
Pitch Estimation Algorithm for Narrowband Speech
Signal using Phase Differences between Harmonics

Yuya HOSODA∗1, Arata KAWAMURA†, and Youji IIGUNI∗
∗ Graduate School of Engineering Science, Oska University, Japan

† Faculty of Information Science and Engineering, Kyoto Sangyo University, Japan
1hosoda@sip.sys.es.osaka-u.ac.jp

Abstract—This paper proposes a pitch estimation algorithm for
a narrowband speech signal using phase differences between har-
monics. A narrowband speech signal has an incomplete harmonic
structure due to bandwidth limitation, which degrades the pitch
estimation accuracy. In this paper, we focus on the fact that phase
differences between harmonics are constant by approximating a
speech signal based on a sinusoidal model. Since the narrowband
speech signal has a partial harmonic structure, the proposed
method selects the pitch such that the phase differences between
harmonics are constant on the narrow bandwidth. Also, we take a
frame additive average method for the phase differences between
harmonics to improve the robustness against noise. Experimental
results show that the proposed method estimates the pitch from
the narrowband speech signal under noisy environments more
accurately than the traditional methods.

I. INTRODUCTION

A speech signal on the public switching telephone network
is limited to a narrowband speech signal with the bandwidth of
0.3–3.4 kHz. The bandwidth limitation due to a low sampling
rate results in speech quality degradation [1]. An artificial
bandwidth extension (ABE) approach is an effective speech
enhancement method for the bandwidth limitation, where the
missing upper bandwidth of 3.4–7 kHz and the missing lower
bandwidth of 0–0.3 kHz have been reconstructed using the
existing narrow bandwidth [2]–[5]. As the ABE approach for
the missing lower bandwidth, the methods using sinusoidal
synthesis have been established [4][5]. Sinusoidal synthesis
generates sinusoidal waves on the missing lower bandwidth
using a pitch estimated from the narrowband speech signal.
A pitch estimation algorithm is critical to reconstruct the
harmonic structure on the missing lower bandwidth [5]. Also,
a speech signal on the public switching telephone network may
suffer noisy environments. Hence, the ABE approach for the
missing lower bandwidth needs a pitch estimation algorithm
robust against noise.

Researchers have worked on pitch estimation algorithms for
a long time [6]–[15]. Time-domain pitch estimation algorithms
obtains a peak of the autocorrelation function as a pitch with
a short computation cost [6][7]. The RAPT algorithm [6] is
used for the ABE approach for the missing lower bandwidth
[5], but it is challenging to the robustness against noise. Also,
frequency-domain pitch estimation algorithms estimate a pitch
from the amplitude or power spectra [8]–[11]. Here, comb-
filter [10] or frame additive average [11] methods have been
employed to improve the robustness against noise. Parametric

pitch estimation algorithms model a speech signal as a sum
of sinusoidal waves with a harmonic structure and estimate
a pitch by taking iterative updates for model parameters and
noise statics [12][13]. Recently, pitch estimation algorithms
using machine learning have been devised, showing the robust-
ness against noise with pre-training a speech model [14][15].

Most of the pitch estimation algorithms assume that a
speech signal has a complete harmonic structure. However,
a narrowband speech signal has lost several harmonics due
to the bandwidth limitation because male speakers have a
pitch range of 50–150 Hz and female speakers have a pitch
range of 120–400 Hz. As a result, a pitch estimation algorithm
may incorrectly estimate a rational multiple of the pitch or
sub-harmonics from the narrowband speech signal, termed as
’octave error’ [16][17]. Also, pitch estimation algorithms using
machine learning require considerable computation cost and
speech data to train a speech model with different sampling
rates and frequency bandwidths.

In this paper, we propose a pitch estimation algorithm for
a narrowband speech signal using phase differences between
harmonics. We focus on the fact that the phase differences be-
tween harmonics are constant and can be theoretically derived
using the pitch by approximating a speech signal based on a
sinusoidal model [18][19]. Even for the narrowband speech
signal with a partial harmonic structure, the approximation is
valid on the narrow bandwidth. The proposed method thus
estimates a pitch such that the phase differences between
harmonics are constant on the narrow bandwidth. First, pitch
candidates are selected using the YIN algorithm [7] without
pre-training a speech model. We then calculate the phase dif-
ferences between harmonics on the narrow bandwidth for each
pitch candidate. When a pitch candidate is correct, the phase
differences between harmonics are constant. The proposed
method calculates similarities between the theoretical phase
difference and the phase differences between harmonics of the
pitch candidates. Moreover, we enhance the robustness against
noise by a frame additive average method for the similarities.
Finally, the proposed method determines the pitch using the
Viterbi algorithm, considering the temporal smoothness for the
pitch variation. Experimental results show that the proposed
method estimates the pitch from the narrowband speech signal
under noisy environments more accurately than the traditional
methods.
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II. PROPOSED ALGORITHMS

