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Abstract—In a conventional voice conversion (VC) framework,
a VC model is often trained with a clean dataset consisting
of speech data carefully recorded and selected by minimizing
background interference. However, collecting such a high-quality
dataset is expensive and time-consuming. Leveraging crowd-
sourced speech data in training is more economical. Moreover,
for some real-world VC scenarios such as VC in video and
VC-based data augmentation for speech recognition systems, the
background sounds themselves are also informative and need to
be maintained. In this paper, to explore VC with the flexibility
of handling background sounds, we propose a noisy-to-noisy
(N2N) VC framework composed of a denoising module and
a VC module. With the proposed framework, we can convert
the speaker’s identity while preserving the background sounds.
Both objective and subjective evaluations are conducted, and the
results reveal the effectiveness of the proposed framework.

Index Terms: noisy-to-noisy voice conversion, denoise, back-
ground sounds separation, deep learning.

I. INTRODUCTION

Voice conversion (VC) is a technique to convert the voice
characteristics of a source speaker into that of a target speaker
while preserving the linguistic contents. With the advent of
deep learning, VC also enters a new era by dramatically
improving the naturalness and similarity of the converted
speech. According to the latest Voice Conversion Challenge
(VCC) [1] held in 2020, the state-of-the-art method [2] shows
that the similarity is comparable to natural target speech with
slight disparity for naturalness.

However, in real-world scenarios, we can not always get
a large amount of high-quality VC data as it is very costly
to collect them. Although background noise sounds usually
interfere with the input speech signal, it would be much
appreciated to leverage such mega data to train a VC model in
a data-driven technique. Therefore, it is essential to suppress
the background noise to achieve better VC performance.
However, speaking aside from conventional VC, as in VCC,
we do not always filter out the background noise obtained
from real-world speech signals. Consider VC usage in a video
or a movie; it is essential to only convert the speech segments
and preserve the background sounds. In other cases, such as
VC-based speech data augmentation [3] for automatic speech
recognition (ASR), the background noise is a valuable resource
that further improves the robustness of the downstream system.
Therefore, flexibly dealing with the background sounds in VC
is more beneficial in general.

The majority of previous research works, such as [4], [5],
[6] focus on noise-robust VC, in which the background sounds
are considered as interference to be discarded. These works
employ the use of noisy input speech and clean target speech.
On the other hand, there has been proposed a text-to-speech
method [7] that can convert noisy speech while controlling
the noise. To disentangle the speaker identity and the noise
attributes, the method augments the clean training set with
a copy that mixes with the noise clips but reuses the same
transcript and speaker label. By doing so, two latent variables
can be used to represent speaker identity and noise attributes,
respectively. They are modeled by the variational autoencoder
(VAE) and introduced to condition the generative process so
that both the speaker identity and the background noise are
controllable.

In this paper, we propose a noisy-to-noisy (N2N) VC as
a new VC framework, where speaker conversion is achieved
while maintaining input background noise without linguistic
input/supervision. The noisy-to-noisy VC signifies that the
available dataset for VC training contains only noisy speech
signals; therefore, we cannot simply train a noisy-to-clean
speech model. To handle such a noisy speech dataset in VC
training, as a first step, we propose to utilize a denoising
module for separating speech signal and noise signal, where
this denoising module is developed beforehand with publicly
available datasets. Then, we propose to employ a conversion
network that is developed with the use of the denoised
VC dataset. Finally, in the conversion phase, the separated
background noise is added back to the converted speech to
maintain the input background sounds. We will show that
the utilization of the denoising module can enhance the N2N
VC system compared to the usage of purely noisy signals
in the development of the conversion network. The main
contributions of our work are as follows:

• Unlike previous works focusing on noisy-to-clean VC
(noise-robust VC), we aim at noisy-to-noisy VC in our
work. The first ”noisy” means only noisy data are avail-
able for the VC task. The second ”noisy” indicates that
the background sounds are maintained, and we can add
the background sounds back or suppress them based on
different scenarios.

