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Abstract—There are many deep learning (DL)-based models 

with the contact sensors (e.g., throat microphone, TM) to 

reconstruct the speech from the vibration signals of the larynx. The 

TM can obtain robust speech information than an air-conducted 

microphone (ACM) sensor in noisy environments. However, it 

needs tight contact with the user’s skin, which causes discomfort 

for users. Therefore, we assume that a non-contact sensor allows 

users to have a better experience. Following this concept, the DL-

based models with a non-contact sensor, a laser-Doppler 

vibrometer (LDV), are proposed to reconstruct the speech from the 

vibration signals of the larynx. Notably, the recognition and speech 

synthesis modules were adopted in the proposed system. The 

experimental results showed that, on average, the word error rate 

(WER) of the recognition module in the proposed system achieves 

similar performance as TM did in both quiet and noisy testing 

conditions. Furthermore, the listening test showed that the 

synthesis module’s reconstructed speech provided a higher 

preference rate and naturalness than an original recorded speech 

of the LDV sensor. These results suggested that the proposed 

system is a potential approach to reconstruct speech from the 

vibration signals of the larynx with DL technology, captured by a 

non-contact LDV sensor. 

 

I. INTRODUCTIONS 

A previous study [1] indicated that the entire human head 

vibrates while speaking, especially the skin of the larynx. In the 

meantime, the vibration of the larynx produces essential 

information regarding the fundamental frequency (F0) of speech 

[2]. This F0 provides rich data for speech intelligibility [3], 

including linguistic cues such as the voicing period [4] and 

lexical boundary [5]. Based on this concept, many contact-based 

sensors, such as a body-conducted microphone (BCM) and 

throat microphone (TM), are used to record the vibration of the 

larynx and reconstruct (or recognize) speech using deep learning 

(DL) models [6, 7].  

The TM sensor detects the voice vibration passed by the bone 

and skin through the accelerometer (or uses a special mechanism 

design with an acoustic sensor), in which the signals are less 

affected by surrounding noise than a conventional air-conducted 

microphone (ACM) [8]. Several successful applications and 

studies have been conducted. For instance, Mcbridge et al. 

proved that the TM could catch the vibration while speaking 

with the sensor attached to different parts of the head. The results 

showed that the foreheads and temples could achieve the highest 

speech intelligibility and quality [9]. Liu et al. used a DL-based 

approach to transfer recorded speech of TM to acoustic-based 

speech to enhance speech quality. The results showed that the 

converted speech could improve the recognition performance of 

the automatic speech recognition (ASR) system in quiet and 

noisy conditions [10]. Additionally, because the skin attenuates 

high-frequency voice components, the accelerometer type TM 

cannot acquire high-frequency speech information. Therefore, 

some studies have used bandwidth extension technology to 

reconstruct high-quality speech from recorded signals of the 

accelerometer type TM, such as [11]. Conversely, Zheng et al. 

[6] combined the signal of ACM and the accelerometer type TM 

that attached to the larynx skin to catch the vibration signal (i.e., 

robust against external noise). This was to train a deep 

bidirectional using long short-term memory neural network to 

enhance these input speeches further. The experiment results 

showed that the proposed method provided higher speech 

quality performance than original noisy speech. 

Although the TM was shown to have potential benefits for 

speech signal processing systems in noisy conditions, there is 

still room for improvement. More specifically, the TM sensor 

requires tight contact with the user’s skin, which may cause 

discomfort and is easily affected by moisture [9]. Therefore, a 

non-contact sensor, such as a laser-Doppler vibrometer (LDV), 

could be used to release the TM sensor to alleviate the above 

issues. The LDV sensor can measure the vibration frequencies 

of moving targets based on a non-contact approach, and it has 

been used to observe the vibration of objects in the industry [12] 

and medical field [13, 14]. Recently, several studies [15-19] 
have used LDV to record speech from vibration objects, and the 

results have proven that the LDV sensor provides advantages of 
non-contact, long-distance, and noise robustness in speech 