A. Pitch Candidates Selection

First, the proposed method selects pitch candidates from a
narrowband speech signal using the YIN algorithm [7]. Let
xl(n) (n = 0, . . . , N − 1) be a narrowband speech signal at
the l-th frame, where N denotes the number of frame samples.
Given a lag index τ (τ = 0, 1, . . . , N/2), an autocorrelation
function rtl (τ)(t = 0, 1, . . . , N/2− τ ) is defined as

rtl (τ) =

N/2−1∑
v=0

xl(v + t)xl(v + t+ τ). (1)

Using the autocorrelation function, a difference function dl(τ)
is also defined by

dl(τ) =

N/2−1∑
v=0

(
xl(v)− xl(v + τ)

)2
= r0l (0) + rτl (0)− 2r0l (τ). (2)

The difference function is then normalized as a cumulative
mean normalized difference function

d′l(τ) =

{
1 τ = 0

τdl(τ)∑τ
v=1 dl(v)

τ = 1, . . . , N/2
. (3)

When a narrowband speech signal is approximately periodic
at a period T = τ ′/Fs with a sampling rate Fs, the cumulative
mean normalized difference function becomes locally mini-
mum at τ = τ ′. Let τ̂l denote the smallest lag index among the
local minima of the cumulative mean normalized difference
function. The YIN algorithm outputs the pitch f̂0

YIN
l = Fs/τ̂l,

but may incorrectly estimate a rational multiple of the correct
pitch or sub-harmonics due to the bandwidth limitation and
noisy environments. In this paper, we obtain pitch candidates
from the local minima of the cumulative mean normalized
difference function. The proposed method then selects a pitch
among the pitch candidates using phase differences between
harmonics.

B. Phase Difference between Harmonics

Based on a sinusoidal model, the relation between the pitch
and the phase difference has been discussed using Short-
Time Fourier Transform (STFT) [18][19]. A sinusoidal model
assumes that a speech signal consists of multiple sinusoidal
waves with a harmonic structure and that the pitch changes lit-
tle over time. Given a frequency index k(k = 0, 1, . . . , N−1),
STFT Xl(k) is defined as

Xl(k) =

N−1∑
n=0

xl(n)w(n)e
−j 2πn

N k, (4)

where w(n) denotes a window function, and j =
√
−1. A

phase spectrum ϕl(k) is then given as

ϕl(k) =
Xl(k)

|Xl(k)|
, (5)

where | · | denotes an absolute operator. Given a pitch f0l, the
frequency index for the h-th harmonic khl is defined as

khl = arg min
k

∣∣∣k − h · f0l
Fs

N
∣∣∣. (6)

The relational expression for the phase spectrum of the h-th
harmonic between the (l− 1)-th and l-th frames is then given
as

ϕl(k
h
l ) ≃ ϕl−1(k

h
l−1) + 2π

h · f0l
Fs

M, (7)

where M denotes a frame shift.
Let Φh

l = ϕl(k
h
l ) − ϕl(k

h
l−1) denote the phase difference

between the l-th and (l − 1)-th frames. Using Eq.(7), we
theoretically derive the relational expression for the phase
difference between the h-th and (h− 1)-th harmonics as

Φh+1
l − Φh

l ≃ 2π
f0l
Fs

M. (8)

It can be seen that the phase difference between harmonics
is constant with the pitch regardless of the harmonic number.
The proposed method thus selects a pitch among the pitch
candidates such that the phase differences between harmonics
are constant on the narrow bandwidth.

C. Pitch Selection using Phase Difference between Harmonics

Let f̂0l(j) (j ∈ Pl) be a pitch candidate, where Pl denotes
the set of the pitch candidates. We define the phase difference
for each pitch candidate as Φh

l,j . Let f̂0l(j
′) denote a correct

pitch candidate. From Eq.(8), the phase differences between
harmonics for the correct pitch candidate coincide with the
theoretical phase difference, following as

Φh+1
l,j′ − Φh

l,j′ − 2π
f̂0l(j

′)

Fs
M ≃ 0. (9)

The proposed method thus evaluates the pitch candidates
using the similarity between the theoretical phase difference
and the phase differences between harmonics on the narrow
bandwidth. Let hNB

l,j denote the lowest harmonic number of the
harmonic over 300 Hz for each pitch candidate. The similarity
of the phase difference between harmonics Gh

l (j) (h ≥ hNB
l,j )

is defined as

Gh
l (j) = cos

(
Φh+1

l,j − Φh
l,j − 2π

f̂0l(j)

Fs
M

)
. (10)

When the pitch candidate is correct, Gh
l (j) approaches 1, and

vice versa.
We examine the validity of the similarity of the phase differ-

ences between harmonics on the pitch estimation algorithm for
the narrow bandwidth signal. We used a narrowband speech
signal with the pitch of 216 Hz, where the pitch candidates
ranged of 50–400 Hz. Figure 1 (a)(b)(c) shows the similarities
of the phase difference between the hNB

l,j -th and (hNB
l,j + 1)-

th, the (hNB
l,j +1)-th and (hNB

l,j + 2)-th, and the (hNB
l,j + 2)-th

and (hNB
l,j + 3)-th harmonics, respectively. The similarities for

the correct pitch candidate at 216 Hz were more than 0.90.
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(c)