• In this work, we integrate the state-of-the-art denoising
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Fig. 1. The overall workflow of our proposed N2N VC framework.

model, Deep Complex Convolution Recurrent Network
(DCCRN) [8], and speaker VC model, vector-quantized
variational autoencoder (VQ-VAE), into the proposed
N2N VC framework. We adopt the DCCRN to separate
speech and background sounds, and VQ-VAE receives
the denoised data as training/conversion input.

• To further investigate how the denoising model would
influence the downstream VC performance, we insert
another famous denoising model Conv-TasNet [9] into
our framework to compare with DCCRN.

• We conduct objective and subjective evaluation, and the
experimental results indicate that our method achieves an
acceptable conversion performance with well-preserved
background sounds.

II. NOISY-TO-NOISY VOICE CONVERSION FRAMEWORK

Our framework is composed of a denoising module and
a VC module. Fig. 1 illustrates the overall workflow. In our
framework, the denoising module is pre-trained on the mega
dataset to guarantee ideal denoising performance, and it is
utilized as a separation model to separate the speech and the
background sounds:

b(t) = xn(t)− xe(t), (1)

where b(t) denotes the estimated background sounds signal in
the time-domain. xn and xe represent the time-domain noisy
speech signal and the estimated speech signal, respectively.
As mentioned previously, N2N VC is proposed to address
the situation that only a noisy VC dataset is available, and
the background noise is required to be preserved. In the
training stage, the noisy VC training data pass through the
denoising module, and only the denoised data are sent to train
the VC module. In the conversion stage, the noisy source
speech is separated by the denoising module, and only the
estimated speech signal is delivered to the VC module. After
the conversion, the separated background sounds can be either
added back or dropped out, based on individual scenarios.

III. FRAMEWORK IMPLEMENTATION

The motivation of our method comes from the encouraging
results of the speech enhancement (SE) domain, wherein the

Fig. 2. The overall structure of DCCRN.

latest Deep Noise Suppression (DNS) Challenge 2020 [10],
DCCRN [8] has demonstrated the state-of-the-art performance.
In line with our hypotheses, we expect that a reliably tested
denoising module could bring reasonable improvements in
developing a conversion network for N2N VC, where we
do not have clean signals for the VC dataset. On the other
hand, for the conversion network, we propose to utilize a
non-parallel and linguistically unsupervised module based on
VQ-VAE, which has been shown to be capable of perform-
ing the disentanglement of content and speaker information
better compared to conventional variational autoencoder and
autoencoder [11].

A. Denoising module: DCCRN

DCCRN is a convolution recurrent network (CRN) based
single-channel denoising model. Fig. 2 shows the overall
structure of DCCRN. Two-dimensional convolution (Conv2D)
blocks are stacked to constitute the encoder/decoder. Each
Conv2D block consists of a convolution/deconvolution layer
along with batch normalization and activation function. The
DCCRN has been shown to outperform conventional CRN
[12] by a large margin thanks to the handling of the problems
of complex calculation that are observed in the CRN. Specif-
ically, complex convolution neural network, complex batch
normalization layer, and complex long short-term memory
(LSTM) are implemented for encoder/decoder, guaranteeing
that the DCCRN can model the correlation between magnitude
and phase. More details can be found in [8].

In our work, since we utilize DCCRN as a separation model,
the power of the estimated speech should be matched to the
clean target speech. Hence, the original scale-invariant signal-
to-noise ratio (SI-SNR) loss [9] is replaced by scale-dependent
signal-to-distortion (SD-SDR) loss [13], which is formulated
as:

SD-SDR = 10 log10

(
‖αs‖2

‖s− ŝ‖2

)
, (2)
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Fig. 3. The model structure of the VQ-VAE: An encoder (blue) encodes
the log mel-spectrogram into latent representation and passes to the VQ
bottleneck (orange). The decoder (green) then reconstructs the waveform
from the discrete representation using an autoregressive stream and a speaker
embedding as condition. The subscript number of Conv represents its con-
volutional kernel size, and that of Stride means the length of stride in the
convolutional computation.

where s and ŝ indicate the target signal and the estimate of
the target respectively, and α denotes an optimal scaling factor
defined as:

α = ŝT s/‖s‖2. (3)

B. VC module: VQ-VAE

In our work, as illustrated in Fig. 3, we implement a VQ-
VAE-based VC module [14], which has three main compo-
nents: encoder, bottleneck layer, and decoder.

