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Abstract—We propose an emotion-controllable text-to-speech
(TTS) model that allows both emotion-level (i.e., coarse-grained)
and prosody-factor-level (i.e., fine-grained) control of speech
using both emotion soft labels and prosody factors. Conventional
methods control speech only by using emotion labels, emotion
strength, or prosody factors (e.g., mean and standard deviation
of pitch), which cannot express diverse emotions. Our model is
based on a speech emotion recognizer (SER) and a prosody factor
generator (PFG) model that encodes utterance-level prosody
factors into emotion soft labels and decodes encoded emotion
soft labels back into utterance-level prosody factors. Our model
enables emotion labels and prosody factors to control synthetic
speech emotion. Experiment results show that the emotion-
perceptual accuracy of synthetic speech reached 66 %, and the
mean opinion score for the naturalness of emotionally controlled
synthetic speech was 3.9, which is comparable to a conventional
method that only uses prosody factors.

I. INTRODUCTION

Text-to-speech (TTS) technology aims to generate human-
like speech that includes both linguistic and para-linguistic
information. The fast development of deep learning models
has already made synthetic speech very understandable from
a linguistic perspective [1]. The next challenge for TTS
models is reproducing and controlling a diverse variety of
para-linguistic information (e.g., emotions) in natural speech.
Therefore, we aim to develop emotion-controllable TTS that
can express diverse emotions.

Diverse speech emotions are mainly produced in two dif-
ferent variations: inter-category and intra-category. The inter-
category variation intuitively produces diverse speech emo-
tions because different speech emotions are expressed in
completely different ways. Corresponding typical approaches,
called coarse-grained emotion control approaches, reproduces
the inter-category variation in a speech by conditioning TTS
models with different emotion labels [2]–[4]. These emotion
labels can be assigned in a supervised [2] or an unsuper-
vised [4], [5] manner. Meanwhile, the intra-category variation
also produces diverse speech emotions considerably. Corre-
sponding typical approaches, called ”fine-grained” emotion
control approaches, condition TTS models using emotion
strength or weight [6]–[8]. These TTS models can furthermore
control emotion intensity in a speech by conditioning using
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Fig. 1. Proposed emotion-controllable TTS that enables both coarse-grained
and fine-grained emotion control.

emotion strength under given emotion labels. However, these
models cannot control how emotion intensity is represented in
speech. Prosody factors (e.g., energy or pitch) that represented
emotion intensity cannot be controlled by these fine-grained
emotion control models. The prosody factors vary from ut-
terance to utterance even when the emotion strength is the
same. For example, anger strength 0.90 can be expressed in
different prosody factors, such as a −22.0 dB energy mean or
a 10 dB-Hz pitch range. That is, current fine-grained emotion
controlling models that reproduce the intra-category variation
by emotion strength are not ”fine” enough. Another method
of representing an intra-category variation in speech directly
conditions a TTS model using prosody factors [9], but it cannot
control emotion.

To summarize, the conventional approaches cannot express
both inter-category and intra-category variations of speech
emotion at a coarse-grained (i.e., emotion-level) and a fine-
grained level (i.e., prosody factors) at the same time.

We propose an emotion-controllable TTS model that en-

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

794978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021



ables both coarse-grained and fine-grained emotion control, as
shown in Fig. 1. To achieve coarse-grained emotion control,
we introduce a speech emotion recognizer (SER) that estimates
the speech emotion soft labels used for coarse-grained emotion
control from the utterance-level prosody factors. To achieve
fine-grained emotion control, we also introduce a prosody fac-
tor generator (PFG) that estimates the utterance-level prosody
factors used for fine-grained emotion control from the esti-
mated speech emotion soft labels. The proposed TTS model
based on Tacotron2 [1] is conditioned by the emotion soft
labels and the estimated prosody factors. This design enables
our method to provide coarse-grained control by using emotion
soft labels and fine-grained control by using both emotion soft
labels and prosody factors. The experiment results show that
our proposed method can achieve coarse-grained control of
speech emotion with 66 % accuracy and linearly fine-grained
control by proposed prosody factors without deterioration of
audio quality compared with the conventional method.

In short, this paper’s contributions are summarized as fol-
lows:

1) We proposed a paired SER–PFG model that estimates
emotion soft labels from utterance-level prosody factors
and the utterance-level prosody factors from the emotion
soft labels, respectively.

