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Abstract—Rhythm is an important aspect of singing
in music information retrieval. From the principles of
music theory, note duration is related to the time signa-
ture of a song, therefore it provides a representation for
rhythm analysis. However, in a reference-independent
setup, where the reference musical score of a song is
not available, measurement of note duration and hence
assessment of rhythm quality of solo singing is difficult.
In this work, we analyse the correlation between the du-
ration distributions of musical note lengths and singing
syllable lengths, and propose a reference-independent
framework that uses singing syllable duration distribu-
tion to assess the rhythm quality of solo singing. We
show improved prediction of rhythm assessment score
using syllable duration histogram compared to existing
reference-independent frameworks.

I. Introduction

Rhythm is an integral aspect of music. Studies have
shown that rhythm is one of the most important parame-
ters used by music experts to assess singing quality [1], [2].
Rhythm analysis in music information retrieval is useful
for many applications such as song tempo detection, genre
classification, and singing quality evaluation [3], [4]. In this
study, we analyse the rhythm in solo singing from the
perspective of the lyrical content and their correspondence
with the musical notes and incorporate a rhythm informed
feature to assess the rhythm quality of solo singing.

There have been many studies that implement low-level
audio content features to derive beat onsets to characterize
the rhythm of a musical piece. They create a representa-
tion called a periodicity or beat histogram, which is a mea-
sure of the change of the signal amplitude over time [3], [4],
[5]. However, these methods rely on the periodic nature of
the background music along with the vocals to characterize
its rhythm. When background music is absent, i.e. when
only the lead melody of the song is present, the note
durations (note onsets and offsets) provide a description
of the rhythm of the song (this is explained further in
Section II). In the case of solo singing when the musical
score information is not available, the task of determining
note onsets and offsets only from the singing rendition
is challenging. Traditionally, the pipeline of note onset
and offset detection involved feature extraction, change
detection, and a peak detection algorithm [6], [7], [8].
However, unlike pitched instruments where the timbre is
usually consistent in the duration of a note, a singing

vocal has a higher variance in formant structures within
and across notes due to different possible articulation [6].
Pitch irregularities, and pitch modulations also makes the
spectrum inconsistent in the duration of a note. Thus, such
pipelines for determining note onsets and offsets in singing
voices give noisy results.

Typically, to characterize rhythm in solo singing for
the purpose of singing quality evaluation, algorithms com-
pared a test singing rendition against the known musical
notes of the song [9], [10] or against an ideal singing
rendition of the song by a professional singer [11], [12],
[2]. These methods extract audio features such as pitch
contour and mel-frequency cepstral coefficients (MFCC)
that are relevant to perceptual parameters used by music
experts. For example, [10], [12] evaluated rhythm consis-
tency by aligning the test pitch contour with the reference
pitch contour using Dynamic Time Warping (DTW), and
obtained the rhythm score by computing the deviation of
the optimal path from a straight line fit in the cost matrix
of the DTW between the pitch contours.

Aligning test and reference singing using pitch contour
makes rhythm assessment dependent on pitch correctness.
So if the test singer sings with inaccurate pitch (off-tune)
but maintains a good rhythm, or if the pitch estimation
itself is inaccurate, such a method will result in an incor-
rect assessment of rhythm accuracy. Gupta et al.[11], [2]
modified this rhythm assessment measure by using MFCC
feature vectors instead of the pitch contour to compute the
DTW between reference and test singing. The assumption
was that the test singer utters the lyrics correctly, and
MFCCs represent the shape of the vocal tract and thus
the phonemes uttered. This measure of rhythm assessment
was independent of off-tune or incorrect estimates of pitch.
However, such reference-dependent methods rely on a
reference such as a musical score sheet or an ideal singing
rendition, that limits the scope of applications.

Studies have shown that music experts can evaluate
singers with a high level of consensus even when the song
is unknown to them [13], [14], which suggests that there
are inherent shared characteristics of singing quality that
differentiate between good and bad singing. This is the
motivation for exploring automated methods that evaluate
singing quality without depending on a reference singing
rendition or music score sheet.

Gupta et al. [15], [16] designed features that characterize
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the shape of the pitch histogram and inter-singer distances
to evaluate singing quality without a reference. The refer-
ence independent methods of singing quality evaluation
have mostly involved intonation characterization. In this
study, we explore reference-independent rhythm charac-
terization.