The encoder consists of five one-dimensional convolution
(Conv1D) blocks, and each block is composed of a convolution
layer along with batch normalization and activation function.
The input log mel-spectrogram sequence {xt, t = 1, . . . , T}
is computed as a stream of latent vectors {zj , j = 1, . . . , N}
by the encoder and sent to a vector-quantized bottleneck with
a 64-dimensional trainable codebook {ei, i = 1, . . . , 512} to
discard speaker information. In the forward pass, the latent
vectors of the encoder {zj , j = 1, . . . , N} are mapped into
the nearest vectors in the codebook by

k = argmin
i
‖zj − ei‖2 , (4)

and zj is replaced with ek as a discrete latent representa-
tion {ẑj , j = 1, . . . , N}. The decoder adopts a lightweight
recurrent network to reconstruct the waveform based on the
embedded speaker identity information and the discrete rep-
resentation {ẑj , j = 1, . . . , N} from the VQ bottleneck in an
autoregressive manner that predicts the current sample based
on the past ones.

In the backward pass, the gradient of the loss through the
codebook is approximated via the straight-through estimator
[15], due to that the argmin is not differentiable. The values
of the codebokk are updated by exponential moving averages
[16]. Additionally, a commitment loss [16] is introduced to
encourage the output vector of the encoder zj to be close to its
selected vector ek of the codebook. The VQ-VAE is trained to
minimize a sum of two loss terms: the negative log-likelihood
of the reconstruction loss and the commitment loss as follows:

L = − 1

T

T∑
t=1

log p (xt | x̂t) + β
1

N

N∑
j=1

‖zj − sg (ẑj)‖2 , (5)

where {x̂t, t = 1, . . . , T} is the output sequence of the de-
coder. β is the commitment weight and set to 0.25 according
to [16], and sg(·) denotes the stop-gradient operation.

IV. EXPERIMENTAL EVALUATIONS

We conducted experimental evaluations to investigate the
effectiveness of the proposed N2N VC framework. Since
we focus on VC application for telecommunication, such
as telephone speech conversion or data augmentation for
speaker recognition of telephone speech, as one of our target
applications of N2N VC, we used 8 kHz sampled speech data
in the experimental evaluations.

A. Dataset

1) Dataset for denoising model: For the training of the
denoising model, we used DNS Challenge 2020 dataset [10],
which is a vast and high-quality dataset for the SE task.
The dataset consisted of two sub-datasets: the clean speech
dataset and the noise dataset. The clean speech dataset was
derived from a dataset of public audiobooks, Librivox [17].
The organizers of the DNS Challenge had already cherry-
picked the speech files via subjective quality evaluation. The
resulting clean speech dataset had 500 hours of speech from
2,150 speakers in various languages, most of which were in
English. 6,000 speech clips were randomly sampled as the
validation data.

The noise dataset was collected from Audioset [18] and
Freesound [19]. Preprocessed by the organizers, the selected
dataset had about 150 audio classes and a total of 65,000 audio
clips. 500 clips were randomly picked into the validation set.
We built up the noisy dataset by uniformly sampling a noise
clip and adding it to a clean speech. The SNR levels were also
sampled from a uniform distribution between 5 and 20 dB.
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TABLE I
THE OBJECTIVE EVALUATION RESULTS OF DCCRN AND CONV-TASNET, HIGHER IS BETTER

(a) SI-SDR and SAR on the noisy VCC training dataset

Model Eval. Target SI-SDR (dB) SAR (dB)

7 dB 11 dB 15 dB 19 dB Avg. 7 dB 11 dB 15 dB 19 dB Avg.

