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Abstract—Zero-shot many-to-many voice conversion receives
wide-spread attention but remains a challenging task. Recently,
AUTOVC, which is based on conditional autoencoders, achieves
state-of-the-art results in zero-shot voice conversion. However,
the carefully designed bottleneck and the autoencoders based
framework of AUTOVC limit further improvement of zero-
shot voice conversion. In this paper, we propose a Generative
Adversarial Network(GAN) based framework to disentangle the
timbre and content of speech, and to synthesize new speech
given unseen speakers and corpora. Towards unseen speaker, our
framework extracts timbre embedding from an input speech with
timbre encoder and produces content distribution embedding
from any other speech with content encoder. Our framework
learns to synthesize new speeches via conversion-reconstruction
cycle training and to enhance the quality of conversion with
adversarial training. Our experiments demonstrate that the
proposed framework can generate outputs with comparable
quality even for speakers that are not seen in the training dataset.

I. INTRODUCTION

Voice conversion (VC) aims to convert the speech of one
speaker to sound like another speaker without changing the
linguistic content. This technique can solve a wide variety of
tasks such as personalized text-to-speech system[1], speaking-
aid device support[2] and accent conversion[3]. However,
many-to-many zero-shot conversion tasks, i.e. converting from
multiple source speakers to multiple target speakers where all
the source and target speakers are not seen in the training data,
are still challenging.

Previous works have attempted to convert speech only
on seen speakers in the training corpus. Inspired by the
success of image style transfer in computer vision, generative
adversarial networks (GANs) have been proposed to achieve
comparable performance with supervised training. For exam-
ple, CycleGAN-Based methods[4], [5] perform comparably to
a parallel VC method by incorporating the CycleGAN with
a gated CNN and identity mapping loss. Further, StarGAN-
based methods[6], [7] use a single generator to build non-
parallel multi-speaker VC system. Other classical approaches
to VC are based on variational autoencoders (VAEs)[8], [9],
[10] and conditional variational autoencoders (C-VAEs)[11].
However, these methods can only deal with speakers that are
seen in the training dataset. Given an unseen speaker, these VC
systems require the collection of new training data in order to
train new models and get fine results.

Recently, AUTOVC[12] and its F0-consistent version F0-
AUTOVC[13], that are based on conditional autoencoders,
achieved state-of-the-art results by disentangling the speaker
timbre and speech content. They achieve zero-shot conversion
by synthesizing a new voice with a new timbre embedding and
the same speech content information from the source speakers.
The disentanglement of the speech timbre and content is
based on a carefully designed bottleneck. In addition, the
secret of the success of AUTOVC lies in the dimension of
the bottleneck. Wider bottleneck results bad disentanglement
between the timbre and content of the speech from the source.
Narrower bottleneck results in the loss of the content informa-
tion. Although AUTOVC learns to match the distribution with
the carefully designed bottleneck, it is hard to find a ideal
dimention for the bottleneck. Furthermore, the carefully de-
signed structure and AEs-based framework are not generative
enough and limited to the further improvement of AUTOVC
on zero-shot VC. Given new corpus with different domain, the
structure requires to be carefully designed again. Otherwise,
the mismatched structure may leads to a gap between the real
target and the converted speech. In general, learning to match
distribution directly with GANs is obviously a better choice if
we set the sophisticated and difficult training of GANs aside.

More recent works of conditional GAN such as CVAE-
GAN[14] combines a VAE with a GAN for fine-grained cat-
egory image generation through asymmetric training. Further,
the improvement of CVAE-GAN, IPGAN[16] changed the
conditional input of CVAE-GAN to an identity embedding
extractor to that, IPGAN can synthesis new samples with
identities outside the training dataset. Based on the idea
of CVAE-GAN and IPGAN, we attempt to extract timbre
embedding from any specific speaker no matter the speaker is
presented in the training corpus or not. The content distribution
embedding extracted from a given source speech, together
with the target speaker’s timbre embedding, are utilized to
synthesize new speech. The new speech has the same linguistic
content as source speech but sounds like target speaker.