2) We proposed an emotional TTS model based on the
paired SER–PFG model that can produce coarse-grained
and fine-grained control of speech emotion.

II. RELATED WORK

The emotion information in the emotional TTS model
can be represented in various ways, such as emotion labels,
prosody factors, and implicitly hidden states. The approaches
to representing emotion as hidden states include a multi-head
attention model [10], an unconditioned model [11], and a
variational autoencoder model [12] that embed emotion in a
hidden state vector trained in an unsupervised way. However,
such an unsupervised learned hidden state does not correspond
to human perceptual emotions, which leads to an inability
to control the synthetic speech using a specific emotion.
The approaches to representing emotion as emotion labels
include assigning a one-hot emotion label (i.e., using a labeled
dataset) [2], elaborately selecting the centroid weight of style
tokens trained by a labeled emotional speech dataset as hard
emotion label [3], and using emotion soft labels obtained by
an emotion interpolation approach [6]. However, none of them
can control speech emotion at a fine-grained level under given
emotion labels.

Research such as [9] could properly control speech at a fine-
grained level by adjusting five prosody factors obtained from
the Long short-term memory (LSTM) [13] based prosody en-
coder, and FastSpeech2 [14] also controls speech by predicted
pitch and energy. However, neither can control the coarse-
grained emotion of synthetic speech.

To control speech emotion at both coarse-grained and
fine-grained levels, research [7] conditioned speech using an
emotion label and a continuous emotion-strength scalar value.

Another research [8] conditioned speech using phoneme-level
emotion strength instead of sentence-level emotion strength
for better controlling ability. However, fine-grained emotion
control is defined quite differently in those papers from our
definition. To be clear, the fine-grained emotion control men-
tioned in those papers denotes to control speech by sentence-
level or phoneme-level emotion strength, however, it means to
control speech by prosody factors in our paper. Considering
emotion strength is formed by prosody factors, we believe our
”fine-grained” controls can control speech more finely.

We propose a model that enables us to control the speech
emotion at the coarse-grained level using emotion soft labels
and at the fine-grained level using prosody factors. For coarse-
grained control, we utilize an SER model to predict emotion
soft labels using utterance-level prosody factors and textual
features. Unlike the latest SER models fed with phoneme-level
prosody factors [15], we use utterance-level prosody factors
because they can predict utterance-specific emotion soft labels
more easily. For fine-grained control, we use a similar (deep
neural network) DNN architecture to estimate utterance-level
prosody factors from emotion soft labels.

III. PROPOSED METHOD

We propose an emotion-controllable TTS model based on
SER and PFG models.

A. SER and PFG Models

The SER and PFG models are used to achieve coarse-
grained and fine-grained emotion speech control, respectively.
In training, the SER model estimates emotion soft labels for
coarse-grained controlling from textual and prosody factors
of input text and speech, and the PFG model estimates the
prosody factors for fine-grained controlling from the emotion
soft labels.

To extract prosody factors, we use the means and standard
deviations of pitch, energy, and harmonics of speech as the
prosody factors, which are originally proposed in [16] and
believed to be strongly related to speech emotion. In addition
to these six features, we also introduce ranges of energy
and pitch for better prosody controlling. In summary, we
extracted eight prosody factors. To achieve better performance
of the SER model, we use term frequency-inverse document
frequency (TF-IDF) [17] as the textual features because it
improves the performance of multi-modal speech emotion
classification [16].

1) Speech Emotion Recognizer (SER): We construct a
DNN-based SER model that predicts an emotion posterior
probability (i.e., emotion soft labels) from given emotional
features that include textual and prosodic information. The
predicted emotion soft labels can be used as features for
achieving emotion-level control of synthetic speech in the
emotional TTS model.

2) prosody factor Generator (PFG): We also construct a
DNN-based PFG model that estimates prosody factors from
the soft labels, obtained from the SER model. Compared with
the conventional approaches [9] that generate prosody factors

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

795



Text Mel-
spectrogram

Audio

Emotion
soft-label

Prosodic
feature😠

😐

🔊

🎵

🔊

🎵

MSE loss

Prosodic
feature

extraction
Emotion

recognizer
Prosodic
feature

generator

Encoder DecoderAttention

Training

Synthesis with fine-grained emotion control

Text Mel-
spectrogram

😠

😐

🔊

🎵
Prosodic
feature

generator

Encoder DecoderAttention

👈Control 
by soft label 👈 Control

by prosodic feature

Fig. 2. The overall architecture of the proposed emotional TTS based on SER
and PFG.

from the text input, our PFG model generates utterance-level
prosody factors from emotion soft labels, instead of commonly
used hard labels.