We explore and analyse a syllable-informed representa-
tion for rhythm assessment of solo singing. We consider
that the lyrics of the song are known, and analyse the
possibility of using the relation between lyrics and musical
notes to derive a rhythm representation of a solo singing
rendition. Based on this analysis, we propose a syllable-
informed rhythm representation to assess rhythm quality
in a solo singing rendition when the musical score infor-
mation is not available.

II. Music Theory Background for Rhythm
Analysis

Rhythm, in music, is often referred to as a strong,
regular repeated pattern of sounds, principally according
to duration and periodical stress [17], [18], [19]. A beat
is the basic temporal unit in music, and it is a rhythmic
emphasis that happens at regular intervals. Tempo is the
frequency of beats, and meter groups the beats into larger
chunks, also at regular intervals. All of these elements
together make up the regular repeated pattern of sounds
in music, that is rhythm.

In musical notations, rhythm comprises of the time (or
meter) signature, the tempo of the song, and the relative
duration of the notes. Time signature specifies how many
beats are contained in each measure (bar), and the value of
the basic beat. For example, in Figure 1, the time signature
2
4 indicates that there are 2 beats per measure, and one
beat equals a quarter note ( ˇ “). Tempo is the speed at
which a piece or a song is meant to be played or sung,
measured in beats per minute (bpm). For example, in
Figure 1, the tempo is 64 beats per minute, which implies
one beat equals 1/64 minutes. According to music theory,
the relative duration of notes is a geometric series, i.e. it
could be a whole note ( ¯ ), a half note ( ˘ “) (two half notes
make a whole note), a quarter note ( ˇ “) (two quarter notes
make a half note), and so on.Combining all the above
definitions together for the example in Figure 1, we get
one quarter note equals 1/64 minutes, i.e. 0.9375 seconds.

A. Note Duration Histogram
A comprehensive representation of rhythm in solo

singing should encompass all the previously-mentioned
aspects of music theory. In earlier studies, beat histogram
has been used as the global rhythmic information of a song,
but it is primarily useful for detecting the tempo of a song.
The main idea behind the calculation of beat histogram is
to collect statistics about the amplitude envelope periodic-
ities over multiple frequency bands [4], [20]. The resulting
histogram has bins corresponding to tempos in beats per

Fig. 1. Excerpt of the musical score sheet of the song 123 木头人.

Fig. 2. Histogram of absolute note durations (blue bars) of the song
in Figure 1, obtained from the musical notations. The expected
durations of whole note, half note, quarter note etc. are shown with
red dashed bars.

minute (bpm) and the amplitude of each bin corresponds
to the strength of repetition of the amplitude envelopes of
each channel for that particular tempo - the highest peak
corresponding to the tempo of the song. This approach
for rhythm representation was derived purely from audio
signal analysis, where the periodic structure provided by
the background music in the song helped in characterizing
the rhythm.

Previously, the pitch histogram of a singing voice has
been shown to provide a comprehensive representation
for intonation [15], [16]. But the pitch histogram loses
all information about timing, and hence rhythm, and
therefore it is not suitable for rhythm analysis. As per
music theory, a note duration histogram should provide
an adequate rhythm representation of a song. Figure 2
shows the note duration histogram of the song in Figure 1.
From the manually annotated digital music score sheet of
the song, we computed the length of each note in seconds,
i.e. the note durations, and plotted the histogram, where
x-axis represents note length in seconds, and y-axis is the
number of notes in the song. From our previous discussion,
for this song, one quarter note duration equals 0.9375
seconds. Following the geometric progression of relative
note duration, eighth note duration will be 0.4688 seconds,
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sixteenth note duration will be 0.2344 seconds and so on.
From Figure 2, we see that the duration of the frequently
occurring notes in the song match with the geometric
progression of relative note duration of this song, that
was derived from information about the tempo and the
time signature of the song. Therefore, the note duration
histogram provides a comprehensive representation for
rhythm analysis. Next, we present a method to extract
the note duration information from singing vocals when
digital score sheet of the song is not available.
III. Syllable Duration Histogram as a Rhythm

Indicator
The notion of rhythm also occurs in poetry, which is

the measured flow of words and phrases as determined by
the relation of long and short or stressed and unstressed
syllables [21], [22]. In music, prosody is the way the
composer sets the lyrics of a vocal composition in the
assignment of syllables to notes in the melody.

