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Abstract—As users increasingly rely on cloud-based computing
services, it is important to ensure that uploaded speech data re-
mains private. Existing solutions rely either on server-side meth-
ods or focus on hiding speaker identity. While these approaches
reduce certain security concerns, they do not give users client-
side control over whether their biometric information is sent to
the server. In this paper, we formally define client-side privacy
and discuss its unique technical challenges requiring 1) direct
manipulation of raw data on client devices, 2) adaptability with
a broad range of server-side processing models, and 3) low time
and space complexity for compatibility with limited-bandwidth
devices. These unique challenges require a new class of models
that achieve fidelity in reconstruction, privacy preservation of
sensitive personal attributes, and efficiency during training and
inference. As a step towards client-side privacy for speech recog-
nition, we investigate three techniques spanning signal processing,
disentangled representation learning, and adversarial training.
Through a series gender and accent masking tasks, we observe
that each method has its unique strengths, but none manage to
effectively balance the trade-offs between performance, privacy,
and complexity. These insights call for more research in client-
side privacy to ensure a safer deployment of cloud-based speech
processing services.

I. INTRODUCTION

Users increasingly rely on cloud-based machine learning
models to process their personal data [1–7]. For example,
in cloud-based automatic speech recognition (ASR) systems,
audio data recorded on client-side mobile devices are typically
uploaded to centralized servers for server-side processing [5–
8], which enables general server-side ASR models to improve
over time and enjoy economies of scale. However, there is
growing concern that sending raw speech data to the cloud
leaves users vulnerable to giving away sensitive personal
biometric information such as gender, age, race, and other
social constructs [9].

In order to have full control over their privacy, users should
be able to encrypt their data themselves before uploading to
downstream applications. We refer to this type of privacy
as client-side privacy, which requires removing sensitive
information on the client device while keeping the resulting
data compatible with cloud-based services. For example, for
a cloud-based ASR service, a client-side privacy algorithm
needs to remove biometric information from raw speech data
while keeping the resulting audio signal useful for training the
ASR model on the cloud.

As a step towards achieving client-side privacy for speech
data, we contribute the following in this work:

1) We formally define client-side privacy and describe its
unique technical challenges requiring 1) direct manipu-
lation and regeneration of raw data on client devices, 2)
adaptability with a broad range of general server-side
processing models, and 3) low time and space com-
plexity for compatibility with limited-bandwidth client
devices.

2) We study three different client-side privacy approaches
for speech: signal processing, disentangled representa-
tion learning, and adversarial training.

3) We conduct experiments on protecting gender and accent
information for downstream ASR systems and provide
an empirical comparison of current approaches.

We find that each of our three approaches performs well
on a subset of metrics, and quantify remaining areas for
improvement using multiple privacy metrics. Based on these
insights, we propose several extensions for future work and
call for more research in client-side privacy to ensure safe
cloud-based speech processing.

We proceed by discussing related privacy algorithms in
Section II. In Section III, we formalize client-side privacy and
describe its unique technical challenges. Then, we describe our
client-side privacy approaches for downstream ASR in Section
IV and detail the experiments in Section V. Finally, we sum-
marize our results and propose future directions in Section VII.
All our code and other supplementary material can be found
at https://github.com/peter-yh-wu/speech-privacy.

II. RELATED WORK

A. Client- and Server-side Privacy

One way to view privacy algorithms is by whether they
preserve privacy on the client-side, the server-side, or both.
Client-side algorithms execute operations on the user’s local
device, and server-side algorithms run on a remote server [10–
12]. For example, one way for cloud services to strengthen data
privacy is by encrypting on the client-side and decrypting on
the server-side [13]. For a privacy algorithm to be client-side
only, all operations must run on-device without any additional
work needed on the server.

