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Abstract—Recently, singing voice separation from polyphonic
music using fully convolutional neural networks (CNNs) has
achieved promising performance. Polyphonic music often has a
long-term dependency and wide frequency bands. Therefore, a
large receptive field of CNNs is critical for singing voice separa-
tion. However, the fundamental concerns still raise because of the
limited receptive field of CNNs. Besides, the intrinsic spectral-
temporal characteristics in the spectrum are neglected by the
traditional CNNs. This paper aims to provide a rethinking of
model design and proposes a pure spectral-temporal transformer-
based encoder to replace CNNs as an alternative. Further, we
propose an attentive fusion module to attend to spectral and
temporal features and fuse them dynamically. The fused features
are then fed to the decoder to obtain the final mask. Experimental
results show that the proposed model outperforms several existing
well-known methods.

I. INTRODUCTION

Singing voice separation, which aims to separate singing
voice from music mixture, has become an active research
topic of music information retrieval (MIR). It has a lot of
downstream applications of melody-based AI music, such as
cover song identification [1], vocal melody extraction [2], and
query-by-humming [3]. Although it is easy for a human to
deal with these tasks, it is not trivial to teach machines to
learn these skills.

A popular song often has two major acoustic components
that are singing voice and background accompaniment. The
difficulty is that there is usually a polyphonic accompaniment
to the lead vocal/instrument, and this accompaniment follows
the melody rhythmically and harmonically, making it difficult
to separate the singing voice part. Recently, with the develop-
ment of deep learning techniques, many neural network-based
methods have been proposed for singing voice separation [4]–
[13]. In particular, convolutional neural networks (CNNs)-
based methods have attracted significant attention due to their
outstanding performances. Polyphonic music often has a long-
term dependency and wide frequency bands. Therefore, the
large receptive field of CNNs is critical for singing voice
separation. With stacked CNN layers, the receptive field of
CNNs can access larger regions of the input spectrum. There
are also better methods than stacked CNN layers to increase
the receptive field.

One popular approach is by adopting dilated convolution
[11], [12], [14], which can access a large receptive field
by using dilated factors growing nonlinearly through layers.

Another popular method is first to downsample the high-
resolution representation to low-resolution representation and
then upsample the low-resolution representation to high-
resolution. It then fuses the features with a global receptive
field learned from the downsampling process [7], [15], [16].

In this paper, we aim to provide a rethinking to the model
design of singing voice separation. First, despite the success
of dilated convolution and downsample-upsample fashion,
the architecture design raises fundamental concerns that the
receptive field is still limited. Second, polyphonic music often
contains more than one instrument. Each instrument has its
unique characteristics, resulting in their distributions in the
spectrum have a certain pattern [17], [18]. However, prior
CNN-based works neglect this, and the limited receptive field
makes the model difficult to capture such a pattern.

Recently, transformer [19] has achieved great success in
natural language processing [20], [21], computer vision [22],
[23], and speech processing [24]–[28]. Despite discarding
recurrence, the key point of transformer, self-attention mecha-
nism, can draw global input-output dependencies and enables
parallelization. [26] aims to model the repetition of music by
adopting the self-attention mechanism. Sams-Net [28] applies
a spectral transformer to music source separation and achieves
performance improvement. Based on extending the idea of
the transformer to this task, we propose a spectral-temporal
transformer for singing voice separation. In detail, we focus
on designing a spectral-temporal transformer-based encoder
for singing voice separation.

To overcome the limitations above, in this paper, we re-
place CNNs with a pure spectral-temporal transformer. The
proposed spectral-temporal transformer (STTR) can access the
global receptive field and learn complex patterns better in
the frequency and time axes. Concretely, we first decompose
the spectrum into time sequences. We then feed the time
embeddings into the temporal transformer with an embedding
layer applied to the time sequences. Meanwhile, we decom-
pose the spectrum into a frequency sequence according to the
frequency bands. Another embedding layer is applied to the
frequency sequence, and then the frequency embeddings are
fed to the spectral transformer to learn the correlation between
frequency bands. Note that we do not apply any downsampling
operation but global spectral-temporal modelling at every
layer of transformers. We believe that the proposed spectral-
temporal transformer can offer a new perspective to this task.
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Fig. 1: The overall architecture of the proposed model. The
parts highlighted with green rectangles are the proposed
spectral-temporal transformer module.

We argue that simply concatenate the spectral and temporal
features may hinder the further improvement of the perfor-
mance. We further propose an attentive fusion module to
select the features from spectral and temporal transformers
dynamically. Accordingly, we fuse the features for there-
after singing voice separation. Two technique contributions
are listed: i) we propose a novel spectral-temporal transformer
encoder to access the global receptive field and better learn
complex patterns in the frequency and time axes. There are
no such works for singing voice separation in the literature to
the best of our knowledge. ii) An attentive fusion module is
proposed to assign weight to the spectral and temporal features
dynamically.

