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Abstract—When one hears his/her recorded voices for the first
time, s/he is probably surprised and maybe disappointed at the
differences in voice quality between the recorded voices and
his/her own voices. Conversion from recorded voices of a speaker
to his/her own voices was technically investigated in previous
studies, and in the current study, we propose a novel framework
for conversion. Here, four new ideas are introduced and some
of them are tested experimentally: a) multiple pathways of in-
body voice transmission from the oral cavity to the inner ear
are taken into account for recording, b) body-conducted speech,
not bone-conducted speech, is defined and simulated, c) a special
device is prepared to avoid habituation effects in listening tests,
and d) a network-based voice conversion technique is applied
to generate one’s own voices from his/her recorded voices by
using a parallel corpus developed with the above three ideas.
Experiments show that the proposed framework can generate
one’s own voices with higher quality compared to a conventional
method, even in cross-language contexts. It is very interesting
that body-conducted speech has an unexpectedly larger role to
simulate one’s own voices compared to air-conducted speech.

I. Introduction

When people hear their recorded voices, they will feel
uncomfortable, and even doubt whether the voices are really
their own [1]–[3]. In psychology, this phenomenon is called
voice confrontation, which is caused by unexpected differ-
ences in the voice quality between recorded voices and own
voices [4]. The former consists of only Air-Conducted Speech
(ACS), while the latter contains not only ACS but also Bone-
Conducted Speech (BCS) transmitted to the inner ear via bone
vibration [5]–[7]. As a result, ACS generally lacks energy at
low frequency bands, compared to own voices (=ACS+BCS).

Scientists have a great interest in own voices [1]–[7] and
recently, brain activities of participants were monitored while
they were listening to voices close or not close to their own
voices [8]. It was shown that human listeners have unique
sensitivity to their own voices. Engineers also have a good
interest in own voices [9]–[13], because they may be used
effectively in some speech applications, where users imitate
given utterances for language learning, voice training, etc.
What kind of utterances, or whose utterances, can be imitated
better than others? Teachers say that if model utterances are
given to a student which have a similar voice quality to the
student’s own voices, s/he will imitate the model utterances
more easily and precisely [10], [11], [14].

In previous studies, many technical attempts were made

to simulate own voices, and to the best of our knowledge,
their attempts are classified into two approaches. In the first
approach, various types of time-invariant filters were designed
and applied to ACS to simulate own voices [9], [10], [15]–
[18]. In these works, it was often stated that the ideal transfer
function of the filters should be time-variant, where the
function should depend on the individual phonemes observed
in input. Probably because the filters actually applied were
time-invariant, however, the quality of the simulated voices
was not satisfactory. In the other approach, a special device
for recording was used to detect BCS, which was added with
an adequate weight to ACS [12], [13]. To detect BCS, a bone
conduction microphone was used, which can sense and record
vibrations of bones. If listeners’ impression of their own voices
can be simulated well as weighted sum of ACS and BCS, this
approach will work well. However, the experiments seem not
to show a high validity of the above hypothesis.

How to realize a flexible mapping between recorded voices
(ACS) and own voices? One possibility is network-based voice
conversion [19], where non-linear and time-variant mapping
can be modeled with large enough training data, which are
often parallel between source and target. Here, we can point
out an essential and probably impossible-to-solve problem.
Own voices of a speaker cannot be recorded physically and
objectively because they can be heard only in mind and only
by that speaker. Own voices are purely mental phenomena
in mind and others cannot hear the voices. In this paper, we
will make a radical attempt to prepare a parallel data between
recorded voices and own voices in a scientifically valid way.

For this attempt, in this paper, a novel technical framework
is proposed to finally make it possible to convert ACS to own
voices with a network-based conversion technique. Here, the
following four issues are addressed especially.
a) Recent findings of hearing showed that, inside the body,
there exist multiple pathways of voice transmission from the
oral cavity to the inner ear [20], [21]. BCS detected with a
single bone conduction microphone may not be sufficient.
b) With the above fact in mind, instead of BCS, we define and
introduce a new notion of boDy-Conducted Speech (DCS)1,
and we aim to simulate it with multiple microphones.