Based on these definitions, we can categorize existing ways
to preserve privacy in machine learning models. Currently,
utilizing cryptography algorithms like secure multi-party com-
putation (SMC) and fully homomorphic encryption (FHE)
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requires both client and server-side components [14, 15].
Other popular approaches like federated learning and Private
Aggregation of Teacher Ensembles (PATE) require both client
and server-side modifications as well [11, 12, 16]. Server-
side only approaches also exist, including differentially private
SGD (DP-SGD) and global differential privacy [17, 18]. We
identify two types of approaches that are client-side only:
(1) local differential privacy and (2) methods we refer to
as client-side transforms. We define client-side transforms
as algorithms that anonymize sensitive information on-device
while preserving content needed for downstream tasks. In
other words, client-side privacy can be obtained using perfor-
mant client-side transforms. We note that being entirely on-
device, client-side transforms can be used in conjunction with
the aforementioned privacy algorithms by simply applying
the client-side transforms first. All three approaches that we
study in this paper are client-side transforms, as detailed in
Section III-A. We observe that client-side transforms are not
constrained by trade-offs inherent in local differential privacy.
Figure 1 summarizes the aforementioned categorization of
privacy algorithms.

We note that many client-side transforms exist for down-
stream tasks simpler than ASR. For example, for the down-
stream task of storage, client-side encryption is sufficient [19].
In contrast, complex downstream tasks like ASR require that
the output of the client-side transforms preserve complex
content like transcribable audio. Thus, a challenge arises
from ensuring that this resulting content also lacks sensitive
information like biometrics. Other vulnerabilities like lexical-
based ones and sensitive contextual information can also be
protected using client-side transforms [20–22]. Since methods
like changing language usage can mitigate these vulnerabilities
much more easily than biometrics in speech, we focus on
client-side privacy for downstream speech tasks here [9, 23].

Fig. 1: Privacy approaches. Unlike other algorithms, our client-
side transforms are housed entirely on the client side and
circumvent trade offs inherent in differential privacy.

B. Privacy-preserving Speech Processing

ASR models are getting larger and more powerful, making
the case for putting them on the server side stronger [24].
Since the best ASR models are currently on the server side,
measures must be taken to ensure user data sent to the server
remains private.

Early research on privacy for speech data has focused on
voice encryption, which aims to make the original audio
hard to recover from the encrypted data [25–27]. We note
that these methods cannot be only on the client side since
they require the receiver to decrypt the signal. Another more
recent direction focuses on hiding speaker identity [28–34].
A range of methods relying on server-side operations have
been proposed, including rearranging audio segments on the
server [31] or leveraging server communication protocols [32].
Similar to research in voice encryption, these studies, to our
knowledge, do not address the privacy of sensitive information
beyond speaker identity like race, gender, or accent.

Speaker anonymization generally refers to approaches
that hide speaker identity on the client side [29, 34, 35].
Namely, these works leverage voice conversion techniques to
transform raw speech into that of another speaker [28, 29, 33–
35]. Current approaches are predominantly neural, utilizing
adversarial, disentanglement, or other encoder-decoder-related
architectures [29, 30, 33–39]. Since voice conversion has
already shown success in anonymizing speaker identity, our
client side transforms in this work extend these ideas. Among
related work, several address biometric information like gender
[30, 38–42], but to our knowledge only two evaluate on
complex downstream tasks like ASR [30, 42]. Since both of
these works report high ASR error rates, namely word error
rates (WER) above 60% on LibriSpeech [43], they are unable
to maintain downstream performance while preserving privacy.
In our paper, we study three distinct approaches that achieve
lower WER while preserving privacy.

We focus on complex downstream tasks like ASR in this
work since differential privacy or on-device approaches may
be preferable for simpler tasks like classification [44–47]. In
Section V, we also show that differential privacy is not suitable
for ensuring privacy in downstream ASR tasks. Additionally, it
is much easier to anonymize speaker identity than biometrics
like gender, since the former generally requires a much smaller
user data distribution shift than the latter [48]. Thus, in this
paper, we study how well our client-side transforms can
anonymize gender and accent, being the first to our knowledge
to explore the latter. We note that speaker anonymization is
a subtask of our client-side privacy task defined in Section I
and detailed below.