processing tasks. The major problem of LDV sensors is that the 

high-frequency part of speech will be missing depending on the 

object material; hence, it will decrease the speech quality in 

actual application conditions. Many studies used the DL 

technologies [16, 20] to reconstruct the high-frequency part to 

improve the speech quality to alleviate this issue. In addition, 

Sun et al. and Xie et al. used an LDV sensor to record the 

vibration signals of speakers’ larynx skin like the TM did and 
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used these recorded signals as auxiliary features for the ASR 

system. The results showed that the auxiliary features could 

significantly improve recognition performance under quiet and 

noisy test conditions [21, 22]. Although the above studies [15-

19] proved that the LDV sensor could capture speech signals 

from rigid objects around us (e.g., a glass window, metal plate, 

plastic box), there was no research to explore whether the speech 

could be reconstructed through the vibration signals of the 

larynx, captured by LDV sensor only. Note that we assume that 

the signals obtained from the larynx will be more robust than 

targeting objects around us, because it is the voice source. 

Therefore, the main purposes of this research are (1) to study the 

potential to reconstruct speech recorded from the vibration 

signals of the larynx by a non-contact LDV sensor via DL 

technology; (2) to compare the performance of a non-contact 

LDV sensor with the ACM and TM sensor in the quiet and noisy 

conditions. 

The remainder of this paper is organized as follows. First, the 

proposed system is introduced in Section II. The experimental 

design and results are presented in Sections III and IV, 

respectively. Finally, Section V summarizes the findings.  

 

II. PROPOSED SYSTEM 

The proposed speech reconstruction system is shown in Fig. 

1, where 𝑙(𝑡) was the vibration signals of the larynx recorded 

by the LDV sensor, 𝑡(𝑡) was recorded by the TM, and 𝑎(𝑡) 

was recorded by the ACM, respectively. For the LDV sensor, 

the laser beam is divided into an object beam and a reference 

beam by a beam splitter. The object beam focuses on the surface 

of the target measurement point (speaker’s larynx in this study), 

and the corresponding backscattered beam with a Doppler shift 

(𝑓𝐷) is reflected in the beam splitter. Meanwhile, the reference 

beam passes through a Bragg cell to produce a frequency shift 

(𝑓𝐵 ). Subsequently, these two beams (i.e., 𝑓𝐵  and 𝑓𝐷 ) are 

mixed, and the photodetector converts the frequency shift (i.e., 

𝑓𝐵+𝑓𝐷 ) into voltage signals. Finally, these converted voltage 

signals were used to calculate the velocity and obtain 

information on the vibration of the target measurement point. A 

detailed description of the LDV sensor can be found in [23, 24]. 

Next, the other two recorded signals, 𝑡(𝑡)  and 𝑎(𝑡) , were 

combined with 𝑙(𝑡)  to a set of 𝑠(𝑡)  to train the proposed 

system. More specifically, the recognition module of the 

proposed system was trained by 𝑠(𝑡) with the speech texts (𝑇𝑗), 

where j is the frame index. During training stage, the Kaldi ASR 

system [25] was used to train the recognition module, and the 

Kaldi data augmentation methods, such as changing the speed 

and VTLN [26], was used to increase the training set 15 times. 

Note that there were two main models, the acoustic model (AM) 

and the language model (LM), included in the ASR system. In 

AM, we used Mel-frequency cepstral coefficients (𝑠𝑗
𝑀𝐹𝐶𝐶) [27], 

cepstral mean and variance normalization [28], and the i-vector 

[29] features to train a GMM-HMM LDA+MLLT system, and it 

would produce a distribution over from a monophone target to 

triphone target. Meanwhile, the time-delay neural network 

(TDNN) [30] model was used to predict the probability of 

phoneme for the input speech and to find possible words in the 

pronunciation dictionary, where the 13 layers of the TDNN and 

128 sampling points of each layer were used in this study. 