We demonstrate and confirm the usability of syllable
duration as an indicator of rhythm by considering three
questions: (1) what is the association between note and
syllable, (2) what is the distribution of the difference
between syllable duration and note duration, and (3) what
is the correlation between syllable duration histogram and
note duration histogram.
A. Dataset

Our dataset consists of a total of 100 solo-singing ren-
ditions, the average duration of a song is 3.83 minutes
and the total duration of the dataset is 6.38 hours. The
dataset comprises of 86 unique Chinese pop songs sung by
8 singers (4 male, 4 female), where each singer sings 12
or 13 songs. All the singers are professionally trained in
singing with 5-10 years of experience, and all have either
performed on stage or have teaching experience. Each
singing rendition is manually transcribed in pinyin (which
is the official romanization system for standard Mandarin
Chinese) and the boundaries of pinyin phones are manu-
ally annotated. Additionally, a digital musical score sheet
of each singing rendition is manually annotated by music
experts in MuseScore1. The musical annotations consist
of tempo, time signature, note value, and note duration,
along with syllable text in pinyin and Chinese characters.
This dataset was prepared and verified by Databaker
Technologies2. Additionally, two native Chinese speaking
volunteers listened and verified the phone annotations and
boundaries of the dataset.

As the dataset is manually transcribed with pinyin
phones, we can derive the syllable boundaries from
the phone boundaries with the help of a syllable-to-
phone mapping dictionary, and using the Levenshtein dis-
tance [23] to align the phones and syllables. We define the
syllable’s starting phone’s start timestamp and syllable’s

1https://musescore.com/
2https://www.data-baker.com/

Fig. 3. Distribution of occurrence of different associations between
notes and syllables in the dataset.

ending phone’s end timestamp as the boundaries of the
syllable.

B. Association between Note and Syllable
From the principles of music composition, one syllable

of a word in the lyrics is generally assigned to one musical
note [24], [25]. Thus, syllable duration is closely related to
the musical note duration, i.e. one steady note duration
is likely to correspond to one syllable duration [24]. This
relationship between syllable and note duration motivates
the use of score information to segment syllables in Jingju
solo singing renditions by Pons et al.[25]. When more than
one note occurs on one syllable, it is called a melisma.
And can one note have more than one syllable? Figure
3 shows the distribution of occurrences of all of the three
cases in our dataset - one note corresponds to one syllable,
more than one note corresponds to one syllable, and one
note corresponds to more than one syllable. We observe
that one note corresponding to one syllable is the most
commonly occurring case amongst the three. Therefore,
the syllable durations should provide a high correlation
with note durations.

C. Distribution of the Difference between Syllable Duration
and Note Duration

Figure 4 shows the distribution of the difference between
syllable duration and note duration across all syllable/note
tokens over all songs. The absolute difference of duration
between syllable and note is less than 100 ms for over
81% of the tokens, which confirms that syllable duration
is closely related to note duration. Another observation is
that 10.2% of the tokens have a longer syllable duration
than note duration, whilst 8.5% of the tokens have a
longer note duration than syllable duration. Since singing
voice has more variability than musical score, therefore we
expect to see this slight variation in duration.
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Fig. 4. Distribution of the difference between syllable duration and
note duration across all syllable/note tokens over all songs.

Fig. 5. Histogram of syllable durations of the song in Figure 1.

D. Correlation between Syllable Duration Histogram and
Note Duration Histogram

Figure 5 shows the syllable duration histogram of the
same song as in Figure 1. Comparing Figure 5 and 2, it is
apparent that the two most frequently occurring syllable
durations coincide with the two most frequently occurring
note durations. Since singing voice has more variability
than musical score, therefore we see a spread around the
peaks.