1BCS is Bone-Conducted Speech and DCS is boDy-Conducted Speech.
Readers should be careful.
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Fig. 1: Overview of the transmission pathways of ACS and BCS, modified from [20], [21]

c) To have listeners hear only their real DCS while they are
speaking, and to avoid notorious habituation effects in listening
tests, a special device is prepared for audio presentation.
d) By following the above steps, a parallel corpus between
ACS and manually simulated own voices is built, which is
used to train a network-based voice converter.

In-body voice transmission from the oral cavity to the inner
ear is language-independent. To evaluate our converter from
ACS to own voices in this respect, listening tests are carried
out where two trilingual speakers are recruited as participants.
Their Japanese utterances are used to build their converters,
which are tested with their utterances in Chinese and English
as well as Japanese. It should be noted that, different from
assessment tests of artificial voices produced by general voice
conversion systems, artificially-created own voices of a speaker
have to be assessed by that speaker only, because s/he is the
only person who can hear his/her real own voices.

This study has been approved by the research ethics com-
mittee of School of Engineering, The University of Tokyo.

II. The mechanism for in-body voice transmission

It seems that people understand naïvely that their own voices
are generated with a single type of BCS added to ACS, but
recent studies have revealed that the mechanism for in-body
voice transmission is not so simple. According to [20], [21],
the voice transmission from the oral cavity to the inner ear
is hypothesized to take place on multiple pathways, shown in
Figure 1, such as 1) sound radiated into the external ear canal,
2) middle ear ossicle inertia, 3) inertia of the cochlear fluids,
4) compression of the cochlear walls, and 5) pressure trans-
mission from the cerebrospinal. In several previous studies,
bone vibrations were detected from a participant with a bone
conduction microphone attached near his/her ear canal, which
is numbered as 1) in Figure 1. Then, the detected signals were
treated as BCS in those studies. Taking Figure 1 into account,
however, this approach is not valid enough, because real BCS
should be a mixture of the multiple signals.

If good sensors are available to detect signals at the individ-
ual regions separately on the multiple pathways, those signals
should be used effectively to simulate one’s own voices. Since
the signals of 2) to 5) cannot be detected separately [20]–[22],
however, we introduce a new term, boDy-Conducted Speech
(DCS), to indicate what remains after removing ACS from

one’s own speech (OOS). Namely, DCS ≡ OOS − ACS, and
it is regarded as sum of the signals on the in-body pathways
in Figure 1. It can further be interpreted as the component in
OOS that cannot be observed as acoustic signals.

How to observe DCS objectively? As explained in the
previous section, DCS cannot be observed acoustically, or
objectively. By speaking with ACS suppressed in an adequate
way, however, any listener can hear his/her DCS only. In the
following section, we prepare a special device for hearing real
DCS and simulated DCS at the same time.

To simulate DCS, we use multiple microphones available to
detect several signals in Figure 1. Here, we still use the term of
BCS, but it is used always as Bone-Conducted Speech detected
at a specific position on the body. In the current study, three
microphones are available, which are designed to detect BCS
at the ear canal, BCS on the skin of the throat, and BCS on
the top of the head, i.e. the skull. Through some preliminary
testing, we did not use the last one because recording with the
skull microphone was not stable. Finally, our simulation of
DCS is made by using three sources, ear BCS (eBCS), throat
BCS (tBCS) and ACS. eBCS and tBCS are numbered as 1)
and 6) in Figure 1, and all of the three kinds of signals are
recorded completely synchronously in parallel.

III. Preparations for recording and presentation
A. Recording

ACS was recorded with a general condenser microphone,
while the two kinds of BCS were detected with bone con-
duction microphones. eBCS and tBCS were recorded with an
earphone-type microphone (TEMCO EM20N-T3 [23]) and a
laryngeal microphone (TEMCO TM80N-T [24]), respectively.
Figure 2 shows how these two microphones were attached on

Fig. 2: Attachment of 2 types of BC microphones
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the body. The left-hand side shows the microphone for eBCS
and the other is for tBCS. For the current study, the cut-
off frequency of low-pass filtering in the microphones was
modified from 2 kHz, which is the original value, to 5 kHz.

To realize completely synchronized recording with the three
microphones, they were connected to a laptop computer with
the same type of USB audio adapters. All the recordings were
obtained in a soundproof room and then, the synchronized
recordings were edited using Adobe Audition 2020. As for
reading-aloud material, following previous studies [9], [10],
the five vowels of Japanese were used. Further, as more prac-
tical material, a specially designed paragraph was used, which
contains all the kinds of Japanese morae2. Each mora appears
only once, but the resulting paragraph is very meaningful [25].