III. CLIENT-SIDE PRIVACY

As defined in Section I, client-side privacy refers to privacy
obtained only via on-device operations, which remove sensi-
tive information while preserving content needed for down-
stream tasks. We proceed to formalize the problem statement
in Section III-A and discuss the technical challenges in Section
III-B.

A. Problem Statement

We start with a set of users U each of which has access to a
client-side device mu, u ∈ U . On each client-side device, data
xu is collected which potentially contains information about
their private attributes yu such as gender, age, race, or accent.
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While it is ideal to leverage shared data collected at a large
scale across users, it is also imperative to prevent leakage of
private attributes yu outside of the client’s device. Therefore,
the goal in client-side privacy is to learn an encrypted signal
x′u from xu using a privacy-preserving function fθ : xu → x′u
with parameters θ. fθ should learn an encrypted signal x′u that
balances both fidelity and privacy:

1. Fidelity: Given a downstream model trained for a certain
task (e.g., ASR) defined on the server, the performance of
model on the encrypted signal x′u should be as close as
possible to that of the original signal xu.

2. Privacy: One should not be able to decode the private
attributes yu from encrypted signals x′u regardless of the
function used to predict private attributes.

3. Efficiency: |θ| should be small and applying the encoding
function fθ : xu → x′u should be fast for cheap inference and
storage on resource-constrained mobile devices.

To avoid confounding factors, both evaluation models (ASR
and private attribute classifier) are trained on data completely
separate from those used to train encryption approaches.
In this paper, we measure fidelity using ASR performance,
namely character error rate (CER) and word error rate (WER),
and privacy using gender and accent classification accuracy.
In other words, low ASR error rate and low classification
accuracy would indicate high fidelity and high privacy, respec-
tively. Section IV contains the efficiency of each of our three
approaches, and further details are described in Section V.

B. Technical Challenges

Client-side privacy for downstream speech tasks essentially
requires one to re-generate raw audio with data-level pri-
vate attributes masked out. This poses several compelling
challenges: (1) it requires directly manipulating the user’s
audio [34, 35] and re-generating high-dimensional raw au-
dio, (2) the encrypted audio must still be compatible with
downstream server tasks without any modification on the
server (i.e., for speech tasks, we require that the encrypted
data is still comprehensible for downstream tasks), which
requires preserving information at the high-dimensional data
level rather than the feature level, and (3) methods for client-
side privacy must have low time and space complexity to be
compatible with limited-bandwidth client devices.

As a result, client-side privacy presents novel challenges
over commonly studied server-side methods, particularly on
fidelity and efficiency perspectives. Furthermore, it is much
more challenging to preserve privacy for cluster-level attributes
such as race, gender, and accent as compared to individual-
level attributes such as speaker identity. This is because
transforming data across clusters requires a larger distribution
shift than transformations to a new speaker, who could be in
the same cluster [48].

IV. CLIENT-SIDE TRANSFORMS FOR DOWNSTREAM ASR

Given our definition in Section II, client-side transforms
are one approach to obtaining client-side privacy as defined in
Section I. Namely, client-side transforms anonymize sensitive

information on-device while preserving content needed for
downstream tasks. In this paper, we study three client-side
transforms adapted from existing voice conversion literature
and analyze their pros and cons.

A. Pitch Standardization

For our first client-side transform approach, we perform
pitch standardization using signal processing [49, 50]. Specif-
ically, we shift the average pitch of each utterance to a pre-
defined value while preserving formants. For each utterance,
we calculate its fundamental frequency (F0) value and then
perform a pitch shift from that value to a reference F0 value.
We calculate the F0 sequence of an utterance using REAPER1,
and define the utterance F0 value as the average of the non-
negative F0 values. We then use the Rubber Band Library to
perform pitch shifting with formant preservation using a phase
vocoder.2 For utterance u with F0 value of fu, we shift its
pitch by 12 log2(fr/fu) semitones, where fr is the reference
F0 value. This approach easily has the highest efficiency out
of our three since it does not depend on a neural model.