The proposed framework extracts timbre embedding with a
LSTM-Based encoder and produces content distribution with
a VAE-Based encoder. The proposed framework disentangle
the timbre and content information through a GAN-Based
conversion-reconstruction training. In the training process,
adversarial loss are utilized to enhance the quality of the syn-

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

854978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021



thesized result and two feature matching losses are utilized to
make the training of GAN more stable. It achieves remarkable
performance on many-to-many zero-shot conversion task.

The rest of the paper is organized as follows. In Section 2,
we present the framework architecture and the training process
of our system. Experimental setups and results are elaborated
and discussed and presented in Section 3. Section 4 concludes
the paper.

II. METHODS

As shown in Fig 1, our framework takes mel-spectrogram as
input and outputs converted mel-spectrogram. Our framework
consists of five parts: Timbre encoder ET , which extracts
the speakers’ timbre embedding of arbitrary speakers; Content
distribution encoder EC , which produces linguistic content
distribution of any given speech; Generator G, which syn-
thesizes a new speech with the combination of timbre and
content distribution; Timbre preserve network TPN , which
preserves the timbre of the generated speech; and Discrimina-
tor D, which distinguishes real and generated speech. These
five parts are trained end-to-end.

In the subsequent sections, we first introduce the method to
disentangle timbre and content components via encoder ET
and encoder EC . In section 2.2, we discuss the loss functions
used for GAN training in our framework. In section 2.3, we
introduce the implementation of each part in details.

A. Disentanglement of Timbre and Content

1) Timbre Encoder ET : The goal of the timbre encoder
is to extract the a unique representation for an input speaker,
regardless of the content of the speech. The one-hot encoding
of speakers is convenient and efficient, and widely used in
many-to-many voice conversion. However, the one-hot en-
coding does not contain the encoding of unseen speakers
and thus is inapplicable to zero-shot conversion. In previous
works, extracting the speakers timbre embedding is rela-
tively straight-forward and the encoder can be implemented
with speakers category annotations and classification training.
Our speaker encoder is pre-trained by using the corpora of
both VoxCeleb1[17] and Librispeech[18] with GE2E loss[15].
GE2E loss pushes the embedding towards the centroid of the
true speaker, and away from the centroid if the speech comes
from other speakers.

2) Content Encoder EC: In order to train the content
encoder Ec to encode content information only, we use
conversion-reconstruction cycle training to extract the content
distribution embedding. In the training process, different input
data pairs produce two training situations: whether the content
speech Sc and the timbre speech St comes from the same
speaker or not. We attempt to balance two situations by using
two loss function: reconstruction loss and KL divergence loss.

KL divergence loss: encoder EC outputs the mean µ and
covariance σ and the content distribution Z is sampled with
reparameterization Z = µ + σ

⊙
ε, where ε ∼ N (0, I)

and
⊙

represents the element-wise multiplication. In order
to train encoder EC in a fully unsupervised manner to extract
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Fig. 1. The overview of framework. EC extracts the content distribution
fC via VAE-Based framework. ET extracts timbre embedding fT as the
conditional input of G. TPN shares the parameters with ET and preserve
timbre information by encouraging target Sc and converted Sr to have similar
timbre representations. Discriminator D is used to enhance the quality of
generated speech.

the content distribution embedding, KL loss is used to reduce
the gap between the prior Gaussian distribution N (0, I) and
the proposal distribution. The KL divergence loss will limit
the distribution range of the content distribution embedding
such that it does not contain much timbre information. As
proved in [20], minimizing the KL divergence is equivalent to
minimizing the following loss:

LKL =
1

2

N∑
i=1

(
µ2
i + σ2

i − log(σ2
i )− 1

)
(1)

where N is the dimension of µ and σ.
Reconstruction loss: After extracting the timbre embedding

fT (St) of arbitrary speaker and content distribution embed-
ding fC(Sc), a generator G take the combined embedding[
fT (St)

T , fC(Sc)
T
]T

as input and synthesize a converted
mel-spectrogram Sr. The synthesis process is supervised as
follow:

LGR =

{
1
2 ‖Sr − Sc‖22 , if reconstruction
λ
2 ‖Sr − Sc‖22 , if conversion

(2)

When the input timbre speech St is from the same speaker
as the content speech Sc, the converted result is expected to be
the same as speech Sc. In each reconstruction training batch,
two input speeches have the same timbre embedding. As the
content distribution are different in different reconstruction
training batch, the reconstruction loss will force the content
encoder Ec to learn different content representation fc(Sc).