As explained in Section I, in previous studies, OOS was
simulated in two ways: filtering ACS, and weighted sum of
ACS and eBCS. In these studies, researchers concluded that
the ideal transfer function of filtering depended on phonemes,
and that so did the weights of ACS and BCS. These findings
imply that, to simulate OOS, time-variant filters and time-
variant weights should be adequately designed. In this paper,
time-variant characteristics of filters are implemented techni-
cally by using three microphones and two-step simulation of
OOS, which are explained in detail in Section IV.

B. Soundproof earmuffs with small bluetooth speakers
In Section II, we defined DCS as OOS−ACS, and in the

following sections, we firstly simulate DCS only, and after
that, we try to simulate OOS by adding ACS with an adequate
weight to the simulated DCS. To realize a good simulation of
DCS, a special listening device is introduced.

How to suppress ACS? One can hear different types of DCS
by suppressing ACS in different ways. DCS heard by inserting
the two index fingers into the ear canals and DCS heard by
covering the ear canals by the palms are perceived as voices
with different voice qualities. These differences are discussed
in [26] and some of them are known as occlusion effect. The
vibrations of speech cause the outer wall of the external canal
to vibrate, which make extra standing waves occur.

Which type of DCS should be used as target of simulation
in our study? We want to simulate the DCS with listeners’ ear
canals open, where extra and unnatural standing waves do not
take place. With listeners’ ears open, however, how to be able
to suppress ACS? We solve this problem by using large and
strong earmuffs (3M PELTOR X5A, NRR=31dB), shown in
Figure 3. By wearing these soundproof earmuffs, the ears are
covered by the big ear cups. It should be noted that urethane
sponge is put as sound-absorbing material on every part of the
inside wall of the ear cups, which can suppress extra standing
waves effectively. With these earmuffs over the ears, speakers
can hear their own DCS only. Similar suppression is possible
with noise cancelling headphones, but they are so good and
smart that they can also suppress a part of DCS, probably 1)

2Mora is the fundamental unit of speech production of Japanese. It is an
open syllable in the form of V or CV.

ear cup

sound absorber 

Fig. 3: Soundproof earmuffs with small bluetooth speakers for
easy-to-compare listening experiments

in Figure 1. This is why noise cancelling headphones should
not be used at all in our study.

With these earmuffs, listening to real DCS just by speaking
is made possible. For listening experiments, however, we have
to prepare an environment where participants compare their
real DCS with simulated DCS in a reliable way. If simulated
DCS is presented through headphones, they have to exchange
the earmuffs and the headphones very frequently. In our study,
the transfer function of filtering and the weights for summation
have to be optimized manually through repeated listening
experiments. It is known that repeated presentation and lis-
tening often induce habituation effects, with which subjective
judgements will become biased. Thus, reliable judgement is
extremely important in our experiments and it will be made
possible only with an easy-to-compare listening environment.

To realize this environment, we installed small bluetooth
stereo speakers (Bearoam Bluetooth 5.1 wireless earhook-
type speakers) inside the ear cups of the earmuffs, shown
in Figure 3. With this integrated device, participants can
listen to real DCS just by speaking and to simulated DCS
just by clicking on a laptop. Synchronized listening is also
easy, which we consider enhanced reliability of judgment.
In our experiments, participants have to compare real DCS
with simulated DCS repeatedly. If a good simulated DCS is
presented synchronously with its real DCS, these two stimuli
will be perceived as an utterance of a single speaker3. After
the experiments, participants commented that synchronous lis-
tening to the two stimuli realized easy and reliable judgement.

IV. Experiments
The experiments were carried out in three steps. 1) DCS was

simulated with ACS, eBCS, and tBCS. 2) OOS was simulated
with ACS and the simulated DCS. After these two steps, we
built a parallel corpus between ACS and the simulated OOS.
Finally, 3) a network-based voice converter from ACS to OOS
was built. The overview of these steps is shown in Figure 4.
In the first two steps, the values of the parameters required for
simulation were tuned manually through listening experiments.
This is because DCS and OOS cannot be obtained as acoustic
signals and they exist only mentally in mind.