Subsequently, it built the PPG features [31] ( s𝑗
𝑃𝑃𝐺)  of the 

speech based on AM. For the LM, we trained with the lexicon 

of Taiwan Mandarin hearing in the noise test (MHINT) [32], 

which consisted of over thousands of Chinese words. It predicts 

the possibility of the next word from the word predicted by AM, 

 

Fig. 1. Block diagram of the proposed reconstruction system from the vibration of larynx skin, which is recorded via the LDV sensor. 𝑙(𝑡), 𝑡(𝑡), and 𝑎(𝑡) were 

the signal recorded by LDV, ACM, TM respectively. 𝑠(𝑡) was the combined signal of three sensors, and 𝑇𝑗 was the speech text. 𝑠𝑗
𝑀𝐹𝐶𝐶, 𝑠𝑗

𝑃𝑃𝐺, were the MFCC 

features and PPG features in recognition module, �̂�𝑗 was the predicted Mel-spectrum of 𝑇𝑗, 𝑦(𝑡) was the target speech, and the component 𝑙′(𝑡) and 𝐿′(𝑡) 

represent the LDV testing set and the output of our proposed system. 
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where the trigram is used in our LM, shown in (1). More 

specifically, the  𝑝(𝑤1
3)  means the conditional probability of 

three words likely to be together, which is the multiplication of 

the probability that 𝑤1  occurs (𝑝(𝑤1)), 𝑤2  occurs when 𝑤1 

occurs (𝑝(𝑤2|𝑤1) ), and 𝑤3  occurs when both 𝑤1  and 𝑤2 

occur  𝑝(𝑤3|𝑤1, 𝑤2) . Finally, the recognition module of the 

proposed system will predict the text (�̂�𝑗) from the input signals 

𝑠(𝑡). 
 

𝑝(𝑤1
3) = 𝑝(𝑤1) ∗ 𝑝(𝑤2|𝑤1) ∗ 𝑝(𝑤3|𝑤1, 𝑤2) (1) 

 

Next, the utterances of the target speaker (recorded by ACM 

sensor) were used to train the synthesis module of the text-to-

speech (TTS) system, which the Tacotron 2 [33] technology be 

used in this study. First, the speakers’ ACM utterances y(𝑡) 

and labeled speech text (𝑇𝑗) were used as the training data for the 

Tacotron 2 [33] model. Tacotron 2 used an end-to-end encoder 

and decoder with an attention mechanism to make the neural 

network learn the tempo and intonation of the subject from the 

text. The primary mechanism is illustrated in (2) to (4).  

 

𝛼𝑡(𝑛) = exp(ℯ𝑡,𝑛) / ∑ exp (ℯ𝑡,𝑚)

𝑁

𝑚=1

 (2) 

ℯ𝑡,𝑖 = 𝑣𝑇 tanh  (𝑊𝑦𝑡−1 + 𝑉ℎ𝑖 + 𝑈𝑓𝑡,𝑖 + 𝑏) (3) 

𝑓𝑡,𝑖 = 𝐹 × 𝛼𝑡−1(𝑛) (4) 

 

In the encoder, character embedding sequences are extracted 

from the input text sequences, and the encoded values are 

decoded with an attention-based LSTM decoder to predict the 

Mel-spectrogram (�̂�𝑗) features from the input speech text (�̂�𝑗). 

In the attention mechanism, the weight, 𝛼𝑡(𝑛), represents the 

probability of text energy and is calculated as follows; where 𝑡 

is the timestep, W, V, U, v, and b were trainable attention 

parameters, ℯ𝑡,𝑖 represents the energy, 𝑦𝑡−1 is the hidden state 

of the previous decoder layer, ℎ𝑖  is the i-th character 

embedding from hidden encoder state, 𝑓𝑡,𝑖 stands for a location-

sign calculated by a convolution 𝐹 and the previous attention 

weight. Then this TTS system will learn the distribution of the 

Mel-spectrogram for the character, and we need a vocoder to 

transform the Mel-spectrogram into speech.  