B. Disentangled Representation Learning

Our second proposed approach uses variational autoen-
coders (VAE) to disentangle private attributes from non-private
speech features [30, 42, 51]. VAEs allow us to learn a set
of latent representations that best reconstruct a given input
audio signal, while enforcing disentanglement into a set of
speaker-dependent and speaker-independent factors [52]. We
define a private attribute encoder e(x; θp) that encodes the
input audio signal x into speaker-dependent private factors
zp and a content encoder e(x; θc) into speaker-independent
content factors zc. Since the private factors should capture
the private attributes y using a classifier, our goal is to them
exclude the private factor when decoding the encrypted signal.
We optimize the following loss function:

Ldis = ‖d(e(x; θc); θd)− x‖1 − λp logP (y|e(x; θc)) (1)
+ λdisKL ([e(x; θc), e(x; θp)] ‖ N (0, Id)) , (2)

where d(z; θd) is a decoder from latent space z back into audio
space. The first term measures reconstruction of the input sig-
nal, the second term measures how well zp captures the private
attributes y, and the third term measures disentanglement of
zc and zp by ensuring minimal correlated entries. λp and λdis
are tunable hyperparameters controlling the tradeoff between
privacy disentanglement and performance.

We train a convolutional VAE using the hyperparameters
described in Chou et al. [51]. The model has log-magnitude
spectrograms as its input and output acoustic features, and
we use the Griffin-Lim algorithm to convert the model output
into waveforms [53]. Instance normalization is also added
to the content encoder e(x; θc) in order to remove speaker
information and an adaptive instance normalization layer is
added to the decoder in order to add the desired speaker

1https://github.com/google/REAPER
2https://github.com/breakfastquay/rubberband
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information [54, 55], which allows reconstruction of content
while transforming speaker information. As far as we are
aware, this architecture is considered fairly recent among the
voice conversion literature [35, 36, 51]. Given the success of
related architectures in anonymizing speaker identity [42, 56],
we study this model’s efficacy in anonymizing biometrics like
gender and accent.

C. Adversarial Training

Reconstruction of high-dimensional signals is difficult and
has been shown to cause poor generation quality [57–59]. Our
final approach attempts to fix this by using adversarial training
to ensure high-fidelity generation of encrypted audio [56, 60,
61]. In the first stage, we still assume disentanglement into
of input audio signal x into speaker-dependent private factors
zp and speaker-independent content factors zc learned using
a VAE in Section IV-B. The second stages train a generative
adversarial network (GAN) [62] to generate realistic audio.
The generator is conditioned on the content factor zc and a
new speaker label. The discriminator predicts whether an audio
sample was from the true dataset or from the generator, and
also classifies the speaker. The loss function for the generator
is

log c2(x) + log(1− c2(g(x, y))− logPc′2(y|g(x)), (3)

where g is the generator, and the loss function for the discrim-
inator is

− log c2(x)− log(1− c2(g(x, y))− logPc′2(y|x). (4)

This model is suitable for our work because it explicitly
separates speaker identity from content twice. We additionally
modify this architecture by substituting the speaker label with
either the gender label or the accent label. We refer to these
three approaches as the speaker, gender, and accent adversarial
approaches. While this architecture predates our disentangled
one, we observe that our modified methods outperform the
disentangled approach on multiple metrics, as detailed in
Section V. We train a convolutional autoencoder using the
hyperparameters described in Chou et al. [60]. The model has
log-magnitude spectrograms as its input and output acoustic
features, and we use the Griffin-Lim algorithm to convert the
model output into waveforms [53]. Thus, we note that our
reported results in Section V can be further improved using
more complex vocoders [63].

V. EXPERIMENTS

Our experiments test whether our proposed approaches are
able to balance the trade-offs in fidelity, privacy, and complex-
ity required for client-side privacy. We test these approaches
on masking gender and accents in speech recognition3.

3Our code and models are publicly available at https://github.com/peter-yh-
wu/speech-privacy.