When input timbre speech St and content speech Sc are
from different speakers, we expect the converted result has
the same content as Sc but the timbre of St. In other words,
the converted result and content speech Sc are very similar,
but not the same. Therefore, the pixel-wise reconstruction loss
must have a relatively small weight λ to maintain the content
attributes and leave space for speaker’s embedding to change.
In our work, λ is 0.1. In the training process, we define n
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iterations as a conversion-reconstruction cycle, where each
cycle contains 1 conversion and n− 1 reconstruction. As the
training continues, n was decreased from 5 down to 2.

B. Quality Enhancement with GAN

1) Adversarial Loss: The mel-spectrogram generated from
VAE framework often suffers from over-smoothing. In order to
make the conversion result sound more similar to real speech,
we propose to use the adversarial loss with discriminator D
on training. We define the adversarial loss as:

LD = −ESc∼Pc
[logD(Sc)]− Ez∼Pz

[log(1−D(G(z)))] (3)

However, the training of traditional GAN is sophisticated
and difficult as the distributions of real and fake may not
overlap with each other. According to the theoretical analysis
of recent works[21], distributing non-overlappings causes the
gradient vanishing problem in the training of GANs. To
address this problem, recent works[21] proposes a pairwise
feature matching objective for the generator.

2) Feature Matching Loss: Inspired by [16], we use two
feature matching loss to solve this problem and guarantee
convergence of training. To generate realistic mel-spectrogram
quality, we match the feature of the discriminator D of
real and fake mel-spectrogram. We denote the feature on
last Fully Connect layer of discriminator D as fD(S). The
Euclidean distance between the feature representations is used
to calculate loss LGD, i.e. ,

LGD =
1

2
‖fD(Sr)− fD(Sc)‖22 , (4)

Meanwhile, timbre preserve network TPN shares param-
eters with encoder ET and extracts the timbre of convert-
ed result Sr. In order to generate timbre-preserving mel-
spectrogram, the timbre embedding of converted Sr must be
similar to target input St. Therefore, we propose to minimize
the Euclidean distance between two timbre embedding, i.e. ,

LGT =
1

2
‖fT (Sr)− fT (St)‖22 , (5)

Since the parameters of the timbre encoder ET is freezed
after the pre-training, LGT force the generator G to generate
timbre-preserved mel-spectrograms

Finally, the total loss of the whole training is as follows:

Lfull = λklLKL + λgrLGR + λgtLGT + λgdLGD +LD (6)

,where λkl, λgr, λgt, and λgd are trade-off parameters, and
LKL and LGR are determined by an additional parameter λ
in Equation 2. In our work, λkl is 0.00005, λgd is 0.005,
λgr and λgt are 1. Larger LKL results in the over matching
of the content distribution and explicit Gaussian distribution.
Larger LGD results in the loss of the content information as
the importance of reconstruction loss LGR is relatively small
in training. Although λkl and λgd are small, these parameters
balance the loss. Finally, the value of each loss converges to
the same scale, about 10−4 to 10−3. The training process with
different trade-off parameters is shown in Fig 2.
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Fig. 2. Training on VCTK with different trade-off parameters. LGR and LKL

are determined by parameter λ = 0.1 and only the conversion loss is shown
on the figures. When λkl = 0.00005 and λgd = 0.005(blue), all losses are
balanced and the value of each loss converges to the same scale, about 10−4

to 10−3.

