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Abstract—In recent years, more and more zero-shot voice
conversion algorithms have been proposed. However, tasks about
adaptation and disentanglement of speaker and content informa-
tion in speech are still challenging. In this paper, we propose a
novel zero-shot voice conversion method with channel attention
(CA) under the framework of variational auto-encoder. In detail,
the model consists of content encoder, speaker encoder and
decoder. CA plays two different roles in our method. In content
encoder, CA with channel width constraint forms a learnable
bottleneck to reduce speaker information and retain content
information simultaneously. In decoder, CA is used to combine
speaker information and content information. Objective and sub-
jective evaluations show that the proposed method can perform
voice conversion well and generate high quality converted speech.

I. INTRODUCTION

Voice conversion (VC) is to convert a source speaker’s voice
to a target speaker’s voice without changing the linguistic con-
tent [1]. From the perspective of application, voice conversion
is widely applied in many fields such as entertainment, creative
industry, and spoofed speech generation [2].

In terms of learning methods, previous works of voice
conversion can be roughly divided into supervised and un-
supervised. Supervised voice conversion such as [3, 4] can
achieve good performance, but has high requirements on
data. Further speaking, it requires paired data or frame-level
alignment between the source and the target speakers during
training. In addition, if there is a large gap between the source
and target domains, incorrect alignment may harm conver-
sion performance. That’s the reason why supervised voice
conversion can’t be widely used. On the contrary, parallel
data is unnecessary in unsupervised voice conversion [5, 6].
Therefore, it becomes more easier to construct dataset for
unsupervised voice conversion. Because unsupervised voice
conversion has more relaxed requirements on data, it has
attracted more and more attention in the community of voice
conversion in recent years. In this work, we mainly focus on
unsupervised voice conversion.

There are two kinds of unsupervised voice conversion: seen
and unseen speaker. For the seen speaker voice conversion,
although some previous proposed algorithms can only convert
for seen speakers, such as StarGAN-VC [7] and CycleGAN-
VC [8], more and more zero-shot voice conversion algorithms
have been proposed for unseen speaker voice conversion
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recently [9, 10]. Generally speaking, voice signal often carries
static information and dynamic information. Static informa-
tion, such as the identity of the speaker and the environment
of the voice recording device, is stable and unchanging in
a segment of voice. However, dynamic information such as
content and tone may change in each frame of speech. For
voice conversion, it is required to change the static information
while keep dynamic information unchanged. Therefore, the
methods for the unseen speaker voice conversion usually
focuses on how to disentangle the static information (speaker
information) and dynamic information (content information).
For example, vector quantization (VQ)-VC [11] was proposed
to separate speaker and content information through discrete
codes. And Lee et al. used the speaker identity classifier as
discriminator against the content encoder to reduce the speaker
identity information in content encoder [9]. AUTOVC [10]
carefully designed proper width of bottleneck layer so that
only content information is retained in content encoder. Chou
et al. proposed a zero-shot voice conversion with instance
normalization (AdaIN-VC) [12], which removes speaker in-
formation by instance normalization (IN) in the speaker en-
coder and adapts content representation with adaptive instance
normalization (AdaIN) [13].

Although many effective voice conversion methods have
been proposed, how to accurately separate speaker and content
representations in speech and adapt voice to target speaker
domain are still challenging tasks. When removing speaker
information, content information may be removed at the same
time. And the effect of conversion may be unstable. In this
paper, we propose a novel channel attention (CA) based
method for zero-shot voice conversion (CA-VC). As far as we
know, channel attention has not been used in voice conversion
task.

CA has two different tasks in our method. On one hand, we
use CA with channel width constraint, which forms a learnable
bottleneck, to reduce speaker information and retain content
information in content encoder. On the other hand, inspired by
MCCNet [14], CA is used for adapt voice to target speaker
domain in decoder. In addition, the speaker encoder is followed
by an auxiliary classifier that assists the speaker encoder to
focus on speaker information. Because we do not use one-
hot embedding for speakers and unseen speaker embedding
can be extracted by the speaker encoder, our model has the
potential to perform zero-shot voice conversion. Objective and
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Fig. 1. Channel attention module for 2d convolution. Left set of square means
input feature map, upper set of square means CA and right set of square means
output feature map.

⊗
denotes element-wise product, C is the number of

channel, meanwhile, H and W are spatial dimensions.

subjective evaluations conducted on CSTR VCTK corpus [15]
show that our model can perform zero-shot voice conversion
well and generate speech similar to the target speaker.

Contributions of our proposed method can be summarized
as follows:

• We propose to use CA for disentangling speaker identity
information and content information.