A. Setup

Datasets: We train all of our encryption models on the
VCTK corpus, and the ASR model on LibriSpeech [43, 64].
For both our VCTK and LibriSpeech experiments, we test on
speakers unseen during training. We train our privacy attribute
classifer on the respective dataset used during testing. In
our LibriSpeech experiments, the ASR model and the gender
classifier are both evaluated on the test-clean subset. In our
VCTK experiments, we evaluate on a hold-out set of 20
speakers comprised of 10 males and 10 females.

Classifier: We use VGGVox model, a modified version of
the VGG-16 CNN, as our privacy attribute classifier [65, 66],
slightly modifying the network by adding a ReLU activation
followed by a fully-connected layer with size-2 output. We
approximate the data available to an adversary by training
in two stages: 1. we pre-train the classifier on 100 hours of
labeled, unmodified speech from the train data, and 2. we
fine-tune the classifier on the encrypted speech of a handful
of speakers from the same subset. We measure the privacy
attribute masking ability of each encryption approach by cal-
culating the VGGVox model’s privacy attribute classification
accuracy on an encrypted versions of the test subset after being
finetuned on data encrypted using the respective approach.

ASR model: Unless mentioned otherwise, we use a pre-
trained ESPNet Transformer ASR model to evaluate down-
stream ASR performance [67]. This model was trained on 960
hours of LibriSpeech data.

B. Privacy-Fidelity Tradeoff

Table I compares the gender classification accuracy with the
CER and WER for different levels of Gaussian noise added to
the VCTK test data at the waveform level. We increment the
standard deviation of the noise by 0.01 for each subsequent
experiment. As expected, we observe a negative correlation
between classification accuracy and ASR performance. In
other words, these results reveal a tradeoff between privacy
and fidelity.

TABLE I: Tradeoff between privacy and fidelity on the VCTK
test set for different levels of added Gaussian noise. We
observe a negative correlation between classification accuracy
and ASR performance, as expected.

Noise Classification CER WER

0.00 0.99 4.5 9.5
0.01 0.91 11.2 26.7
0.02 0.79 19.3 31.9
0.03 0.68 28.5 41.0
0.04 0.61 33.9 48.1

C. Gender Classification

Table II describes the gender classification accuracy on
VCTK and LibriSpeech using gender-masked audio. All pro-
posed approaches can successfully mask gender when no
encrypted training examples are available. However, given
encrypted training data from a male and female speaker, the
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signal processing samples become much easier to classify than
those generated from the other approaches. This makes sense
as pitch shifting would retain underlying speaker qualities like
that could be readily identified by a neural classifier. Also, the
adversarial approach using the gender-based loss outperforms
the speaker-based loss approach here, which reflects how the
former explicitly learns to hide gender information.

TABLE II: Gender classification accuracy on two datasets
using gender-masked audio. The integer n in each column
denotes the number of speakers whose encrypted audio was
used to finetune the classifier, where n/2 are male and n/2
are female. All our voice conversion approaches perform better
than the baseline without any masking for n = 0. For higher
n values, the disentanglement approach performs the best,
followed by the adversarial approached with the modified
gender loss.

VCTK 0 2 4 20

No Masking 0.991 0.991 0.991 0.991
Signal Processing 0.590 0.987 0.990 0.997
Disentanglement 0.590 0.590 0.598 0.757
Adversarial (Speaker) 0.591 0.824 0.840 0.935
Adversarial (Gender) 0.590 0.707 0.740 0.877

LibriSpeech 0 2 4 20

No Masking 0.972 0.972 0.972 0.972
Signal Processing 0.422 0.869 0.887 0.933
Disentanglement 0.590 0.627 0.702 0.781
Adversarial (Speaker) 0.580 0.712 0.714 0.838
Adversarial (Gender) 0.570 0.621 0.628 0.833