Following, we used the predicted Mel-spectrogram �̂�𝑗  to 

synthesize speech with the vocoder of WaveGlow, which was 

proven that it could provide fast and more high-quality speech 

synthesis [34] than other classical waveform synthesis 

approaches. The WaveGlow vocoder was trained using the same 

acoustic-based utterances recorded by the target speaker. For the 

used WaveGlow vocoder in this study, the sampling rate was 16 

kHz, the parameters of the Mel-spectrograms filter length was 

1024, hop length was 256, and window size was 1024. Next, the 

12 steps of flows were used in this study with a transformation 

function of eight-layer architecture, which was similar to 

WaveNet [35], to learn the distribution of our target speech. A 

detailed description of WaveGlow can be found in [34].  

In the application phase, the speaker’s laryngeal vibration 

signals 𝑙′(𝑡)  as the input signals of the proposed system, 

recorded by the LDV sensor. Next, the trained modules of the 

proposed system were used to recognize and synthesize speech 

𝐿′(𝑡) from 𝑙′(𝑡) directly. 

 

III.  METHODS 

A. Materials 

The same person recorded the training and testing utterances 

with an air conduction microphone (ACM) (GRAS type 40PH) 

[36], throat microphone (TM) (GRAS 40LS) [37], and laser-

Doppler vibrometer (LDV) (Optomet Vector Star) [38] sensors, 

respectively. This study protocol was approved by the 

Institutional Review Board (IRB) (YM110144E) of National 

Yang Ming Chiao Tung University. The experimental setup was 

shown in Fig. 2. The LDV was set one meter away from the 

larynx of the speaker, a TM was attached on the left side of the 

speaker’s throat, and an ACM was set 15 cm away from the 

speaker’s mouth. A background noise source, 𝑛(𝑡), was set 1.5 

meters away from the speaker for the noise robustness test. Note 

that the LDV sensor was a class two laser with a wavelength of 

632.8 nm, which would not harm the eye unless a person 

deliberately stared into the beam and had no risk to the skin. 

This experiment was conducted in an audiometric room to 

ensure the credibility of the TM and ACM data. A total of 3840 

(320 utterances ×  4 times ×  3 sensors) utterances as the 

training set, recorded in quiet condition, where the corpus list 

was adopted from the Taiwan Mandarin hearing in the noise test 

[32]. Meanwhile, the other 270 (30 utterances × 3 sensors × 

3 conditions) were used as a testing set. These were recorded in 

three conditions: one was quiet condition, and the other two 

conditions were in the IEEE speech shape noise (SSN) and 

constructions noise at 65 dB SPL level. Note that these 

utterances were randomly selected from the list of the training 

set and asked the speaker to repeat these utterances. Fig. 3 shows 

an example of the spectrogram of the above test conditions in 

quiet and noisy conditions, respectively. Notably, the non-

contact LDV sensor obtained suitable vibration signal quality of 

the larynx and was less affected by the background noise (red 

circle) than ACM and contact TM sensor. However, the middle- 

 
Fig. 2. The experimental setup of data recording in this study. 𝑙(𝑡), 𝑡(𝑡),  𝑎(𝑡) 

represent the LDV signals, TM signals, ACM signal, and 𝑛(𝑡) represent the 

background noise. 
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to high-frequency regions is empty. Therefore, the DL 

technology could be needed to reconstruct speech to improve 

speech quality from the recorded information by LDV sensor. 

 

B. Procedure 

This study aimed to ensure the capability of reconstruction 

speech from the vibration signals of the larynx by LDV sensor 

with DL technology; meanwhile, the ACM and TM sensor were 

used as the comparison in quiet and noisy test conditions. 

Therefore, first, the training set (described in the section of 

Materials) was used to train the recognition and synthesis 

models in the training phase. The detailed descriptions of 

training steps were described in Section II. (Proposed System). 