• We propose to use CA to adapt voice to target speaker
domain.

The rest of the paper is organized as follows. Section 2
simply introduces related works. Section 3 introduces the
proposed CA-VC in detail. Section 4 gives the experimental
results and the corresponding analysis. Finally, the paper is
concluded.

II. RELATED WORKS

In this section, we introduce related works of proposed
method.

A. Channel attention

In the field of image classification, SENet [16] generates
attention to the feature map in the channel dimension. The
CA with size of C × 1 × 1 and the feature map with size
of C ×H ×W are made element-wise product as shown in
Fig. 1 where C is the number of channel, meanwhile, H and
W are spatial dimensions. Different channels are weighted
respectively and important feature channels are labeled by
weighting, so that the model focuses on important feature parts
and forms attention. Similarly, CBAM [17] also uses similar
CA to generate refined features. At the same time, CA is used
for arbitrary video style transfer in MCCNet [14], and the
method is available for Conv1d layers by generating channel
attention of C × 1 dimension.

Otherwise, the attention mechanism can be divided into soft
attention and hard attention. Hard attention is equivalent to
mask, and its characteristic is not differentiable. Soft attention
is differentiable, it can calculate the gradient, and use the
gradient back propagation to update and learn. Therefore, the
application of soft attention in deep learning is more common.

B. AUTOVC

Qian et al.[10] propose a new style transfer scheme, which
involves only a vanilla auto-encoder with a carefully designed
bottleneck. Similar to CVAE, the proposed scheme only needs

Fig. 2. The training phase of AUTOVC.

to be trained on the self-reconstruction loss, but it has a dis-
tribution matching property similar to GAN’s. This is because
the correctly-designed bottleneck will learn to remove the style
information from the source and get the style-independent
code by introducing carefully-tuned dimension reduction and
temporal downsampling to constrain the information flow as
shown in Fig. 2. This simple scheme leads to a significant
performance gain. AUTOVC achieves superior performance
on the traditional many-to-many conversion task, where all
the speakers are seen in the training set, and perform zero-
shot voice conversion with decent performance.

C. Variational auto-encoder

Variational auto-encoder (VAE) [18] with speaker encoder,
content encoder and decoder is a common choice for voice
conversion [12]. Let x be the input speech segment and χ be
the collection of training data. Let Ec be the content encoder,
Ei be the speaker identity encoder and D be the decoder. In
unsupervised learning, the reconstruction method is usually
used for training. The reconstructed loss function is given as
below.

Lrec(θEc
, θEi

, θD) = Exεχ
[
‖D(Ec(x), Ei(x))− x‖11

]
(1)

In order to make the encoder output code obey the normal
distribution, we use Kullback-Leibler (KL) loss to constrain
the model. Let µ and σ be the mean and standard deviation
of content code generated by Ec. The definition of KL loss is
as

LKL(θEi
) = 0.5× E

[
eσ + µ2 − 1− σ

]
(2)

where e is natural constant. The objective function of VAE
is defined as the weighted sum of the reconstruction loss
function and KL loss, and the model is trained to minimize the
objective function. The objective function of VAE is defined
as follows, where λrec and λKL are the weights of Lrec and
LKL, respectively.

LV AE = λrecLrec + λKLLKL (3)

III. PROPOSED APPROACH

In this section, the proposed CA-VC will be introduced
in detail. Our work is based on the VAE framework. Fig. 3
shows the architecture of CA-VC during training where AP,
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Fig. 3. The training phase of CA-VC where AP, LB and CA represent
the modules of average pooling, learnable bottleneck and channel attention,
respectively.

Fig. 4. Channel attention module for 1d convolution.
⊗

denotes element-wise
product, C is the number of channel, meanwhile, T is time dimension.

LB and CA represent the modules of average pooling, learn-
able bottleneck and channel attention module, respectively. In
addition, x and x̂ represent input feature and corresponding
reconstructed feature, respectively. There are three modules in
CA-VC, which are speaker encoder Es, content encoder Ec
and decoder D. Meanwhile, Es is followed by an auxiliary
classifier Ca for assisting the speaker encoder to focus on
speaker information. They are trained at the same time without
using pre-trained model. And we use Conv1d layers in en-
coders and decoder. Otherwise, channel attention for Conv1d
layer is used and the process is shown in Fig. 4. Similar to
channel attention for Conv2d, we generate attention to the
feature map in the channel dimension. The CA with size of
C × 1 and the feature map with size of C × T dimension
are made element-wise product. C is channel dimension and
T is time dimension. During conversion, utterance of source
speaker and utterance of target speaker are used as input of
content encoder and speaker encoder, respectively. Ca will be
removed if training is done. Next, we will introduce proposed
approach and loss function.