D. ASR after Gender Encryption

Table III describes the ASR results when transcribing
gender-encrypted data, measured using mean character and
word error rates. For each approach, we provide results on both
VCTK and LibriSpeech [43, 64]. All ASR models are pre-
trained on LibriSpeech as aforementioned. The VCTK model
is further finetuned on the data from speakers outside our test
set. All finetuned models are tuned on the respective converted
data of 20 train speakers. The signal processing approach
performs the best, potentially since Griffin-Lim and output
distribution priors inherent in neural network architectures
introduce artifacts. The adversarial approach using the gender-
based loss again outperforms the speaker-based loss approach.
This reflects how the former can model less style information
than the latter and thus can model more content. For the
LibriSpeech dataset, our adversarial method with the modified
gender loss performs similarly to the disentangled method in
the finetuned scenario. Moreover, our disentanglement and
adversarial approaches do not improve when finetuned for
the VCTK experiments. This suggests that the ASR model
may not be robust enough or our neural converted samples
may be acting like adversarial samples during the training
procedure [68]. We also note that, compared to Table I, our
voice conversion approaches generally achieve lower WER for
fixed privacy performances. This suggests that our client-side

transforms described in Section IV are more suitable for client-
side privacy than other approaches like differential privacy.

TABLE III: ASR performance on two datasets using gender-
masked audio. Among our voice conversion approaches, the
signal processing method performs the best. For the Lib-
riSpeech dataset, our adversarial method with the modified
gender loss performs similarly to the disentangled method
in the finetuned scenario. Moreover, our disentenglement and
adversarial approaches do not improve when finetuned for the
VCTK experiments. This suggests that the ASR model may
not be robust enough or our neural converted samples may be
acting like adversarial samples during the training procedure
[68].

VCTK

CER WER
Method 0-Shot Finetune 0-Shot Finetune

No Masking 4.5 3.4 9.5 4.8
Signal Processing 15.0 7.7 24.7 9.8
Disentanglement 21.1 21.1 35.0 35.0
Adversarial (Speaker) 31.1 31.1 48.5 48.5
Adversarial (Gender) 25.0 25.0 40.1 40.1

LibriSpeech

CER WER
Method 0-Shot Finetune 0-Shot Finetune

No Masking 2.4 2.4 4.6 4.6
Signal Processing 5.0 5.0 8.8 8.8
Disentanglement 15.5 15.5 25.0 25.0
Adversarial (Speaker) 29.7 17.5 47.5 28.0
Adversarial (Gender) 22.0 15.8 36.1 25.3

E. Gender Listening Tests

In addition to our automatic metrics, we perform mean
opinion score (MOS) preference tests using eight human
listeners. Namely, we compare the signal processing, the disen-
tanglement, and the adversarial gender-based loss approaches
for the VCTK gender encryption task. For the MOS test, we
ask listeners to rate audio samples on a naturalness scale
of 1 to 5. We use 40 utterances for each test, where 2 are
randomly chosen from each test speaker. In other words, each
listener listens to 120 unique audio clips. Table IV summarizes
these results. The signal processing approach performs the
best for female speakers and the worst for male speakers.
This is likely due to the reference F0 being from a female
speaker and the relative absence of artifacts. Also, while the
disentanglement approach outperforms the adversarial one in
both the classification and ASR metrics, listeners consistently
rated the latter higher. This suggests that the disentanglement
approach may be standardizing the audio to waveforms that are
unnatural to people but suitable for downstream ASR systems.
We perceive such utterances as robotic but understandable.

F. Accent Classification

Table V describes the accent classification accuracy on
VCTK using accent-masked audio. Given that the largest class
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TABLE IV: Listening test results on VCTK gender encryption
approaches. Our signal processing and adversarial approaches
perform the best. While our signal processing approach per-
forms the best for female speakers, our adversarial approach
does the best for males, suggesting that the latter is more
robust to different speaker attributes.