3Synchronous utterances of identical twins are often perceived as an
utterance of a single speaker because of acoustic resemblance. Participants
judged whether this happened or not with real DCS and simulated DCS.
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Fig. 5: The graphic equalizer of Adobe Audition 2020 with 20 bands, used to determine Ha(ω), He(ω), and Ht (ω)

A. Simulation of DCS with ACS, eBCS, and tBCS
In previous studies, when OOS was simulated manually by

filtering ACS, its transfer function was found to depend on
the phonemic identity of the input segment in ACS, indicating
that the transfer function should be time-variant. In this study,
we firstly attempt to simulate DCS only by filtering ACS,
eBCS, and tBCS separately with different but time-invariant
transfer functions (Ha(ω), He(ω), and Ht (ω) in Figure 4).
If we denote the spectrum of ACS, eBCS, tBCS, and DCS
as Fa(ω, t), Fe(ω, t), Ft (ω, t), Fd(ω, t), respectively, the three
transfer functions are manually designed so that the following
equations are approximately satisfied,

Fd(ω, t) ≈ Ha(ω)Fa(ω, t) (1)
≈ He(ω)Fe(ω, t) = He(ω)Gea(ω, t)Fa(ω, t) (2)
≈ Ht (ω)Ft (ω, t) = Ht (ω)Gta(ω, t)Fa(ω, t), (3)

where Gea(ω, t) and Gta(ω, t) are defined as

Gea(ω, t) ≡ Fe(ω, t)/Fa(ω, t) (4)

Gta(ω, t) ≡ Ft (ω, t)/Fa(ω, t), (5)

which are interpreted as in-body filters representing how ACS
should be modified in a time-variant way to approximate eBCS
and tBCS, respectively. As claimed in previous studies [9],
[10], [15]–[18], the spectral changes observed from ACS to
BCS or OOS are phoneme-dependent, i.e. time-variant, the
two transfer functions of Gea and Gta should be treated as
dependent on t. Since the above approximations will not be
precise enough, however, we sum the three outputs in Figure 4
with adequate weights of α, β, and 1−α−β to realize better
approximation. Finally, DCS is simulated as

Fd(ω, t) = {αHa(ω) + βHe(ω)Gea(ω, t)
+(1 − α − β)Ht (ω)Gta(ω, t)} × Fa(ω, t). (6)

This is how we realized time-variant characteristics of the
transfer function to convert ACS (Fa(ω, t)) to DCS (Fd(ω, t)),
although Ha(ω), He(ω), and Ht (ω) are time-invaraint.

How to optimize Ha(ω), He(ω), Ht (ω), α, and β for
approximation? In this study, as explained above, we did not
realize global and simultaneous optimization, but we estimated
these parameters sequentially. The three transfer functions
were designed separately by a participant of the experiments
using the equalizing module of Adobe Audition 2020 with
20 bands, so that each of the filter outputs of ACS, eBCS,
and tBCS sounded like his/her own DCS. Figure 5 shows the
interface of the equalizing module. Here, his/her reading-aloud
of the special paragraph containing all the kinds of morae
was used as stimulus. After Ha(ω), He(ω), and Ht (ω) were
fixed, the three output signals were summed with weights of
α and β. They were determined through listening experiments
again, where the most adequate set of weights was selected out
of ten candidate sets prepared. After fixing the two weights,
simple listening tests were carried out with all the participants,
where the summed signals with the selected weights were
compared with each of the filter outputs. The former was found
to be always better in quality. All the listening experiments for
designing the filters and fixing the weights were carried out
with the integrated earmuffs explained in Section III.

B. Simulation of OOS with ACS and the simulated DCS

Once the quasi-optimal set of the three transfer functions
and the two weights were fixed, the simulated DCS can be
generated from ACS, eBCS, and tBCS of any input utterance.
As shown in Figure 4, to simulate OOS, Fo(ω, t), ACS was
added to the simulated DCS with weight γ.

Fo(ω, t) = [γ + (1 − γ){αHa(ω) + βHe(ω)Gea(ω, t)
+(1 − α − β)Ht (ω)Gta(ω, t)}] × Fa(ω, t). (7)
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The value of γ was also determined again through listening
tests. Here only the earhook-type speakers were used, not with
the earmuffs, for audio presentation. Since all the optimizations
in Figure 4 had to be made manually and repeatedly through
listening tests, the easy-to-compare environment prepared for
the experiments in Section III was very crucial.