III. EXPERIMENTS

To evaluate the effectiveness of the proposed framework for
zero-shot conversion, we conducted objective and subjective
evaluation experiments. The evaluation was performed on a
public corpus VCTK, which contains 109 speakers with 200
to 500 pieces of utterances per speaker. We randomly selected
ten speakers, 5 females and 5 males, as unseen speakers and
train the system with the rest speakers. For each utterances,
we randomly sampled 120 frames of spectrogram with overlap.
All experiment conversion results are generated with unseen
speakers. We compared the result with the state-of-the-art
zero-shot baseline AUTOVC[12].

A. Experimental Setup

The input of the system is 80-channels mel-spectrogram
with a 1024 window size and a 256 hop size and the output
is converted to waveform by using WaveNet[19] vocoder. The
configuration of WaveNet is the same as [12]. All the input
speech is uniformly downsampled to 16kHz and thus the frame
rate of the mel-spectrogram is 62.5Hz. The WaveNet vocoder
is pre-trained on the VCTK corpus.

Similar to [12], the speaker encoder ET consists of a stack
of two LSTM layers with cell size 768 and the outputs of
the last layer are projected down to 256 with a linear layer.
The output fT is normalized with L2-norm. The encoder EC
has three 5 × 1 1D-convolutional layers and a stack of two
bidirectional LSTM layers with cell size 256. We sample all
outputs of LSTM layers uniformly in temporal dimension.
The sampling interval is 12. Then all the outputs feature are
concatenated and fed into two sibling fully connected layers to
generate the mean µ and covariance σ. The dimensions of µ
and σ are 64. For the generator G, the content embedding
vector and timbre embedding vector are concatenated and
upsampled by a fully connnected layer. The features with
original temporal resolution are fed to three 5×1 convolutional
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Fig. 3. The timbre embeddings are projected into two dimension with t-
SNE for visualization. Each color represents one speaker from VCTK and
the timbre encoder was not finetuned with the VCTK dataset.

ET + n n+ EC ET + EC

Class. Acc. 58.71 0.011 60.10
Recon. Err. 0.162 0.061 0.014

TABLE I
RECONSTRUCTION ERROR AND SPEAKER CLASSIFICATION ACCURACY ON

VCTK DATASET. n DENOTES NOISE INPUT.

layers and a stack of three LSTM layers. Also similiar to
[12], a post network is used to construct the generated details
of the spectrogram better on top of the initial estimate. For
the discriminator D, 2D-convolution are used to fully extract
information. The converted results Sr are fed into five 5 × 2
2D-convolutional layers and a fully connected layer classify
whether input the mel-spectrogram is real or not.

We trained the timbre encoder ET for 80k iterations using
the SGD optimizer with a momentum of 0.9 and an initial-
learning rate of 0.001 that decays by 0.1 for iterations 60k
and 70k. In each training iteration, we sampled 32 speakers,
each with 25 utterances as a training batch. Then, we freezed
the parameters of the encoder ET and trained the rest of our
framework for 20k iterations using ADAM optimizer with
fixed a learning rate of 0.00005, β1 of 0.5, β2 of 0.999 and a
batch-size of 64.

B. Objective Analysis

Firstly, we use t-SNE to visualize the timbre embedding and
the 2-D features is plotted in Fig.3. It is worth noting that the
timbre encoder was not finetuned with the VCTK dataset. We
can observe that the timbre embedding can be easily separated
although speakers are never seen in training set.

To evaluate the disentanglement of the timbre and con-
tent information, we evaluated the reconstruction error and
speakers classification accuracy with different timbre and
content input from the trained system. We use pixel-wise mean
squared error (MSE) as evaluated metric of reconstruction
error. As the timbre encoder of the proposed framework
directly outputs the timbre embedding instead of classification
category, we use K-Nearest Neighbor (KNN, k = 100) to
classify the embedding. As shown in Table I, with the timbre
embedding from real speech and noise content embedding,
the proposed framework preserves enough information for
accurate speaker classification. However, generates the worst

AUTOVC w/o D with D
MCD 5.73 5.22 5.61

TABLE II
COMPARISON OF MCD ON VCTK DATASET WITH/WITHOUT THE

DISCRIMINATOR D.

reconstruction error in this case as content information is
missing. With the content embedding from real speech and
noise timbre embedding, our framework results in the worst
speaker classification accuracy as the timbre information is
lost. With the real timbre and real content from the same
speech, we achieved the best classification accuracy and the
minimum reconstruction error. The above experiments show
that the encoder ET and EC effectively extract the timbre-
independent and content-independent embedding separately.