A. Speaker encoder

The architecture of speaker encoder Es is shown in Fig. 5.
We use convbank layer firstly to extract feature at different
time scales from the input. Afterwards, a set of residual con-
volution blocks is used for extracting feature. Because speaker
identity information is stable in a utterance, we perform global
average pooling (AP) over time dimension, try to enforce the
speaker encoder to learn global information only and remove
dynamic information. Then the global information gets into a
block of residual fully connection layers to generate zs. Due
to the role of average pooling, we assume that zs only carries
global information, including speaker information.

To assist speaker encoder focus on speaker information,

Fig. 5. The architecture of speaker encoder, where convolution layers are
described as ”Conv-output channel number-kernel size-stride” and dense
layers are described as ”Dense-output channel number”.

Fig. 6. The architecture of content encoder.

we use a dense layer as auxiliary classifier Ca which will
be removed after training. Ca takes zs as input and predicts
corresponding speaker. And the loss of classification is defined
as follows.

Lclass = Exεχ [−log(Ca(c|zs))] (4)

And Lclass is the objective function with respect to Ca. It
is also a part of objective function with respect to CA-VC
model. With the constraints of the classification loss function,
Es tends to learn speaker identity information, hence we can
assume that zs is speaker representation. Because the speaker
representation is learned and has the ability to expand, our
model has the potential to perform zero-shot voice conversion.

B. Channel attention based disentangling method

In content encoder, we introduce a channel attention based
module, which is helpful for disentangling.

Fig. 6 shows the architecture of content encoder. We also
use convbank layer and a set of residual convolution blocks
for extracting feature before channel attention layer, which
provide the base for generating content representation.

After the front part of content encoder transforming the
input feature, channel attention module is used to constrain the
width of the channel. And we name the module with channel
attention as learnable bottleneck (LB). The architecture of
learnable bottleneck is shown as Fig. 7.

Different from CA used in SENet [16] or CBAM [17],
CA at this part is not generated from the feature map, but
a learnable parameter (LP) with size of C× 1. We set zero as
boundary of the parameter by using ReLU and get a soft mask
zCA = ReLU(LP ). Then zCA and hpre, which is extracted
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Fig. 7. The architecture of learnable bottleneck.

by the front part of content encoder, are made element-wise
product. zCA is used as channel weights of hpre. The channel
with zero weight is shut down while the channel with positive
weight is activated. When the training is done, zCA is fixed
during inference. After that, we get intermediate feature hc.

According to AUTOVC [10], on the premise of preserving
content information in intermediate feature, channel width of
intermediate feature should be as small as possible. So that
intermediate feature can reduce redundant information and
only retains content information.

In order to make hc retain necessary content information
and reduce speaker information as much as possible, we add a
penalty term p to reduce activate channels of hc. The definition
of p is as

p = ‖zCA‖11 (5)

where p is the L1 regularization of zCA, which can make zCA
sparse. Therefore, the number of activated channel is reduced
gradually during training and it is equal to constraining chan-
nel width of hc. It also prevents the model from becoming an
identity transformation.

As mentioned above, zs tends to learn speaker feature
and can not carry dynamic information. Because we use
reconstruction loss as objective function and speaker infor-
mation can be provided by zs, complementary information
of speaker information can only be passed from content
encode Ec. In terms of getting content information, the limited
channel resource of hc preferentially tends to carry necessary
dynamic content information for reconstructing. And speaker
information will be abandoned if the limit of p is strong
enough. Therefore, we assume that hc with strong channel
width limit is content representation and the channel attention
based method is helpful for disentangling content and speaker
representation by limiting the width of channel.

The subsequent set of residual blocks further adjusts hc and
generates µc and σc. We define µc and σc as the mean and
standard deviation of zc, respectively. And zc is given as

zc = µc + σc ×N (0, I) (6)

where N (0, I) denotes standard Gaussian distribution.

C. Channel attention based adapting method

Inspired by MCCNet [14], channel attention module is
used for adapting voice to target speaker domain. Channel
attention module combines content information and speaker

Fig. 8. The architecture of decoder.