First, we argue that the utterance-level prosody factors in
emotional TTS are mainly influenced by emotion rather than
text. The stronger the emotion is, the more prosody factors can
be influenced by emotion. Therefore, we generate utterance-
level prosody factors from emotion.

Second, we assume that the soft labels representation of
emotion can introduce more emotion diversity into synthetic
speech compared with the hard-label representation.

3) Objective Function of Joint Pretraining: The SER and
PFG models are jointly pre-trained using a corpus consisting
of text, emotional speech, and corresponding emotion labels.
The objective function to be minimized in training is

LEMO = LSER + LPFG, (1)

where the first term LSER is a cross-entropy loss between
the estimated and reference emotion labels for training the
SER model. The second term LPFG is the mean squared error
(MSE) between the estimated and reference prosody factors
for training the PFG model.

B. Emotion-controllable TTS Model

Our emotion-controllable TTS model embeds the SER and
PFG models into a Tacotron2 network as prosody factor
controllers, as shown in Fig. 2.

1) Model Structure: The backbone TTS model is inspired
by Tacotron2 [1], which consists of the encoder, a decoder,
a prenet, and a postnet model. The proposed SER and PFG
models are embedded as decoder input in the Tacotron2 model,
shown in Fig. 2. In detail, the prosody factors, obtained from
the PFG model, are concatenated with the output of the
Tacotron2 attention and then fed to the Tacotron2 decoder.

2) Training: The emotion-controllable TTS model was
trained using an emotional speech corpus without emotion
labels. The top of Fig. 2 shows this training. Because typical
corpora do not have an emotion label, we follow a previous
work [5] and introduce an unsupervised way using the pre-
trained SER model. We fed the textual features and prosody
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Fig. 3. The architecture of SER and PFG. “MLP” in this figure denotes multi-
layer perceptron.

factors of the training data into the pre-trained SER model and
obtain emotion soft labels. The prosody factors are estimated
from the emotion soft label and used to condition the TTS
model. The objective function LTTS to be minimized for
training is

LTTS = LTacotron2 + LPFG, (2)

where LTacotron2 is the objective function described in the
Tacotron2’s paper [1]. The SER model was frozen during the
TTS model training because we used an unlabeled emotional
speech dataset,

3) Inference: In the synthesis process, we had two options
for controlling the emotion of synthetic speech: controlling
by the emotion soft labels or prosody factors. The bottom
of Fig. 2 shows this inference. For the former option, the
emotion soft labels are manually assigned, and then prosody
factors are predicted by the PFG model and fed into the TTS
model. For the latter option, the estimated prosody factors are
fine-adjusted manually by assigned prosody factor biases. The
fine-adjusted features are then fed into the Tacotron2 decoder
to estimate mel-spectrogram, which are used to generate
waveforms by applying the Parallel WaveGAN model [18].

IV. EXPERIMENT EVALUATION

We conducted two experiments: 1) coarse-grained emotion
control by emotion labels, and 2) fine-grained emotion control
by prosody factors under given emotion labels.

A. Experimental Setup

1) Data: We used the IEMOCAP corpus [19] to pre-train
the SER and PFG models and the Blizzard2013 corpus [20]
to train the TTS model. The IEMOCAP corpus has 12 hours
of transcripts and speech recorded from emotional dialogues
acted or improvised by five men and five women. We randomly
split the corpus into 80 % for training and 20 % for testing
the SER and PFG models. The Blizzard2013 corpus con-
tains unlabelled emotional speech uttered by a single English
speaker. Because most of the speech in the Blizzard2013
corpus has a narrative (e.g., close to neutral) style, we only
filtered out only emotional speech part for training and testing
using the following approach. First, we selected character-
speaking sentences surrounded by single or double quotation
marks. Next, we filtered out weak-emotional speeches with
a score above 0.8 estimated by the SER model in each
category. Finally, we had three human annotators listen to 100
randomized speeches in each emotional category of filtered
data and removed perceptually non-emotional categories. As
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a result, we obtained 28 hours of neutral and angry speech
and split it into 80 % for training and 20 % for testing the
TTS model.