C. Network-based conversion from ACS to OOS

Now, all the parameters were fixed carefully, separately for
each participant in the experiments. With the three types of
microphones and these parameters, any input utterance can
be converted to its OOS, which is simulated OOS to be
exact. Since ACS and the simulated OOS were completely
synchronized, it was easy to build their parallel corpus, with
which, a network-based converter was trained. Functionally
speaking, we expected the network to learn the following time-
variant transfer function through network training.

Fo(ω, t)/Fa(ω, t) = γ + (1 − γ){αHa(ω) + βHe(ω)Gea(ω, t)
+(1 − α − β)Ht (ω)Gta(ω, t)}. (8)

As explained in Section I, the main effect that should be real-
ized by this converter was enhancement of the energy at low
frequency bands as well as modification of some other spectral
properties. Taking this expectation into account, we used a
voice conversion method that can modify source waveforms
based on the log-spectral differences between the source (ACS)
and its target (OOS) [27]. Here, for the source spectrum, DNN-
based prediction of its target was conducted. The log-spectral
differences between the source and the target were calculated
and the amplitude characteristics of the differences were
approximated by the Log-Magnitude Approximation (LMA)
filter [28]. It can convert ACS directly to OOS in a time-
variant way, even without a vocoder. No use of any vocoder
can improve the quality of the converted speech.

D. Participants and material
To evaluate our framework, we recruited seven male and

three female adults as participants, all of whom did not have
any difficulty in hearing and reading aloud. From them, we
recorded a few instances of each of the five Japanese vowels,
and a reading-aloud of the special paragraph. The vowels were
used only to examine the conventional methods, and for our
framework, we used recordings of the special paragraph to
simulate DCS with ACS, eBCS, and tBCS and to simulate
OOS with ACS and the simulated DCS.

The transfer functions and the weights manually designed
separately by each of the ten participants were used to eval-
uate the performance of our method to simulate DCS and
OOS manually. Further, our automatic converter from ACS
to OOS was evaluated by selected participants, who were two
trilinguals. Since the in-body voice transmission in Figure 1 is
language-independent, we evaluated the converter in a cross-
language context. We asked the selected participants to read
aloud a phonemically-balanced set of 40 Japanese sentences
[29], which were used to train a network-based voice converter.
For testing, other 5 Japanese sentences as well as 5 Chinese
sentences and 5 English sentences were read aloud. Testing
sentences were extracted from a multilingual speech corpus
[30], which contains 11 sentence sets of the story of “the North
Wind and the Sun” in 11 languages.

V. Results and discussion

A. Amplitude characteristics of Ha(ω), He(ω), and Ht (ω)
Ha(ω), He(ω), and Ht (ω) were designed separately by each

participant, shown in Figure 6. Regardless of the types of
microphones, LPF was always obtained. The transfer functions
of the designed filters show clearer differences between the
two genders than among the types of microphones. As the
vocal tract is shorter in female, the spectral features at higher
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TABLE I: 10 candidate weight sets prepared for filtered ACS,
eBCS, and tBCS to simulate DCS

α ACS 0 0 0 0 0.2
β eBCS 0.2 0.4 0.6 0.8 0.2

1 − α − β tBCS 0.8 0.6 0.4 0.2 0.6
α ACS 0.2 0.2 0.4 0.4 0.6
β eBCS 0.4 0.6 0.2 0.4 0.2

1 − α − β tBCS 0.4 0.2 0.4 0.2 0.2

frequency bands should be retained even in their DCS. If the
filters designed for male were applied to female recordings, on
some speech segments, their phoneme identity was perceived
as different from the original phoneme identity.

B. Weights for ACS, eBCS, and tBCS to simulate DCS
Table I shows ten candidate weight sets, out of which each

participant selected the optimal one that can simulate his/her
DCS the best. These candidate sets had been prepared through
preliminary tests. All the participants selected a weight set
with α≥0.4, i.e. one of the three sets in bold in the table.
The averages are 0.48, 0.28, and 0.24, meaning that filtered
ACS and filtered BCSes are equally important to simulate
DCS, and that the two types of BCSes are also equally
important to simulate DCS. As described in Section IV-A,
very simple listening tests were conducted to compare the
quality between each of the three filter outputs in Figure 4 and
the simulated DCS, i.e. weighted sum of the three outputs. All
the participants preferred the weighted sum. In this experiment,
however, simultaneous optimization was not made in designing
the three filters and fixing the three weights. The simultaneous
optimization is approximately possible with interactive genetic
algorithms [31], which is one of our future works.