DCCRN Speech 17.86 20.17 22.73 25.19 21.49 18.55 20.82 23.32 25.76 22.11
Background sounds 10.48 8.55 6.87 4.86 7.69 11.27 9.32 7.65 5.68 8.48

Conv-TasNet Speech 15.39 18.01 20.46 22.77 19.16 16.04 18.66 21.05 23.44 19.80
Background sounds 7.45 5.64 3.42 1.06 4.39 8.27 6.53 4.29 1.84 5.23

(b) PESQ and STOI on the noisy VCC training dataset

Model PESQ STOI

7 dB 11 dB 15 dB 19 dB Avg. 7 dB 11 dB 15 dB 19 dB Avg.

DCCRN 3.20 3.41 3.57 3.72 3.47 0.96 0.97 0.98 0.99 0.98

Conv-TasNet 2.84 3.05 3.23 3.39 3.13 0.94 0.96 0.97 0.98 0.96

2) Dataset for VC model: The dataset for the VC model
ought to be unseen for the denoising model. We chose VCC
2018 dataset [20] as the clean speech dataset and PNL 100
Nonspeech Sounds [21] as the noise dataset to simulate the
real-world situation.

VCC 2018 dataset is a high-quality and publicly available
dataset specialized for VC tasks. The speech data was recorded
by professional US English speakers in a professional studio
without significant noise effects. There were a total number
of 972 utterances for training and 420 utterances for evalu-
ation, involving 12 male/female speakers: 8 source speakers
denoted as (VCC2SM1, VCC2SM2, VCC2SM3, VCC2SM4,
VCC2SF1, VCC2SF2, VCC2SF3, VCC2SF4) and four tar-
get speakers denoted as (VCC2TM1, VCC2TM2, VCC2TF1,
VCC2TF2). Each speaker uttered 81 and 35 sentences for
training and evaluation, respectively, resulting in a total of
around 13 minutes of audio.

The PNL 100 Nonspeech sounds consisted of 100 clips and
20 categories of environmental records, such as crowd noise,
cry, tooth brushing, and so on. We uniformly sampled the
noise clips to mix with the VCC 2018 train/evaluation dataset
at four certain SNR levels: 7 dB, 11 dB, 15 dB, and 19 dB.

For VCC evaluation data, to guarantee that the participants
of the subsequent subjective evaluation could concentrate
on marking appropriate scores, the number of evaluating
utterances was limited to a proper amount. Four speakers
(VCC2SM3, VCC2SM4, VCC2SF3, VCC2SF4) were selected
as source speakers, which resembled the non-parallel (SPOKE)
task of VCC 2018 [20], and two speakers (VCC2TF2,
VCC2TM2) as target speakers. Hence there were 8 conversion
pairs, and each pair had 35 utterances. Since the evaluation
dataset aimed to compare the conversion performance of
different systems equally, the same utterances in different
speakers shared the same pattern of background sounds.

B. Model training details

1) DCCRN training: We trained the DCCRN model imple-
mented by Asteroid [22]. The type of DCCRN was ”DCCRN-
CL.” The window length, hop size, and FFT length were
set to 50 ms, 12.5 ms, and 512, respectively. We observed
degradation of the denoising performance with the original
settings [8], which were for a sampling rate of 16 kHz; hence,
we used our own 8 kHz optimized settings. The batch size was
64. Adam was used as the optimizer and set the initial learning
rate to 1 · 10−4. The learning rate would decay 0.5 if the
validation loss did not go down within 4 epochs. Additionally,
an early stopping mechanism was introduced to choose an
optimized model. It took about 22 days of training on a single
RTX 3080 to get the best model.

2) VQ-VAE training: We used a PyTorch-based implemen-
tation for the VQ-VAE model [14]. Log mel-spectrogram was
extracted as the input and 8 bits mu-law decoded waveform
as ground-truth. The window length, the hop size, and the
FFT length were set to 20 ms, 5 ms, 1024, respectively. The
batch size was 64, and the optimizer was Adam with an initial
learning rate of 2 · 10−4. The learning rate would be halved
after 300k steps. The total training steps were 600k steps,
which cost around two days on a single RTX 3080.