Subsequently, in the application phase, the trained models of the 

proposed system were used to reconstruct the speech 𝐿′(𝑡) 

from the speech 𝑙′(𝑡) derived from the LDV sensor. 

  Following this, we conducted the objective and subjective 

listening test to ensure the performance of the proposed system, 

in which the ACM and TM sensors were used as the comparison. 

Notably, the word error rate (WER), which represents the rate of 

deletion, substitutions and insertions in the number of chinese 

words in the reference sentences, was used to evaluate the 

recognition module of the proposed system in objective 

evaluation. The testing set (described in the Materials section) 

was used to evaluate the performance of the proposed system in 

quiet and noisy test conditions. Meanwhile, the ACM and TM 

sensors were used as the comparison simultaneously. Next, the 

listening test evaluates the naturalness and speech preference 

between the synthesis module of the proposed system and the 

original LDV recorded speech. We recruited six subjects to enter 

the perceptual listening test, which included 45 audio files of 15 

random utterance sets (15 original LDV speeches, 15 

reconstructed speeches of the proposed system, and 15 ACM 

speeches of the target speaker) with the same volume. By each 

utterance, each subject would listen to the ACM speech to build 

the first impression. Then, subjects would listen to the other 

speech in random order and choose the speech with better 

naturalness and preference between the original LDV and 

reconstructed speech by the synthesis module. Note that for 

speech naturalness, we asked, “Which speech do you think is 

more natural?” For speech preference, we asked, “Which speech 

do you prefer?”. 

 

IV. RESULTS AND DISCUSSION 

A. Recognition performance 

  Table I shows the WER (%) of the recognition module in the 

proposed system in three test conditions. In quiet test conditions, 

the performance of the proposed system achieves good 

performance (0%), similar to the performance of ACM and TM 

sensors via the same recognition module in duplicate test 

conditions (speaker repeats the utterances). These results prove 

that a non-contact LDV sensor can obtain enough speech 

information for the recognition module to recognize the speech. 

Moreover, the vibration-based speech signals of the larynx and 

the effective recorded signals were less with F0 under 1000 Hz. 

Therefore, it indicated that a lower sampling rate LDV devices 
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Fig. 3. An example of the spectrogram of the recorded signal by ACM, TM and LDV sensors. (a) to (c) were recorded by ACM, TM and LDV sensor in quiet 
conditions, respectively; (d) to (f) were recorded by ACM, TM and LDV sensor in IEEE SSN noisy condition, respectively; and (g) to (i) were recorded by ACM, 

TM and LDV sensor in constructions noisy condition, respectively. Note that the background noise level was 65 dB SPL in this study. 
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could reduce hardware setup costs for real application scenarios 

in future studies. 

  Conversely, Table I shows the WER of the recognition 

module in IEEE SSN background noise conditions. According 

to the results, the performance of ACM was 16.59%, TM sensor 

was 1.46%, and LDV sensor was 3.9% in the SSN background 

noise, respectively. As for the construction noise, the LDV 

achieves 7.32%, and TM reaches 5.37%. However, ACM only 

gets 24.88%. The result above shows that in noise conditions, 

LDV and TM have greater noise robustness than ACM. The one-

way analysis of variance (ANOVA) [39] with Tukey HSD post-

hoc comparison [40] was used to analyze the result of the ASR 

error rate for three sensors under two noise conditions. The 

ANOVA results confirmed that the error rate was differed 

significantly among different sensors, with the F=13.872 under 

SSN and F=8.641 (p<0.05) under construction noise. The post-

hoc comparisons value further indicated that the ACM sensor 

was significantly different from LDV and TM sensors. 

Meanwhile, the difference between LDV and TM was not 

significant with the p-value>0.9. In other words, it implies that 

this non-contact LDV sensor can provide the same performance 

as the contact TM sensor in noisy conditions. Hence, the LDV 

sensor could be a promising approach to catch the vibration 

signals of the larynx to perform the advantage of noise-robust in 

the future.  