2) Model Parameter and Features: The SER model con-
sisted of 3× 512 multi-layer perceptrons and the PFG model
consisted of 3 × 512 multi-layer perceptrons, as shown in
Fig. 3. The TTS model was based on Tacotron2 [1], which
consists of the encoder networks that include 3-layer 1-
dimensional convolutions with 512 filters and a 5×1 window
size, decoder networks that include a 2-layer LSTM with 1,024
hidden states, a prenet that includes 2-layer fully connected
networks with 256 hidden units, and a postnet that includes 5-
layer 1-dimensional convolutional networks with 512 filters.
The SER model predicted 2-dimensional emotion posterior
probability from a joint vector of 2030-dimensional textual
features and 8-dimensional prosody factors.

As in the TTS model, Mel-spectrograms were computed
through a short-time Fourier transform (STFT) using a 46
ms frame size, an 11.5 ms frame hop, and a Hann window
function. And the mel scale was transformed using an 80-
channel mel filterbank spanning from 80 Hz to 7,600 Hz.

The Parallel WaveGAN model is pre-trained on the
LJSpeech dataset [21] and we utilized it as a neural vocoder.
The pre-trained model is accessible online1.

Textual features were extracted by the TF-IDF [17] ap-
proach for each word in the Blizzard2013 corpus, and prosody
factors were extracted as the mean and standard deviation
(std.) of pitch, energy, and harmonics [16] and also the range
of energy and pitch based on the utterance-level. The prosody
factors were normalized to [0, 1], and Table I lists the range of
prosody factors, and their min and max values corresponding
to 0 and 1 of normalized features, respectively. The PFG model
predicted 8-dimensional prosody factors from 2-dimensional
emotion posterior probability.

TABLE I
RANGE AND UNIT OF PROSODIC FEATURES IN FILTERED BLIZZARD2013

DATASET

Unit Min Max
Energy mean dB −28.5 −22.0
Energy std. dB −6.9 13.1

Energy range dB 37.6 54.0
Harmonic mean dB −0.01 0
Harmonic std. dB 52.1 95.3

Pitch mean dB-Hz 44.4 47.0
Pitch std. dB-Hz 1.0 2.2

Pitch range dB-Hz 2.4 10.1

The SER and PFG models were firstly pre-trained with the
IEMOCAP data before being used as the initial parameters
in the following TTS model trained on the Blizzard2013
corpus. The parameters of the SER model and the PFG model
were frozen and fine-tuned, respectively during the training.
We used the Adam optimizer [22] and the 0.001 learning
rate started decaying exponentially to 0.00001 after 50,000
iterations.

1The pre-trained Parallel WaveGAN model:model link

B. Performance of SER and PFG Models
We evaluated the performance of the SER and PFG models

pre-trained with the IEMOCAP dataset before evaluating our
TTS model. We evaluated the accuracy of the SER model
using both IEMOCAP and Blizzard2013 (Angry/Neutral) test
data, as shown in Table II. The results indicate that the
pre-trained SER model showed a fair performance using the
Blizzard2013 dataset(accuracy = 0.71), although there was
inevitably a problem with domain adaption.

TABLE II
SER MODEL PERFORMANCE

Evaluation data Accuracy
IEMOCAP test data (2 emos) 0.90

Blizzard2013 test data (2 emos) 0.71

We evaluated the PFG model using Blizzard2013 (An-
gry/Neutral) test data based on the MSE between origin and
estimated prosody factors from the pre-trained PFG model.
The results in Table III indicate that the PFG model can
accurately estimate prosody factors with a low MSE.

TABLE III
PSD MODEL PERFORMANCE BY MSE (MEAN SQUARED ERROR)

Prosody factor MSE
Energy mean 0.03
Energy std. 0.008

Energy range 0.02
harmonic mean 0.03
harmonic std. 0.006
Pitch mean 0.01
Pitch std. 0.02

Pitch range 0.01

C. Control by Emotion soft labels
We conducted a listening test for emotion distinctness to

evaluate coarse-grained emotion control using emotion labels.
We generated 130 angry and 130 neutral synthetic speech from
randomly selected 130 test sentences from the Blizzard2013
corpus. Each of the 50 listeners evaluated 20 angry–neutral
paired synthetic speech and selected an angry speech for each.
The test was done in our evaluation system on the Amazon
Mechanical Turk [23].

The results show that the accuracy of perceptual emo-
tion reached 66 %. Although our results are inferior to the
more than 80 % accuracy of the conventional method [3],
the synthetic speech emotion achieved using our method is
still distinguishable using only weak-emotional and unlabeled
speech data.