To quantitatively verify if the syllable duration his-
togram correlates with the note duration histogram, we
compute the Pearson’s correlation coefficient between the
note duration histogram and the syllable duration his-
togram across all the singing renditions in the dataset,
where one second equals 10 bins of the histogram. The box
plot of this correlation over all the songs of our dataset
is given in Figure 6. The average Pearson’s correlation
between the note duration histogram and the syllable

Fig. 6. Distribution of Pearson’s correlation between syllable duration
histogram and note duration histogram over all songs.

duration histogram across all the 100 songs is 0.80, which
shows a strong correlation of the syllable duration his-
togram with the note duration histogram. This confirms
that syllable duration is highly correlated with note du-
ration. This also implies that the pattern of geometric
progression of the relative note duration, as described by
note duration histogram, can also be reliably represented
by syllable duration histogram. Thus, syllable duration
histogram provides a reference-independent representation
of rhythm in solo-singing.

IV. Rhythm Quality Assessment Framework for
Solo-Singing

We propose a lyrics-informed method to derive a rhythm
representation of solo singing vocals. We estimate the note
duration histogram of singing vocal using syllable dura-
tions, and show that they are correlated. We hypothesize
that incorporating syllable duration histogram in a solo-
singing quality assessment system would help in assessing
rhythm quality in a singing rendition.

One thing to be noted is, due to the recent improvement
in the performance of the lyrics-to-singing alignment sys-
tems [26], [27], we assume that the syllable boundaries
can be reliably obtained automatically. Therefore, in this
study, we use a dataset where the syllable boundaries were
manually marked. In future, an automatic lyrics alignment
system will also be a part of this framework.

To systematically examine the use of syllable duration
histogram for the purpose of rhythm quality assessment
in solo-singing, we prepare an augmented dataset that can
be specifically used for rhythm quality assessment in solo
singing. We modify an existing automatic singing evalua-
tion framework by conditioning it with syllable duration
histogram and train it on the augmented data.

A. Augmented Dataset for Rhythm Quality Assessment
We need a dataset that has human annotations for

rhythm assessment for supervised training, however, ac-
quiring a large scale dataset annotated by music experts
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for rhythm quality is a difficult and time consuming task.
On the other hand, the Databaker dataset (Section III-A)
only has recordings from professionally trained singers,
and does not have any negative samples, i.e. singing vo-
cal examples with incorrect rhythm or varying degrees
of rhythm correctness. Therefore, we developed an aug-
mented version of the Databaker dataset to increase the
diversity of rhythm quality in the dataset. As rhythm in
solo-singing is related to the syllable duration of the words,
incorrect duration of syllables would result in incorrect
rhythmic structure of the song. In order to synthesize
negative rhythm quality samples from the dataset, we gen-
erated time-scaled versions of the original singing audio, by
modifying the phoneme durations without changing their
pitch.

Previously, other works such as Kruspe [28] and Wa-
ger et al [29] have applied such time-scaling and other
modifications for the purpose of synthesis of examples de-
signed to test particular hypothesis. For example, Kruspe
[28] designed a songified dataset where a speech dataset
was word-wise pitch-shifted and time-scaled to synthesize
song-like data for the task of acoustic modeling for singing
vocals. Wager et al. [29] synthesized pitch-shifted training
examples to train a deep auto-tuner. Inspired by these
techniques, we augment the existing professional grade
singing vocals dataset with negative singing quality exam-
ples where only the rhythm or duration of pinyin phones is
modified. It is worthwhile to note here that the purpose of
using a dataset that only has duration modifications is to
reflect only rhythm quality variations in the dataset, and
investigate the usability of syllable-duration histogram for
the purpose of rhythm quality evaluation in solo singing,
independent of other aspects of singing quality such as
intonation. This is the first step towards building a rhythm
quality assessment framework for solo singing vocals.

We modify duration of each phone without affecting
their pitch using the time-scale modification algorithm
based on phase vocoder [30] provided by the library librosa
[31]. We vary the duration of each phoneme by a stretch
factor r, where r > 0 means speeding up the signal, and
r < 0 means slowing down the signal. Each original singing
rendition will have four other duration modified versions
with r values of +/- 0.2, 0.4, 0.6, and 0.8. Therefore, there
is a total of 400 augmented audio files, in addition to the
original 100 audio files. We apply a Gaussian distribution
with a variance of 0.05 around the r value such that, for
example, the 0.2 version is actually N(+/-0.2,0.05), which
will effectively render each phoneme at or around 1.2 or 0.8
times its original speed. The ground-truth rhythm quality
assessment score is assigned between -1 to 1 where 1 is set
to the original singing vocal, and for the rest the ground-
truth score is set to gt = −2 × |r| + 1. So when r = 0.2,
gt = 0.6. This augmented dataset is divided into train,
validation, and test sets at a ratio of 8:1:1. We call the
test set in this augmented dataset as test set 1. Figure
7 shows the distribution of samples across the different

(a)

Fig. 7. Distribution of augmented data across different ranges of
ground-truth values in train, validation, and test sets.

ranges of ground-truth values.