C. Experimental setup

To demonstrate the performance of our proposed N2N VC
framework, we set two models as our baseline. The first
baseline was a VQ-VAE trained on the clean VCC dataset,
denoted as Clean-VC. The other was the VQ-VAE directly
trained on the noisy VCC dataset, denoted as Noisy-VC. In
simpler terms, the Clean-VC and the Noisy-VC respectively
represented the upper and lower bound of our framework.

When mixing the noisy VCC dataset, the whole PNL
100 Nonspeech was sampled for both the training and the
evaluation set, which indicated that the Noisy-VC had already
seen all the patterns of background sounds during training.
Hence, Noisy-VC should have its own optimal performance
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TABLE II
MCD ON THE CLEAN REFERENCE OF VCC EVALUATION DATASET, LOWER

IS BETTER

Systems MCD (dB)

SF-TF SM-TM SF-TM SM-TF Avg.
Clean-VC 7.17 7.26 7.35 7.67 7.36

DCCRN-VC 7.55 7.78 7.80 8.38 7.88
ConvTas-VC 7.55 7.86 8.0 8.26 7.92

TABLE III
NATURALNESS SCORES (MOS) WITH 95% CONFIDENCE INTERVALS ON

NOISY VCC EVALUATION DATASET, HIGHER IS BETTER

Systems MOS [1, 5]

7 dB 15 dB Avg.

Clean-VC 3.46 ± 0.12 3.52 ± 0.11 3.49 ± 0.08
DCCRN-VC 3.07 ± 0.13 3.08 ± 0.12 3.08 ± 0.09
ConvTas-VC 3.0 ± 0.13 3.14 ± 0.12 3.07 ± 0.09

Noisy-VC 1.99 ± 0.11 2.15 ± 0.11 2.07 ± 0.08

on the evaluation dataset. It needs to be emphasized that for
our framework, both the noise dataset and speech dataset were
unseen for the denoising model.

To further probe into how the denoising model would
affect the VC performance in our framework, another well-
known denoising model Conv-TasNet [9] was selected as a
comparison. Due to the training of the denoising model was
very time-consuming, we used the pre-trained Conv-TasNet
model provided by Asteroid. It was trained on the single-
speaker enhancement task of the Libri3Mix dataset [23]. To
differentiate the use of the denoising models, i.e., DCCRN and
Conv-TasNet, we denoted our method as DCCRN-VC and that
of ConvTas-VC. Overall, there were four systems to compare
and evaluate:

• Clean-VC trained on clean VCC dataset.
• Noisy-VC trained on noisy VCC dataset.
• DCCRN-VC trained on DCCRN-denoised noisy VCC

dataset.
• ConvTas-VC trained on ConvTasNet-denoised noisy VCC

dataset.

D. Evaluation results

1) Objective Evaluation: First, the relative performance of
the two denoising models, DCCRN and Conv-TasNet, was
assessed with several measurements as follows: scale-invariant
signal-to-distortion ratio (SI-SDR) [13], signal-to-artifact ratio
(SAR), PESQ [24], and STOI [25]. In this objective evaluation,
the noisy VCC training dataset was used instead of the VCC
evaluation dataset, owing to the former that covered the whole
of PNL 100 Nonspeech Sounds dataset compared to the latter
that was consisted of only 35 different background sound clips
at the most.

The results are demonstrated in Table I. It is evident that
DCCRN outperforms Conv-TasNet on all metrics among all
SNR levels for both speech and separated background sounds,
on which we infer that DCCRN-VC would also provide better

Fig. 4. Similarity percentage with 95% confidence intervals on noisy VCC
evaluation dataset. The similarity percentage is defined as the added percent-
age of Definitely the same and Maybe the same.

performance compared to ConvTas-VC in the following VC
evaluations. We can also observe that as the SNR level in-
creases, the SI-SDR and the SAR of the clean speech increase,
while those of the separated background sounds decrease;
which is reasonable considering that clean speech could be
extracted more easily from a signal with higher signal-to-noise
powers (higher SNR) condition rather than from a signal with
lower SNR condition, and vice versa for extracting the noise
signal.