The rest of the paper is organized as follows. In Section 2,
we describe the architecture of the proposed model. In Section
3, we compare the proposed model with several previously
proposed methods in singing voice separation. Finally, the
conclusions and future work are given in Section 4.

II. PROPOSED MODEL

The overall architecture of our proposed spectral-temporal
transformer network is shown in Fig. 1. The spectral-temporal
transformer module, attentive fusion module in the proposed
deep architecture is respectively addressed.

A. Model Input

We choose the short-time-Fourier-transformation (STFT)
spectral magnitude as the input to the model. For computing
STFT, we use a 1024-sample window size and a 512-sample
hop size. To facilitate training, We split each song into 11-
second segments for training and testing. As a result, each
segment has 344 frames and 513 frequency bins.

B. Spectral-Temporal Transformer Module

1) Positional Embedding Layer: Unlike the positional em-
bedding layer in the original transformer [19], to simplify the
model design, we use a learning-based embedding matrix to
replace the original embedding function. Given an embedding
matrix M, the embedding e at position i can be obtained:
e = Mi, where Mi denotes the i-th row of M. In this paper,
we have two parallel transformers (i.e., spectral transformer
and temporal transformer) leveraged for encoding the spectral
and temporal sequences. Thus we use two embedding matrix
Ms ∈ RF×H and Mt ∈ RT×H , where F , T and H denote
the number of frequency bins, the number of time steps, and
dimensions of the embedding vector, respectively.

2) Scaled Dot-Product Attention: Self-attention, a mech-
anism that relates different positions of input sequences to
compute representations for the inputs. Concretely, it has
three inputs: queries, keys, and values. One query’s output is
computed as a weighted sum of the values, where each weight
of the value is computed by a designed function of the query
with the corresponding key. Let Q ∈ Rtq×dq be the queries,
K ∈ Rtk×dk be the keys and V ∈ Rtv×dv be the values,
where t∗ are the element numbers in different inputs and d∗
are the corresponding element dimensions. Normally, tk = tv
, dq = dk. The outputs of self-attention is computed as:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V, (1)

where the scalar 1/
√
dk is used to prevent softmax function

into regions that have very small gradients.
3) Multi-head Attention: Multi-head attention, a core mod-

ule of the spectral-temporal transformer, is applied to lever-
aging different attending representations jointly. Multi-head
attention calculates h times scaled dot-product attention, where
h means the head number. Before performing each attention,
three linear projections transform the queries, keys, and values
to more discriminated representations, respectively. Then, each
scaled dot-product attention is calculated independently, and
their outputs are concatenated and fed into another linear
projection to obtain the final dm model dimensional outputs:

MultiHead(Q,K,V) = Concat(head1, ..., headh)WO,
(2)

where headi = Attention(QWQ
i ,KWK

i ,VWV
i ). (3)

In the equation above, since Q,K, and V in the spectral-
temporal transformer have the same dimension of dm, the
projection matrices WQ

i ∈ Rdm×dq , WK
i ∈ Rdm×dk ,

WV
i ∈ Rdm×dV , WO ∈ RhdV ×dm . In spectral transformer,

dq = dk = dv = 513 and in the temporal transformer
dq = dk = dv = 344. In this experiment, we set dm = 512
throughout the paper.

4) Position-wise Feed Forward Network: Position-wise
feed-forward network is another core module of the Spectral-
Temporal Transformer module. It consists of two linear trans-
formations with a ReLU activation in between. The dimen-
sionality of input and output is dm, and the inner layer has
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Fig. 2: The detailed architecture of the proposed attentive
fusion module.

dimensionality dfn . Specifically,

FFN(x) = max(0,xW1 + b1)W2 + b2, (4)

where the weights W1 ∈ Rdm×dff , W2 ∈ Rdff×dm , and the
biases b1 ∈ Rdff , b2 ∈ Rdm . The linear transformations are
the same across different positions.

C. Attentive Fusion Module
The design of the attentive fusion module (AFM) represents

the second contribution of this work. Inspired by the idea
of selective kernel networks [29] used in computer vision,
we devise this module to dynamically attend to spectral and
temporal features and fuse them. The detailed architecture
is shown in Fig. 2. This module takes three inputs: the
feature map S′ ∈ RF×T×C is generated from the input STFT
spectrum S via a (1 × 1) convolution. Fs ∈ RF×T×C is
generated from the spectral transformer output via a (1 × 1)
convolution and Ft ∈ RF×T×C is generated from the spectral
transformer output via a (1 × 1) convolution. Firstly, an
element-wise addition is performed to fuse the three inputs
into a new feature map Γ and then a global average pooling
(GAP) is performed to obtain global descriptor g ∈ RC .

g =
1

F × T
∑

i<=F,j<=T

Γij . (5)

After a fully connected (FC) layer for nonlinear transfor-
mation, three FC layers are used to learn the importance
of each channel of the feature maps. The softmax layer is
applied to obtaining the attention map. After obtaining the
attention maps, matrix multiplication is performed between
the three inputs and the attention maps to obtain the weighted
feature maps. Finally, we fuse the three weighted feature
maps by an element-wise addition operation. The fused feature
map contains rich information selected from the spectral and
temporal transformers.