C. Weights for ACS and DCS to simulate OOS
Similar to the experimental setup used in Section V-B, nine

candidate values were prepared for γ, which varied from 0.1
to 0.9 with a step of 0.1. After listening to each of the nine
stimuli, a participant was asked to judge the acoustic similarity
of the simulated OOS to his/her real OOS qualitatively. Here, a
simple three-level scale was used and the three levels indicated
bad, fair, and good. After listening to all the stimuli, the
participant re-evaluated only the good stimuli to select the best
one after intensive listening. We used this two-step strategy to
reduce the time required for the entire listening tests.

In this experiment, not only the stimuli generated with our
proposed method, but also those generated with a previous
study [12] were used, where a simple weighted sum of ACS
and eBCS was used as simulated OOS. This approach can
be realized as a special case of Figure 4, where Ha(ω)=0,
He(ω)=1, Ht (ω)=0, α=0, and β=1. Table II shows the results,
where v1 and v2 mean the stimuli generated by the previous
study and those generated by our proposal, respectively. It
should be noted that the best stimulus was selected out of
the entire stimulus sets of v1 and v2.

It is found that the best stimulus was always one of the v2
candidates, which clearly indicates superiority of our method

TABLE II: Quality assessment to fix the value of γ
v1:previous method [12], v2:proposed method

×:bad, △:fair, ⃝:good, ⋆:best
M02 M03 M04 M05 M06

γ v1 v2 v1 v2 v1 v2 v1 v2 v1 v2
0.1 × ⃝ × ⋆ △ △ × × × ⃝
0.2 × ⋆ × ⃝ × △ × △ × ⋆
0.3 × △ × ⃝ △ △ × ⃝ × ⃝
0.4 × ⃝ × △ × ⃝ △ ⃝ × ⃝
0.5 × × × △ △ ⋆ △ ⋆ × ⃝
0.6 × ⃝ × △ △ ⃝ △ ⃝ × △
0.7 × ⃝ × △ ⃝ ⃝ △ ⃝ × △
0.8 △ ⃝ × × ⃝ ⃝ ⃝ ⃝ △ △
0.9 △ △ × × ⃝ △ ⃝ ⃝ △ △

M07 M08 F01 F02 F03
γ v1 v2 v1 v2 v1 v2 v1 v2 v1 v2

0.1 ⃝ ⃝ × ⋆ × ⋆ × × × △
0.2 ⃝ ⃝ × △ × ⃝ △ △ × ⃝
0.3 △ ⃝ × △ × ⃝ △ ⃝ × ⋆
0.4 ⃝ ⃝ × △ × ⃝ △ ⃝ × ⃝
0.5 △ ⋆ △ △ × ⃝ △ ⃝ △ ⃝
0.6 ⃝ ⃝ △ △ △ × △ ⃝ × ⃝
0.7 ⃝ ⃝ △ △ ⃝ △ △ ⋆ × △
0.8 ⃝ ⃝ △ △ △ × ⃝ ⃝ × ⃝
0.9 ⃝ ⃝ △ △ × × ⃝ ⃝ △ △

to the previous method. The averaged value of γ for the best
stimuli is 0.35, meaning that the best weight for DCS is 0.65.
It is very interesting that the simulated DCS is unexpectedly
very dominant in the participants’ OOS. This may be a reason
why some people even doubt that their recorded voices are
generated from their mouths [1]–[3].

D. Performance of the network-based converter

The converter was assessed in two ways, objectively and
subjectively, by using ACS and two kinds of simulated
OOS, i.e. manually simulated OOS (mOOS) and automati-
cally converted OOS from ACS (aOOS). Objective assess-
ment was conducted by calculating the mel-cepstrum dis-
tortions in three cases of (ACS, aOOS), (ACS, mOOS),
and (aOOS, mOOS). Here, for two time-aligned sequences
of mel-cepstrums, X=(x1, x2, , , .xT ) and Y=(y1, y2, , , .yT ), the
distortion is quantified in the following equation, where 24
dimensional cepstrums were extracted with STRAIGHT [32].