B. Test dataset with human annotations
Additionally, in order to test our proposed framework

on actual singing, we make use of the publicly available
dataset3 presented in [11], that we call PESnQ_Dataset.
This test dataset consists of 20 solo singing renditions,
each from a different singer, along with professional music
expert assessment of each of these singing renditions based
on various musically relevant perceptual parameters such
as pitch (intonation accuracy), and rhythm (rhythm con-
sistency), each assessed separately on a likert scale of 1 to
5. These human annotated ground-truths are mapped to
a range of -1 to 1, to make it similar to test set 1. We will
refer to this test dataset as test set 2.

For obtaining the syllable boundaries, we applied the
solo-singing acoustic model presented in [32]. A factorized
time-delay neural network (TDNN-F) model was trained
in Kaldi [33] using solo singing data with MFCC and i-
vectors, as described in detail in [32]. The mean and me-
dian absolute word boundary error of this model reported
on solo-singing test data was 200 ms and 30 ms respec-
tively. We forced-align the lyrics (split into syllables) to
the solo-singing renditions of the PESnQ_Dataset using
this solo-singing acoustic model, and obtained syllable
boundaries automatically.

C. Rhythm Quality Assessment Framework
Recently, Huang et al. [34] studied a singing quality

evaluation framework, which was based on a framework
derived from the work on music performance assessment
by Pati et al [35]. We re-purpose these frameworks for
rhythm quality assessment by training them with our aug-
mented dataset. We train three versions of this framework:

3https://github.com/chitralekha18/PESnQ_APSIPA2017
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one, which is the baseline convolutional recurrent neural
network (CRNN) with Constant-Q transform (CQT) as
the input representation [35], [34]. The second is the
hybrid-CRNN which is the baseline CRNN conditioned
on the pitch histogram (PH-CRNN) [34]. We modify this
framework by replacing the pitch histogram with the
syllable-duration histogram, i.e. we condition the CRNN
framework by concatenating its intermediate representa-
tion with the syllable duration histogram vector (SH-
CRNN). The proposed SH-CRNN framework is shown in
Figure 9. We compare the performance of the baseline
CRNN, PH-CRNN, and SH-CRNN for the task of rhythm
quality assessment in terms of Pearson’s correlation be-
tween the predicted score and the ground-truth score gt
for test sets 1 and 2.

1) Input Representation: We use Constant-Q transform
or CQT as the input 2D representation of the audio. CQT
uses geometrically spaced frequency bins to ensure that
the the ratio (Q) of the center frequencies to bandwidths
of all bins are constant. Huang et al [34] showed that
CQT performs better than other representations such as
Mel spectrogram and Chromagram for singing quality
evaluation. CQT is specifically seen to be well suited for
music data, since the Q factor is approximately constant
in most of the audible frequency range of the human
perception system, and the fundamental frequencies of the
tones in Western music are geometrically spaced along the
standard 12-tone scale. For CQT computation, the window
length and hop size are set to 2,048 and 512 respectively.
There are 96 bins per CQT and 24 bins per octave to
capture sharp/flat pitches. The calculated CQT is squared
and then scaled into decibels (dB).

We compute the syllable duration histogram using the
syllable boundaries derived from the manually marked
phone boundaries as discussed in Section III-A. The his-
togram is computed such that one second equals 10 bins
of the histogram, with a total of 30 bins, and we normalize
this histogram such that the area under the histogram
integrates to 1 (i.e. density).

2) Network Architecture: The CRNN network consists
of 3-layer CNNs. Each CNN sub-structure contains a 2D
convolutional layer, a 2D batch normalization layer, an
exponential linear unit (ELU) activation function and
a 2D max-pooling layer. Then it is followed by 1-layer
RNN with gated recurrent units (GRUs). Cost function
is calculated as the mean squared error between model
prediction and the ground-truth. We used the Adaptive
Moment Estimation optimizer and trained our model for
250 epochs. For each epoch, the batch size is equal to 5
for training, validation and test sets.