To assess the quality of synthesized speech from our voice
conversion system, we used the mel-cepstral distortion (MCD)
to evaluate the outputs of the systems. MCD is a measure
of how different two sequences of mel-cepstra are, with
the smaller MCD being preferred. Given two mel-cepstra,
[x1, ..., x24]

T and [y1, ..., y24]
T , MCD is calculated as:

MCD[dB] =
10

ln 10

√√√√2
24∑
d=1

(xd − yd)2 (7)

where 24 is the order of mel-cepstra. To evaluate effectiveness
of the discriminator in our framework, we measured the MCDs
of the converted speech of VC systems with/without the
discriminator D. The results are shown in Table II. It can be
seen that the proposed framework shows our framework with
discriminator D achieves lower MCD scores than AUTOVC.

C. Qualitative Analysis

In this section, we perform two qualitative tests with 20
participants. We randomly choose 10 speakers from unseen
data-set, 5 male and 5 female. Then, 10× 9 = 90 conversions
are produced by converting a test speech in pairs.We randomly
choose 20 conversions as the evaluation set, including 5 male
to male, 5 male to female, 5 female to male and 5 female to
female. In conversions, timbre, content and converted speech
in similarity and quality test, those three say the same text.
We conduct Mean-Opinion-Score (MOS) evaluation on quality
and similarity test of synthesized voice samples. In the quality
test, participants listen to a original content speech and a
conversion speech, and assign a score of 1 to 5 to evaluate
the synthesized speech quality, where 5 indicates excellent,
4 indicates good, 3 indicates fair, 2 indicates poor and 1
indicates bad. In the similarity test, participants first listen
to two original speech, one from timbre speaker and the
other from content speaker. Then these participants listen to
the converted speech and are asked to assign a score of 1
to 5.Following the design of [12], the similarity score of 5
corresponds to the same speaker with high confidence, and 1
corresponds to content speaker with high confidence.

As shown in Table III, the proposed framework outperforms
the AUTOVC in similarity and quality. Especially in quality
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MOS Similarity
M2M M2F F2M F2F Avg

OURS 2.96 3.72 4.01 2.90 3.39
AUTOVC 2.81 3.64 3.93 2.75 3.27

MOS Quality
M2M M2F F2M F2F Avg

OURS 4.31 3.83 4.06 4.28 4.12
AUTOVC 3.39 3.32 3.35 3.75 3.46

TABLE III
MOS BETWEEN AUTOVC AND OUR FRAMEWORK. QUALITY AND

SIMILARITY TEST ARE PERFORMED FOR 4 GENDER CONVERSIONS: M2M,
M2F, F2M, F2F, WHERE F INDICATES FEMALE SPEAKER AND M

INDICATES MALE.

test, ours is significantly higher than AUTOVC. For similarity,
although slightly improvement happened, ours avoids the
need of careful bottleneck design. These results indicate that,
GAN and conversion-reconstruction cycle training leads to a
comparable improvement of similarity and conversion quality.

IV. CONCLUSION

In this paper, we propose an GAN-based framework for
zero-shot many-to-many voice conversion. We use conversion-
reconstruction cycle training to disentangle the timbre and
content of speech. In order to enhance the conversion quality
with GAN, we utilize two addition feature matching loss
to relieve the difficulty in the training of GAN and to
also guarantee the convergence of training. The objective
experimental results show the effectiveness of conversion-
reconstruction cycle training and the introduction of GAN. The
MOS experimental results show that the proposed framework
obtains higher sound quality and speaker similarity than the
baseline method.
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