To evaluate the performance of our VC model combined
with the denoising process, we leveraged clean evaluation
reference to assess Clean-VC, DCCRN-VC, and ConvTas-
VC via measuring the mel-cepstral distortion (MCD) [26].
Table II presents the results of MCD on the VCC evaluation
dataset. It can be observed that all three systems achieve
better performance for the intra-gender conversions (SF-TF
and SM-TM) compared to the cross-gender conversions (SF-
TM and SM-TF), where the SM-TF conversion pair is the
worst, and the SF-TF conversion pair is the best. The best
average MCD is reasonably achieved by the Clean-VC system
with a value of 7.36, and our proposed DCCRN-VC method
shows a considerable gap of 7.88 with respect to the Clean-
VC. Although DCCRN outperforms Conv-TasNet much in
denoising tasks, the ConvTas-VC with an average MCD value
of 7.92 shows only a slightly worse average MCD than the
DCCRN-VC.

Additionally, we also investigated the perceptual quality of
the denoised speech and the converted speech. We observed
that the denoised samples of DCCRN sounded clean but with a
bit of distortion, while Conv-TasNet remained residual noise
throughout the audio. As for the converted speech, samples
from DCCRN-VC and ConvTas-VC sounded with comparable
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quality. The distortion by DCCRN leads to further distortion
by the VQ-VAE downstream, and the residual noise by Conv-
TasNet also degrades the performance of its VQ-VAE. As we
have observed in Table II, the resulting MCD values are very
close to each other, but as the MCD calculation was performed
on only speech segments while the non-speech regions that
could still contain the residual noise for the ConvTas-VC
were discarded, it is possible that the residual noise in the
ConvTas-VC causes adverse effects in a scenario when only
clean converted speech needs to be presented.

2) Subjective Evaluation: As our final goal is to achieve
high-quality VC while preserving the background sounds,
eventually, the overall performance was evaluated through
subjective evaluations. The mean opinion score (MOS) by
an opinion test was applied to measure the naturalness of
the converted samples. The participants were asked to give
a naturalness score from 1 to 5 (higher is better). The four
systems were evaluated on the same noisy VCC evaluation
dataset mentioned in Section IV-A2. To guarantee that the
complete subjective evaluation would not take too long so
that the participants can submit high-quality answers, we
further limited the amount of the evaluation data. From the
evaluation dataset, six utterances were randomly selected for
each conversion pair, where three utterances were set for the
7 dB SNR, and the other three were set for the 15 dB SNR.
This resulted in a total number of 204 audio samples: 48 audio
samples per system and 12 samples from noisy ground-truth
target speech. As our goal is N2N VC, converted samples from
the DCCRN-VC and the ConvTas-VC were superimposed with
the respective separated background sounds. For Clean-VC,
we superimposed the original record of background sounds
for a fair comparison. Furthermore, the participants were
required to give their scores based on the overall naturalness
of both the speech and the background sounds. To assist
the participants in making judgment, the category of the
superimposed background sounds was given in the evaluation.

Lastly, we conducted the similarity (SIM) evaluation pro-
posed in [20]. In the SIM test, each of the participants was
presented with two audio samples at a time, consisting of a
converted speech and a reference speech of the target speaker,
and asked to determine whether these samples came from
the same speaker. In judging each of the audio pairs, four
options were given: 1. Definitely the same; 2. Maybe the
same; 3. Maybe different; 4. Definitely different. We asked
the participants to ignore the quality of the speech and the
background sounds and focus on the speaker similarity. From
the evaluation dataset, four utterances were randomly selected
for each conversion pair, where two utterances were set for the
7 dB SNR, and the other two were set for the 15 dB SNR. This
resulted in a total of 128 converted samples to be evaluated
by each participant and 32 audio samples per system.