D. Results
1) Qualitative Observation: Figure 9 shows the syllable

histograms of two singing renditions from test set 2 - one
from a good singer with a human rating of 4.5 out of 5.0 for
rhythm quality and the other from an amateur singer rated

CQT Input 3-layer CNN Dense Layer Overall ScoreGRU

(a)

Fig. 8. Proposed automated rhythm quality evaluation framework
SH-CRNN, i.e. CRNN conditioned with syllable duration histogram.

(a) (b)

Fig. 9. Syllable Duration Histogram for singing rendition of the song I
have a dream (ABBA) with (a) good rhythm (rated 4.5/5.0 by music
experts), and (b) poor rhythm (rate 1.0/5.0 by music experts).

1.0 out of 5.0. The syllable histograms clearly show that
the good singer has clear peaks indicating that the sylla-
bles are consistent in duration, whereas the amateur singer
shows a dispersed syllable histogram, indicating incon-
sistency in syllable durations. This observation supports
our hypothesis that syllable duration histogram provides
a representation of rhythm that is a useful indicator for
assessing rhythm correctness in singing.

2) Quantitative results: Table I shows that the frame-
work conditioned on the syllable duration histogram im-
proves the performance of rhythm quality assessment score
prediction both on validation and test set 1, compared
to the baseline CRNN system. This means that explicitly
encoding rhythm accuracy related information via syllable
duration histogram assists in reliably predicting rhythm
quality assessment score.

The last column in Table I shows that SH-CRNN out-
performs the baseline systems and shows a positive corre-
lation with human annotations of rhythm quality for test
set 2 that consists of actual singing. The correlation values
are lower for test set 2 than test set 1. This indicates that
although duration modified data introduces variability in
rhythm quality in the training data, there could be arte-
facts introduced because of the time-scaling algorithm that
may negatively impact the model. Moreover, artificially
modified singing data does not completely represent the
real examples of rhythm variations in actual singing vocal.
Therefore, further investigation is required to adapt the
model with a dataset containing actual singing examples
with different rhythm qualities.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

917



TABLE I
Comparison of the performance of our proposed hybrid

CRNN conditioned on syllable duration histogram
(SH-CRNN) with the baseline CRNN framework and

PH-CRNN framework, on Test sets 1 and 2.

Framework Model description Train Val Test 1 Test 2
CRNN[35], [34] The CRNN model using CQT as input 0.97 0.59 0.70 -0.42
PH-CRNN [34] The hybrid CRNN model using

CQT and pitch histogram as inputs 0.99 0.58 0.74 -0.04

SH-CRNN
The hybrid CRNN model using
CQT and syllable
duration histogram as inputs

0.87 0.81 0.75 0.32

V. Conclusions
In this work, we propose a musically-motivated repre-

sentation for rhythm quality assessment of solo-singing
renditions. According to music theory, a note duration
histogram provides a comprehensive representation for
rhythm analysis. We show that syllable duration is closely
related to note duration, and we quantitatively verify that
a histogram of syllable durations has a strong correlation
with the note duration histogram. Moreover, we applied
the syllable duration histogram for the task of rhythm
accuracy assessment in singing vocals without a reference,
and showed improved prediction of rhythm assessment
score using syllable duration histogram compared to a
baseline system. This is the first step towards reference-
independent rhythm quality assessment in solo-singing
vocals. Our code-base is available online4. In future, a
lyrics alignment system will be integrated with this frame-
work to obtain syllable boundaries automatically. Further
investigation of this methodology needs to be done on a
solo-singing test dataset that includes naturally variable
rhythm quality in singing (as opposed to the artificially
designed dataset in this work).

This study opens up opportunities for automatic
rhythm analysis by leveraging the link between note du-
ration and syllable duration. This direction of research
can take advantage of the note detection algorithms that
are linked to note duration analysis, and the speech
recognition algorithms that are linked to syllable duration
analysis. This study can be applied for other tasks such
as tempo detection or a comprehensive and explainable
assessment of singing quality.
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