MOS M F Both

Signal Processing 1.8± 0.2 4.3± 0.2 3.3± 0.2
Disentanglement 2.4± 0.5 2.4± 0.5 2.4± 0.5
Adversarial (Gender) 2.7± 0.6 3.7± 0.3 3.3± 0.4

in the test set contains 31% of the samples, we observe that
both the disentanglement and adversarial approaches are able
to successfully fool the accent classifier. Moreover, our adver-
sarial approach using the modified accent loss performs the
best, indicating the usefulness of our modified loss function.

TABLE V: Automatic metric results for accent encryption
approaches. Given that the largest class in the test set has
31% of the samples, our results indicate that both our disen-
tanglement and adversarial approaches successfully fooled the
accent classifier. Moreover, our adversarial approach using the
modified accent loss performs the best.

Classification 0 20

Largest Class 0.31 0.31
No Masking 0.36 0.36
Disentanglement 0.29 0.29
Adversarial (Speaker) 0.25 0.25
Adversarial (Gender) 0.25 0.25
Adversarial (Accent) 0.23 0.23

G. ASR after Accent Encryption

Table VI describes the ASR results when transcribing
gender-encrypted data, measured using mean character and
word error rates. Our experimental setup here follows that
of the gender ASR experiment. We observe trends similar to
Section V-D. Additionally, ASR results here are consistently
better than those in the gender encryption task. This reflects
how transforming gender requires a larger data distribution
shift than transforming accent.

TABLE VI: Automatic metric results for accent encryption
approaches. As with our other ASR experiments, we observe
that our disentanglement approach outperforms our adversarial
one. We also note that these ASR results are consistently better
than those for the gender experiment, reflecting the larger data
distribution shift required for transforming gender.

Speech Recognition CER WER

Disentanglement 17.5 29.9
Adversarial (Speaker) 26.5 42.4
Adversarial (Gender) 19.5 32.4
Adversarial (Accent) 23.1 37.4

VI. KEY TAKEAWAYS

In this section, we outline several key takeaways from our
experimental results which we hope will help practitioners
apply privacy-preserving methods for client-side privacy.

1. Pitch standardization approaches unfortunately are not
very effective in keeping gender private: 78.6% gender classi-
fication accuracy for n = 0, and 95.1% using pitch shift, both
of which are much higher than those of the neural methods.
They yield artifacts that were readily recognizable by the
adversary gender classifier, which implies poorer performance
in maintaining privacy. Namely, when observing the attention
map of the classifier, we noticed that the classifier learned
to identify specific patterns that resulted from the pitch shift.
Thus, the gender classification accuracy of the neural methods
was much lower than those of the signal processing methods.

2. VAEs and GANs: VAEs, through use of an encoder, are
suitable to learn latent disentangled representations [69, 70]
which are useful in our task of disentangling content from
private attributes. GANs are also suitable for learning latent
representations. While they have been used less in the disen-
tanglement literature, adding attribute-specific loss functions
can disentangle sensitive information from content well. While
we found GANs to be harder to train than VAEs, GANs that
converge appear to perform better.

3. Memory: The large differences in memory consumption
are a consequence of the large memory costs of using neural
models compared to signal processing approaches. Overall,
our conclusions point out a ripe opportunity for future work
to reconcile the privacy benefits of neural methods with the
performance and memory advantages of signal processing
approaches.

VII. CONCLUSION AND FUTURE DIRECTIONS

In this work, we setup the problem of achieving client-
side privacy for speech representation learning that does not
rely on any server-side privacy guarantees. We formalized
several desirable properties regarding performance, privacy,
and computation and performed a large-scale empirical study
of existing approaches. We find that while GAN-based ap-
proaches currently have the best tradeoff between gender
masking, downstream performance, and memory usage, all
existing approaches still fall short of ideal performance. Our
initial empirical analysis opens the door towards more reli-
able evaluations of the tradeoffs underlying privacy-preserving
approaches on the client-side, a property crucial for safe real-
world deployment of speech systems at scale across mobile de-
vices. In addition to developing privacy-preserving algorithms
that satisfy the various desiderata as outlined in this paper,
future work should also analyze other downstream speech
tasks besides speech recognition, such as speech translation.
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