Fig. 9. The process of voice conversion using CA-VC.

information in decoder. From Fig. 8, it can be seen that
in the decoding process, speaker representation zs gets into
dense layer first and then it is provided to decoder (D) by
channel attention module. CA at this part is generated from
zs and is made element-wise product with feature map. Size
of CA and feature map are C × 1 and C × T , respectively. It
can enhance or weaken feature based on speaker information
for adaptation. Moreover, CA changes the standard deviation
of features and ReLU implicitly changes mean of feature.
These characteristics make channel attention module similar
to AdaIN module. The two mechanisms may have some
similarities. However, AdaIN operation, which normalizes the
mean and variance of each feature map separately, potentially
destroys information found in the magnitudes of the features
relative to each other [19]. IN in AdaIN module may remove
speaker information added by previous AdaIN module which
may weaken the effect of adaptation. On the contrary, channel
attention module does not need IN and have no such risk.

After adapting by blocks with channel attention module, a
postnet consisting of Conv1d layers is used for refining.

Fig. 9 gives the conversion process of the proposed CA-
VC. It can be observed that speaker representation zs is
obtained from the target speaker by speaker encoder. Because
the speaker representation is learned and has the ability to
expand, our model can be used for converting seen and unseen
speaker’s voice.

D. Loss function

Because our approach is unsupervised, we train the model
by reconstruction. The reconstruction loss function is given as

Lrec = Exεχ
[
‖D(zc, zs)− x‖11

]
(7)
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(a) (b)
Fig. 10. The visualization of speaker embedding. The upper and lower rows
correspond to seen and unseen speakers, respectively. Columns from left to
right correspond to (a) CA-VC without auxiliary classifier, (b) CA-VC with
auxiliary classifier.

Because the framework of our model is VAE, we apply KL
loss.

Finally, the objective function is defined as follows, where
λrec, λKL, λp and λclass are the weights of Lrec, LKL, Lp
and Lclass, respectively.

L = λrecLrec + λKLLKL + λpp+ λclassLclass (8)

IV. EXPERIMENT AND EVALUATION

A. Dataset and experiment setup

The proposed method is evaluated on CSTR VCTK cor-
pus [15], which includes speech data uttered by 109 native
English speakers with various accents. Each speaker has about
400 sentences. Although there are some parallel data in the
dataset, we do not use the characteristic of parallel data during
training. The corpus is randomly spilt into training set with
90 speakers and validation set with 19 speakers. In addition,
following [12], 512-dimension mel-spectrogram is extracted
as the input acoustic feature. And input frame length is 180.
So the size of input x is 512×180. Furthermore, hpre, hc, µc,
σc and zc are all with the size of 200×180. We omit batch
size dimension here.

Because vocoder is not the key point of our research and
Griffin-Lim with 512-dimension mel-spectrogram can also get
acceptable generation quality, following [12], inverse linear
transformation and Griffin-Lim algorithm [20] are used for
converting the mel-spectrograms back to waveform.

B. Speaker embedding visualization

In order to visualize the speaker embedding in the 2D space
by using t-SNE [21], we randomly chose 20 seen speakers and
9 unseen speakers, each with 100 utterances, which are used
as input to obtain zs. We compared the visualization of two
train settings which were CA-VC with auxiliary classifier and
CA-VC without auxiliary classifier.

As shown by the left column of Fig. 10, the points represent-
ing the utterances of the same speaker are clustered together

and the utterances of different speakers can be separated.
We found that the speaker representation zs generated by
the model without auxiliary classifier can correspond to the
speaker well even the speaker identity label is not used for
training. It is probably because when channel width of content
encoder is limited, speaker information tends to pass from
speaker encoder even without classify supervision. And similar
conclusions are also mentioned in [12, 22]. But zs generated
by the model with auxiliary classifier can be separated more
easily, especially for unseen speakers as shown in the right
lower part of Fig. 10. It illustrates that auxiliary classifier is
helpful for speaker embedding.

C. Evaluation of disentanglement

To verify the disentangling effect of LB module, we per-
formed an ablation study and compared the speaker identity
prediction accuracy on zc from AdaIN-VC, CA-VC and CA-
VC without LB module. For comparing prediction accuracy,
we trained three speaker classifiers, which is consisting of
average pooling and 3 dense layers, with zc from three models
as input respectively and then calculate speaker prediction
accuracy.

Otherwise, we used each model to generate 20 converted
utterances from unseen speaker utterances, transcribed utter-
ances by using google speech recognition API. Then we used
transcription of source utterances as label to calculate the word
error rate (WER) of converted utterances.

TABLE I
THE ACCURACY FOR SPEAKER IDENTITY PREDICTION ON CONTENT

REPRESENTATION AND THE WORD ERROR RATE (WER).