Mel-CD[dB] =
1
T

T∑
t=1

10
ln10

√
2| |xt − yt | |2. (9)

On the other hand, subjective assessment was made by having
two trilingual participants, one male and one female, listen
to their ACS and the two kinds of simulated OOS. Since real
OOS of a speaker can be heard only by the speaker, subjective
assessment had to be made in a speaker-closed mode.

The original 15 utterances, 5 for each of Japanese, Chinese,
and English, were recorded from the two trilingual speakers,
and they were used as ACS. All the utterances were converted
to mOOS and aOOS. Figure 7 shows the averaged amplitude
of the mel-cepstrum distortion over the 5 utterances for each
language. The upper figure shows the results of the male
speaker and the lower shows those of the female speaker.
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male participant

female participant

Fig. 7: Objective assessment of the converter

Fig. 8: Subjective assessment of the converter

As was highly expected, the results are totally language-
independent, but clear differences are found between the two
genders. The male speaker shows larger distortions in (ACS,
aOOS) and (ACS, mOOS) compared to the female speaker.
This is reasonable because, as shown in Figure 6, in male
speakers, a larger potion of the ACS spectrum has to be
suppressed to simulate DCS, while it has to be retained in
female speakers. The performance of approximation by the
network-based conversion is assessed objectively by aOOS-
mOOS. The Mel-CD of the male speaker is so small as about
3.5 [dB], and we can say that a good enough performance of
approximation was realized for this speaker. According to t-
test, however, the performance was found to be significantly
worse with the female speaker (p<0.001, See Figure 7). We
have to examine this tendency in the future work by using a
larger number of speakers of both genders.

From the objective fact that ACS-mOOS is much larger and
aOOS-mOOS is significantly smaller in the male speaker, it
is expected that better scores of subjective assessment will
be obtained from the male speaker. To confirm this, for each
of the 15 utterances, ACS, aOOS, and mOOS were randomly
presented and the two participants were asked to order the
triplet in terms of similarity to their real OOS. Figure 8 shows
the percentage of ACS, aOOS, and mOOS being ranked as n-
th. As expected, the male participant preferred aOOS, while
the female participant preferred mOOS. The network-based
conversion has to be tuned more to the female speaker.

From these results, we can claim at least that our framework
of simulating OOS as weighted sum of DCS and ACS, where
DCS is simulated as weighted sum of filtered ACS and
BCSes, is more effective than the previous method [12], but
fine tuning is still needed, which may be made possible by
simultaneous optimization of the filters and the weights, and
by network topology optimization for conversion even with a
larger number of training speakers.

VI. Conclusions
In this paper, based on recent findings on in-body transmis-

sion of voices from the oral cavity to the inner ear, a novel
framework was proposed and tested. Firstly, the framework
simulated body-conducted speech, which is theoretically de-
fined as what remains after subtracting air-conducted speech
from one’s own speech. The simulation used three source
signals, i.e. air-conducted speech, bone-conducted speech de-
tected near to the ear canal, and bone-conducted speech de-
tected on the larynx. The three source signals were processed
with three individual filters which were manually designed so
that the filtered speech can approximate the body-conducted
speech. To realize better approximation, the three kinds of the
filtered speech were summed with adequate weights. Secondly,
the proposed framework simulated one’s own speech by adding
air-conducted speech to the simulated body-conducted speech
with an adequate weight. For designing the filters and fixing
the weights, a special listening device was prepared to make
repeated listening tests highly reliable. After building a parallel
corpus between air-conducted speech and its corresponding
simulated one’s own speech, finally, we built a network-based
voice conversion system that converts the former speech to
the latter speech. Although development of the system was
preliminary, validity of the proposed framework was shown
experimentally even in cross-language contexts.

As future work, we’re interested in fine tuning of each step
conducted in this study and in applying the system to speech
applications. For detail, we will carry out 1) optimizing the
filters and the weights simultaneously, 2) optimizing the net-
work topology of the conversion system with a larger amount
of training speakers, 3) training the conversion system so that it
can run in a speaker-independent way, 4) assessing the system
using a larger number of participants, and 5) introducing
the system to speech applications, where users imitate model
speakers in language learning and drama training, and model
singers in vocal training.
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