 

TABLE I  

The WER (%) of the recognition module of the purposed system in quiet and 

two noisy test conditions. 

Conditions ACM TM LDV 

Quiet 0% 0% 0% 

SSN 16.59% 1.46% 3.9% 

Construction 24.88% 5.37% 7.32% 

 

B. Spectrogram analysis 

  Fig. 4(c) shows an example of synthesis speech from the 

proposed system. The input signals are shown in Fig. 4(a). This 

example indicates that the synthesis speech had a similar speech 

structure to that of the target speech (i.e., recorded by an ACM), 

such as red arrow and circle parts in Fig. 4. From this example, 

the recognized text of the recognition module can be synthesized 

by the synthesis module to reconstruct more detailed 

information to restore the speech quality, especially in the 

middle- and high-frequency regions. Therefore, the proposed 

system could provide a more natural speech than an original 

recorded speech from the LDV sensor for listeners. 

 

C. Listening test 

  The listening test denotes the benefits of our proposed system 

in speech naturalness and preference. From the average results, 

88% of the reconstructed speeches were preferred by all subjects 

with normal hearing; meanwhile, the subjects also agreed that 

the reconstructed speech has better naturalness in 82% of 

utterances. We think that subjects’ preferences might be affected 

by attenuation in the high frequency of larynx vibration signals, 

which made subjects unable to properly hear LDV speech sound 

to affect the speech quality. Compared to the original recorded 

LDV speech, the higher frequency information (e.g., after 1k Hz) 

is reconstructed by the DL technology, such as in Fig. 4(c). 

Hence, it would help listeners hear clearer and detailed speech 

information to increase their naturalness and preference. 

  In summary, the above results demonstrate that the proposed 

system with LDV signals could acquire powerful features from 

the larynx. Then reconstruct a highly intelligible and suitable 

speech quality for listeners. The naturalness did not perform 

perfectly, perhaps due to the TTS system, which still has room 

for improvement in our future studies. However, this study’s 

primary purpose is to examine the potential to reconstruct speech 

recorded from the vibration signals of the larynx by a non-

contact LDV sensor via DL technology. Thus, fine-tuning 

synthesis module was not the current focus of this study. 

Therefore, we can further record more ACM data and fine-tune 

the synthesis module to improve the synthesis speech quality. 

Additionally, we believe that the speech naturalness and quality 

can reach higher performance than the current version in future 

studies. On the other hand, this proposed system still have some 

limitations. There is no such a small size and low-cost 

commercial LDV device currently. Hence, the hardware design 

of this non-contact optical speech reconstruction system still 

needs to be studied. However, with the advancement of 

semiconductor technology in the future, we believe this 

miniaturized and low cost sensor can be put into practice in 

speech processing products. 

 

V. CONCLUSIONS 

  We studied the potential of a speech reconstruction system 

with the DL technology based on the vibration signals of the 

larynx, recorded by an LDV sensor; meanwhile, the ACM and 

 

Fig. 4. Comparison of spectrogram between (a) recorded speech by LDV, (b) 

recorded speech by ACM, and (c) reconstructed speech by the proposed system 

in our study. More samples of reconstructed speech are available at 

“https://reurl.cc/bXYqXl”. 
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TM sensors were used for comparisons. The experimental 

results showed that, on average, the recognition module of the 

proposed system (LDV sensor) provided lower WER 

performance in quiet and noisy testing conditions. This was 

similar to the TM sensor in the same recognition module. 

Conversely, the LDV and TM sensors provided better 

performance than the ACM sensor in noisy testing conditions 

(Table I shows the detailed results). Furthermore, the listening 

test results indicated that the speech synthesis module of the 

proposed system provided suitable preferences and naturalness 

rate with the target speaker, compared to the original LDV 

recorded speech. These findings suggested that the vibration 

signals of the larynx, recorded by the LDV sensor, are potential 

speech features for speech reconstruction applications in the 

future. 
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