Methods Accuracy WER
AdaIN-VC [12] 32% 44%

CA-VC 35% 30%
CA-VC without LB 63% 26%

Table I shows the results, the lower the better for both
accuracy and WER. The accuracy of CA-VC with LB is lower
than the result of ablated model and is close to that of AdaIN-
VC. It proves that LB module can reduce speaker information
in content representation. Meanwhile, our method performed
better than AdaIN-VC in term of WER, which shows that our
method can retain content information better. Because IN in
AdaIN-VC may cause slight loss of content, the loss may be
obvious as the number of IN layers increases. But our method
only uses one LB module so there won’t be such cumulative
effect.

D. Evaluation of voice conversion

Fig. 11 shows a conversion phase mel-spectrogram result
sample of our method. Converted mel-spectrogram has similar
characteristic of target mel-spectrogram, such as peak inteval,
and trend of curve changed in time domain is similar to source
mel-spectrogram.

We used the global variance (GV) [23] firstly. GV is a
method to visualize spectral variance distribution of speaker
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(a)

(b)

(c)
Fig. 11. Mel-spectrogram of utterances. The horizontal axis represents the
frequency domain, and the vertical axis represents time. Rows from top
to bottom correspond to (a) target utterance, (b) source utterance and (c)
converted utterance.

Fig. 12. The global variance of converted result and target speaker utterance.

and can be used to measure conversion effect [24]. We gener-
ated 100 converted utterances (including male to male (M2M),
male to female (M2F), female to male (F2M) and female
to female (F2F), 4 pairs of unseen speakers) and chose 100
utterances of target speaker randomly. As shown in Fig. 12,
we evaluated the GV for each of the frequency index for 4
speaker pairs and found that the distribution of converted result
is similar to the distribution of target speaker’s utterances. It
declared that channel attention module can convert the voice
and our model is effective for voice conversion.

TABLE II
RESULTS COMPARISON AMONG DIFFERENT METHODS. THE RESULT OF

SIMILARITY TEST IS WITH THE FORM AS TARGET/ SOURCE/ NO ONE.

Methods Metric
MCD Naturalness Similarity

AdaIN-VC [12] 3.4 3.1 59%/ 11%/ 30%
AUTOVC [10] 3.7 3.4 46%/ 24%/ 30%

CA-VC 3.3 3.6 75%/ 15%/ 10%
CA-VC without LB 4.9 3.7 20%/ 38%/ 42%

Table II shows the experiment results comparison among
AdaIN-VC, AUTOVC (with WaveNet [25]), CA-VC and CA-
VC without LB module. Mel cepstral distortion (MCD) [26]
is used for objective test. Mean opinion score (MOS) of
naturalness and similarity test are used for subjective test.

For Objective evaluation, we calculated MCD between
converted speech and target speech. There are parallel data in
CSTR VCTK corpus, though we do not use the characteristic
of parallel data during training, but data are not strict aligned.
So we used dynamic time warping before calculating MCD.
The lower MCD the better. Table II shows the results for
different systems. It can be observed that the proposed method
can give a comparable performance and achieve the best result.

For Subjective evaluation, by using unseen speaker as both
source and target speaker, each model generated 20 converted
utterances (including M2M, M2F, F2M and F2F, 4 pairs
of unseen speakers). Speaker pairs of different methods are
same. In MOS test of naturalness, 18 subjects evaluated the
naturalness of utterances by scoring from 1 to 5 and the higher
MOS score the better. In similarity test, subjects chose which
speaker is more similar to converted speech, target speaker or
source speaker or no one. We define conversion success rate
as chosen rate of target speaker.

In MOS test of naturalness, CA-VC produced high quality
speech and got the second highest score. Although CA-VC
without LB got the highest score, it does not mean that
it worked well. Because without LB, content representation
contains too much redundant information including speaker
information, which improves naturalness but leads to poor
performance during conversion as shown in similarity test. In
similarity test, the result shows that our model is more effective
and got the highest conversion success rate. It is probably
because the reason mentioned in section III-C. It verifies the
disentangling effect of LB module and proves that channel
attention module can adapt source data to target domain for
voice conversion.

V. CONCLUSIONS

In this work, a novel zero-shot unsupervised voice conver-
sion method with channel attention is proposed. As far as we
know, channel attention has not been used in voice conversion
task. CA has two different tasks in our method. We use channel
attention for disentangling speaker and content information
in content encoder. Meanwhile, we combine speaker and
content information in decoder by channel attention. Objective
and subjective evaluations reveal that channel attention has
significant effect during disentangling and combining speaker
and content information. Thus, the proposed method is able
to generate high quality converted speech.
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