The results of the MOS and of the SIM tests are shown
in Table III and Fig 4, respectively, where the SIM score
is defined as the sum of the percentages from Definitely the
same and Maybe the same decisions. Undoubtedly, Clean-VC
acquires the best performance with the MOS score of 3.49

and SIM score of 53.4 on average. Our proposed framework
DCCRN-VC reached the MOS score of 3.08 and the SIM
score of 51.6 on average, which is far more beyond Noisy-VC
that gets 2.07 and 39.4 but still has a margin from Clean-VC.
Thanks to the powerful denoising model DCCRN, our method
achieves approximate scores under different SNR levels. While
for Noisy-VC, which is sensitive to noise powers, it reaches
better performance under higher SNR level because a higher
SNR level means less noise interference. A similar situation
is observed for the ConvTas-VC.

It is worth noting that ConvTas-VC reaches similar natural-
ness scores on average to DCCRN-VC’s. DCCRN-VC only
leads ConvTas-VC with a slight margin, which is consistent
with the trend in MCD. As for ConvTas-VC, due to the
inability of Conv-TasNet to completely remove the background
noise, the residual noise also exists in the converted samples of
the VQ-VAE. However, after the separated background sounds
are superimposed, it is difficult to perceptually notice the
interference, which allows ConvTas-VC to obtain a tolerable
score in the overall naturalness evaluation. However, in an-
other scenario, when clean converted speech is required, such
residual noise will bring in adverse effects. It is worthwhile
to conduct the subjective evaluation in such a scenario, which
would be in our future work.

As for DCCRN-VC, although we can observe in Table I that
the performance of the noise removal of the DCCRN is better
than that of the Conv-TasNet, as has also been mentioned, the
DCCRN introduces some artifacts that are, in turn, propagated
to the VQ-VAE VC module. We believe that this is the reason
that the naturalness score of the DCCRN-VC to be in the
same range as that of the ConvTas-VC, which would imply
that compared to the residual background noise, the unwanted
artifacts produced by the denoising module cause more adverse
effects to the downstream VC model in terms of audio quality.

V. CONCLUSIONS

In this paper, we have presented a noisy-to-noisy VC
framework that relies on only noisy VC training data and is
capable of preserving the background sounds for the converted
speech waveform. Our framework consists of a state-of-the-art
denoising model DCCRN and a VC model based on VQ-VAE.
In the training stage, the noisy VC dataset is denoised by the
denoising model, on which the VC model is trained. In the
conversion stage, the noisy source speech is separated by the
denoising model to get the estimated speech signal and back-
ground sounds, and the speech signal is sent to the VC model
for conversion. The background sounds can be superimposed
or suppressed flexibly according to a specific application. The
experimental results show that our framework outperforms the
conventional noisy-to-noisy VC that is directly trained on the
noisy VC dataset and achieves acceptable noisy-to-noisy VC
performance with room for improvement. In future work, we
aim to bridge the gap between our framework and Clean-VC.
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D. Ditter, A. Frank, A. Deleforge, and E. Vincent, “Asteroid: the
PyTorch-based audio source separation toolkit for researchers,” in Proc.
Interspeech, 2020.

[23] J. Cosentino, M. Pariente, S. Cornell, A. Deleforge, and E. Vincent,
“Librimix: An open-source dataset for generalizable speech separation,”
arXiv preprint arXiv:2005.11262, 2020.

[24] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Per-
ceptual evaluation of speech quality (pesq)-a new method for speech
quality assessment of telephone networks and codecs,” in 2001 IEEE
international conference on acoustics, speech, and signal processing.
Proceedings (Cat. No. 01CH37221), vol. 2. IEEE, 2001, pp. 749–752.

[25] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “A short-
time objective intelligibility measure for time-frequency weighted noisy
speech,” in 2010 IEEE international conference on acoustics, speech
and signal processing. IEEE, 2010, pp. 4214–4217.

[26] R. Kubichek, “Mel-cepstral distance measure for objective speech qual-
ity assessment,” in Proceedings of IEEE Pacific Rim Conference on
Communications Computers and Signal Processing, vol. 1. IEEE, 1993,
pp. 125–128.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

820