D. Fine-grained Control by Emotion Label and prosody fac-
tors

We conducted objective and subjective evaluations to eval-
uate fine-grained emotion control by prosody factors. The
objective evaluation calculated the correlation coefficients
between the controlled and observed prosody factors. The
subjective evaluation investigated whether the fine-grained
control degrades the speech naturalness or not.
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Fig. 4. Relation between controlling and observed prosody features (angry).
The x-axis is prosody factor bias ranged [−0.3, 0.3] by 0.1 step size and the
y-axis is the observed value of each of the eight prosody factors. The dashed
lines are linear approximations of the observed prosody features.

1) Objective Evaluation: In the objective evaluation, we
generated 1,120 audio files multiplied by ten randomly se-
lected test sentences, two emotions, the eight prosody factors
mentioned in Section 3.1, and seven prosody factor biases
ranged [−0.3, 0.3] by 0.1 step size. Under the given neutral
or angry labels, we biased 8-dimensional prosody factors
that were estimated from the emotion label for fine-grained
controlling. We extracted the prosody factors of synthetic
speech and evaluated the relation between the controlling bias
and observed prosody factors.

TABLE IV
PEARSON CORRELATION COEFFICIENT FOR CONTOLLED AND OBSERVED
PROSODY FACTORS. UNDERLINED PROSODY FACTORS SHOW MEDIUM OR

STRONG CORRELATION (PEARSON CORRELATION COEFFICIENT > 0.3 AND
p-VALUE < 0.05)

Prosody Pearson p-value
Energy mean 0.56 3.9e-07
Energy std. 0.27 0.56

Energy range 0.29 0.01
Harmonic mean -0.02 0.81
Harmonic std. 0.35 0.002

Pitch mean 0.58 9.2e-08
Pitch std. 0.41 0.007

Pitch range 0.27 0.5

Figures 4 and 5show the relation, where the labels 0.0 and
±0.3 of the horizontal axis indicate no modifications or max
biases on the negative and positive sides, respectively. Table IV
lists their Pearson correlation coefficient (PCC) for quantitative
evaluation. the results show that 1) pitch-related features (i.e.,
pitch mean, std., and range), energy mean, and harmonics std.
show a medium or strong linear relationship between the con-
trolled bias and the observed value (PCC > 0.3 and p-value <
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0.05), and 2) energy std. (0.27), energy range (0.29), and pitch
range (0.27) show a linear relationship at a nearly medium
level between the controlled bias and the observed value, and
3) the harmonics std. is not controlled at all. Therefore, we
can say that our system can accurately control most of the
proposed prosody factors in the synthesized emotional speech.
Compared with the conventional research [9] that shows a
better linear relation with only control prosody factors, we
argue that our model only partly achieved linear controllability
for gaining emotion controlling ability. We will furthermore
investigate how to improve the performance in future work2

2) Subjective Evaluation: To evaluate the quality of syn-
thetic speech by comparing our method with a conventional
method, we synthesized 51 types of speech audio using our
method with two emotion labels (neutral and angry) and the
conventional prosody factor controlling method [9] for each of
200 listeners from eight prosody factors, three biases (−0.3,
0, 0.3), and ten randomly selected test sentences from the
blizzard2013 test dataset. We carried out mean opinion score
(MOS) tests on the naturalness of emotion-controlled synthetic
speech. Figure 6 shows the encouraging result that despite the
controllability on both the emotional-level and the prosodic-
feature level, our model shows equal performance (MOS
= 3.9) synthetic speech quality equal with the conventional
method (which can only control speech in prosody factors).

V. CONCLUSION

We proposed a method of achieving coarse-grained and
fine-grained control of an emotional text-to-speech (TTS)
model by using emotion soft labels and prosody factors. Our

2sample audio:sample audio link
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Fig. 6. MOS measured over eight controlling prosody factors.

method is based on an SER, which estimates the emotion
posterior possibility from emotional features, and a PFG,
which estimates prosody factors from the emotion posterior
possibility. The estimated prosody factors can be used for
the fine-grained control by assigned biases. Our experiment
showed that our model performed as well as a conventional
approach that cannot control the emotion of the synthetic
speech in speech quality tests. However, our method was
slightly inferior regarding emotion-perceptual accuracy and the
objective measures of the controlled and observed prosody
factors. The result is still encouraging considering we only
used a weak emotional training dataset.
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