D. Model Architecture
The spectral-temporal transformer module aims to design

a pure transformer-based encoder to replace CNNs and con-
tribute an alternative. In particular, we use NS-layer spectral
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Fig. 3: The detailed architecture of the decoder of the proposed
model. ‘K’ and ‘c’ stand for the kernel size and the number
of channels.

transformer and NT -layer temporal transformer to encode the
spectral and temporal features in the encoder part. In this
paper, we set NS = NT = 4 and h = 6 in the experiments. Af-
ter obtaining features from the spectral-temporal transformer
module, we propose an attentive fusion module to select
the spectral and temporal features dynamically. We use two
subsequent FC layers to perform the nonlinear transformation.
We set the hidden dimensions to 256 and 128, respectively. We
adopt a very simple decoder, and we hope that the performance
gains can be easily attributed to such settings. As shown in
Fig. 3, we use two branches to decode the time-frequency-
based masks, vocal mask and accompaniment mask. In each
branch, we use three CNN layers with kernel size (5 × 5),
stride size (1 × 1), and padding size (2 × 2).

III. EXPERIMENT

A. Experiment Setup

We evaluate the proposed method using the MUSDB18
dataset prepared for SiSEC 2018 [9]. In the dataset, approxi-
mately 10 hours of professionally recorded 150 songs in stereo
format at 44.1kHz are available. We adopt the official split
of 100 and 50 songs for training and testing, respectively. In
addition, to evaluate the proposed model, we also use iKala
[30], DSD100 dataset [31] to evaluate the performance. All
songs are downsampled to 16 kHz. Please note that there is
no overlap between training and testing sets. The quality of the
separated sources are measured using the source to distortion
ratio (SDR), source to interference ratio (SIR) [32].

When training the model, mean absolute error (MAE) loss
is adopted between the source magnitude and the estimated
magnitude. The phase of the mixture is used to restore the
separated speech. We train the model on 2 NVIDIA 2080TI
GPUs for a total of 100 epochs. Adam optimizer [33] is
used with β1 = 0.9, β2 = 0.98 and ε = 1e − 9 varied the
learning rate over the course of training. Meanwhile, we set
both residual dropout and attention dropout to 0.1, where the
residual dropout is applied to each sub-block before adding
the residual information. The attention dropout is performed
on the softmax activations in each attention.

B. Ablation Study

To investigate how much the proposed spectral-temporal
transformer contributes to the model, we first remove the
spectral transformer, and only a temporal transformer is used
to encode the temporal sequence. As shown in TABLE I, the
performances on both datasets are decreased. When focusing
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TABLE I: Results of Ablation Study on iKala and MUSDB18
dataset. SDR and SIR values are mean values of each song.
SDR/SIR(V.) denotes the SDR/SIR value on the vocal part,
and SDR/SIR(A.) denotes the SDR/SIR value on the accom-
paniment part.

Method iKala
SDR(V.) SDR(A.) SIR(V.) SIR(A.)

w/o S-trans. 8.61 3.15 6.15 14.56
w/o T-trans. 6.44 3.23 9.71 4.38
w/o AFM 7.88 6.71 9.95 12.26
Proposed 8.78 8.54 11.10 16.64

(a) iKala

Method MUSDB18
SDR(V.) SDR(A.) SIR(V.) SIR(A.)

w/o S-trans. 0.18 15.72 4.06 11.84
w/o T-trans. -0.29 15.44 4.54 13.26
w/o AFM 0.32 16.86 3.27 15.01
Proposed 0.42 17.86 3.95 25.15

(b) MUSDB18

on SDR on the vocal part, the performance is decreased by
1.9% on iKala and by 57.1% on MUSDB18. We can observe
that MUSDB18 data is more sensitive to spectral modelling.
MUSDB18 contains songs with different musical genres,
which needs better spectral modelling when performing source
separation. We then remove the temporal transformer and
only keep the spectral transformer. The performances on both
datasets are decreased by 63.1% and by 12.0%, respectively.
On the contrary, the result shows iKala data is more sensitive
to the temporal transformer. It indicates that popular or rock
songs are more dependent on temporal modelling due to their
well-organized musical structure.

