’s’, ’sh’, ’f’, etc. are least attended
to. Thus, it may be deduced that Vowel phones hold the highest
amount of linguistic and para-linguistic information which
makes them more important for the estimation task.

In order to understand the plausible reasons behind such
distribution, it is important to understand that during the
utterance of Stop phones, vocal folds do not vibrate, instead,
their production requires a complete closure of the vocal tract.
These phones are predominantly characterized by bursts of
air-pressure after a short pause which may be the reason for
them having the least attention weights. During the utterance
of Fricatives phones, the vocal folds do not vibrate and the
glottis remains open [16]. The airflow through the glottis is
continuous resulting in phonetic sounds like ’s’, ’sh’, ’f’, etc.
which carry little information regarding the vocal tract of a
person.

On the other hand, during the utterance of Vowel and Nasal
phones the vocal folds vibrate at a significant rate, resulting in
periodic complete or partial closure of the glottis. This results
in a pulsed airflow through the glottis, which gives these
sounds their periodic nature and enables them to carry more
information regarding the vocal tract of a person for better age
and height estimation. Moreover, there are age-related vocal
tract dimensional changes and concomitant decreases in all
the vowel formant frequencies as people age [15] which may
result in enabling the attention models to predict age more
accurately, especially while attending more to vowel phones.

Fig. 3. Attention distribution among different types of phones

Fig. 4. 10 Highest & 10 Least Attended Phones respectively

VI. CONCLUSIONS

We have proposed a cross-attention approach for the task
of joint speaker height and age estimation. The proposed
approach not only performed soft-attention across time-frames
but also performed soft-attention across hidden units which
produces more informative context vector. Experimental re-
sults on TIMIT data show that our proposed approach outper-
forms conventional attention mechanism and gave consistently
better results when tested in multi-task setting by gaining bet-
ter generalization for effective estimation. Furthermore, using
vector embeddings trained from triplet loss further enhances
the age and height estimation task and achieves state-of-the-art
performance for age estimation on TIMIT dataset which may
be attributed to the fact that vocal tract length and glottal-pulse
rate vary with variation with age and height of a person, thus,
making it possible to for triplet loss to capture these variations
in vocal tract by discriminating amongst the quantized classes
of age. However, we acknowledge that further research and
investigation may be required to consolidate reasons for a
difference in improvement of age estimation and improvement
of height estimation and also for variations in improvement in
male and female counterpart after employing triplet loss.

Finally, by tracking attention weights across time-frames,
we found that Vowel phones are most important while Stop
phones and Fricatives have been least attended by the attention
model for speaker physical characteristics estimation.

At the same time, we do note that our height performance
results with triplet loss are borderline in terms of the statistical
significance and thus, are a matter of further investigation.
Moreover, there is further scope of improvement, especially
for height estimation, which may be brought about by utilizing
age and height information that is available through several
large public corpora. We plan to further investigate in this area
by using techniques such as unsupervised and self-supervised
learning.
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