We then investigate the effectiveness of the attentive fusion
module. When focusing on SDR on the vocal part, the per-
formances of the ablated version are decreased by 10.3% and
23.8% on iKala and MUSDB18, respectively. When focusing
on SDR on the accompaniment part, the performances of
the ablated version are decreased by 27.3% and 35.7% on
iKala and MUSDB18, respectively. The results justify the
assumption that direct concatenation may hinder the further
improvement of the model.

C. Comparison with existing works

The performances on the three datasets are listed in TA-
BLE II. Four commonly used and state-of-the-art methods are
selected as baselines and compared in TABLE II, including
fully convolution-based UNet [8], recurrent neural network-
based GRU-Dilation [11], dilated convolution-based D3Net
[12] and transformer-based Sams-Net [28]. We carefully tune
the hyper-parameters of the baselines to ensure that they
reach their peak performances on our training dataset. The
proposed model and the four baseline methods are trained
on the same dataset. Compared with the baseline methods,
the proposed method achieves the highest score in general.
The results clearly confirm the effectiveness and robustness
of our proposed model. Compared with other baselines, when

TABLE II: Results of the proposed and baseline methods
on iKala, MUSDB18 and DSD100 dataset. SDR and SIR
values are mean values of each song. SDR/SIR(V.) denotes the
SDR/SIR value on the vocal part, and SDR/SIR(A.) denotes
the SDR/SIR value on the accompaniment part.

Method iKala
SDR(V.) SDR(A.) SIR(V.) SIR(A.)

Mixture 2.84 -4.05 2.86 -4.07
UNet [8] 8.20 -1.89 9.49 -0.80

GRU-Di. [11] 4.90 -1.31 8.46 -0.04
Sams-Net [28] 6.92 3.96 10.12 4.85

D3Net [12] 8.71 6.82 11.66 11.90
Proposed 8.78 8.54 11.10 16.64

(a) iKala

Method MUSDB18
SDR(V.) SDR(A.) SIR(V.) SIR(A.)

Mixture -6.43 3.99 -6.78 3.95
UNet [8] -0.29 12.92 1.23 16.47

GRU-Di. [11] -2.59 14.16 -0.30 18.88
Sams-Net [28] -0.18 15.72 4.80 13.55

D3Net [12] 0.09 16.57 4.29 22.68
Proposed 0.42 17.86 3.95 25.15

(b) MUSDB18

Method DSD100
SDR(V.) SDR(A.) SIR(V.) SIR(A.)

Mixture -1.33 -4.39 -1.92 3.21
UNet [8] 2.90 11.96 3.85 15.10

GRU-Di. [11] -0.26 12.95 1.37 16.44
Sams-Net [28] 1.93 13.68 5.03 19.95

D3Net [12] 2.24 14.92 5.44 20.75
Proposed 3.86 18.00 6.48 24.94

(c) DSD100

focusing on SDR on the vocal part, the proposed method out-
performs the second-best D3Net by 0.8% in iKala, by 78.6%
in MUSDB18 and by 72.3% in DSD100. When focusing
on SDR on the accompaniment part, the proposed method
outperforms the second best D3Net by 25.2% in iKala, by
7.2% in MUSDB18 and by 20.6% in DSD100.

To investigate what types of errors are solved by the
proposed model, a case study is performed on a popular song:
’All Souls Moon’ in the DSD100 dataset. As depicted in
Fig. 4, we can observe that the proposed model generally
works well on the vocal part. There are little accompaniment
components in the left part of diagram (a). However, on the
accompaniment part, the separated spectrogram carries lots of
vocal components, which indicates that the accompaniment
branch in the decoder needs to be further enhanced. We
conjecture it is because the accompaniment branch learned
similar parameters as the vocal branch due to the simple, fast
downsampling architecture as depicted in Fig. 3. Since this
paper aims to design a pure transformer-based encoder, we
leave this as a research topic.

IV. CONCLUSION

This paper proposes a novel spectral-temporal transformer-
based method to replace the conventional CNNs as an alterna-
tive for singing voice separation, which mainly contains two
novel modules: spectral-temporal transformer and attentive
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(a) vocal part with ours. (b) reference vocal part.

(c) acc. part with ours. (d) reference acc. part.

Fig. 4: Visualization of singing voice separation results on a
popular song in the DSD100 dataset using the proposed model.

fusion. The spectral-temporal transformer is used to learn
spectral and temporal features with a global receptive field. An
attentive fusion module is suggested to recalibrate magnitudes
and fuse the raw information for prediction. Spectral-temporal
transformer and attentive fusion module are learned simulta-
neously in an end-to-end way. Experimental results show the
proposed model outperforms several existing state-of-the-art
models on three datasets. Designing a more accurate and faster
method to improve singing voice separation will be our future
work.

REFERENCES
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