(d)

(a)

(b)

Fig. 1. Similarity of the phase differences between harmonics. (a) Between the
hNB
l,j -th and (hNB

l,j +1)-th harmonics. (b) Between the (hNB
l,j+1)-th and (hNB

l,j +

2)-th harmonics. (c) Between the (hNB
l,j+2)-th and (hNB

l,j + 3)-th harmonics.
(d) After the additive average method with H = 4. Dash line denotes a pitch
(216 Hz).

However, the similarities for other pitch candidates were also
more than 0.90 because a phase spectrum wraps at 0–2π. The
proposed method thus takes an additive average method for
the several similarities. We calculate the similarity after the
additive average method, following as

Ĝl(j) =
1

H

hNB
l,j+H−1∑
h=hNB

l,j

Gh
l (j), (11)

where H denotes the number of the similarities taken by the
additive average method. In this paper, we set H = 4. Figure
1 (d) shows the similarity after the harmonic additive average
method. It can be seen that the maximum of the similarity after
the additive average corresponded to the pitch. The similarity
of the phase differences between harmonics is therefore valid
for the pitch estimation algorithm for the narrow bandwidth
signal.

The robustness against noise is challenging for the pitch
estimation algorithm. The proposed method takes a frame
additive average method for the several similarities to enhance
the robustness against noise. The proposed method calculates
a similarity after the frame additive average method as

G̃l(j) =
1

L

l∑
l′=l−L+1

Ĝl′(j), (12)

(c)

(d)

(a)

(b)

Fig. 2. Similarity of the phase differences between harmonics under a noisy
environment. (a) After the additive average method at the l-th frame. (b) After
the additive average method at the (l − 1)-th frame. (c) After the additive
average method at the (l − 2)-th frame. (d) After the frame additive average
method with L = 3. A Vehicle noise signal was added to a narrowband
speech signal at 0dB SNR.

where L denotes the number of the similarities taken by the
frame additive average method. In this paper, we set L = 3.

We examine the validity of the similarity after the frame
additive average method using a Vehicle noise signal at 0dB
Signal-to-Noise ratio (SNR). Figure 2 shows the similarities
after the additive average method at the l-th, (l − 1)-th, and
(l − 2)-th frames, and the similarity after the frame additive
average method. Before the frame additive average method,
the similarities of not only the correct pitch candidate but also
others were more than 0.9 due to noise. On the other hand, the
peak of the similarity after the frame additive average method
corresponded to the correct pitch candidate. Therefore, the
similarity after the frame additive average method is valid for
the pitch estimation algorithm under noisy environments.

The proposed method selects a pitch among the pitch
candidates according to the similarity after the frame additive
average. Note that, even for the rational multiple of the
pitch, the similarity after the frame additive average method
also becomes significant because Eq.(8) is established for the
rational multiple of the pitch. As a result, the proposed method
may incorrectly select the rational multiple of the correct pitch.
We thus introduce the Viterbi algorithm that selects a pitch
considering the temporal smoothness of the pitch variation.
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TABLE I
GPE OF PITCH ESTIMATION ALGORITHMS UNDER NOISY ENVIRONMENTS AT 0 dB SNR.

Engine noise Vehicle noise Cockpit noise Bubble noise
Male Female Average Male Female Average Male Female Average Male Female Average

YIN 0.547 0.580 0.563 0.327 0.286 0.307 0.415 0.403 0.409 0.478 0.488 0.483
SRH 0.946 0.419 0.682 0.333 0.211 0.272 0.502 0.292 0.397 0.505 0.343 0.424

PEFAC 0.681 0.489 0.585 0.409 0.259 0.334 0.465 0.317 0.391 0.499 0.333 0.416
PROP 0.311 0.378 0.345 0.245 0.209 0.227 0.282 0.287 0.285 0.354 0.392 0.373

TABLE II
OER OF PITCH ESTIMATION ALGORITHMS UNDER NOISY ENVIRONMENTS AT 0 dB SNR.

Engine noise Vehicle noise Cockpit noise Bubble noise
Male Female Average Male Female Average Male Female Average Male Female Average

YIN 0.424 0.431 0.428 0.257 0.216 0.237 0.312 0.278 0.295 0.292 0.346 0.319
SRH 0.864 0.199 0.531 0.144 0.065 0.105 0.295 0.062 0.178 0.200 0.087 0.144

PEFAC 0.635 0.275 0.455 0.334 0.113 0.223 0.382 0.094 0.238 0.306 0.124 0.215
PROP 0.063 0.188 0.126 0.096 0.110 0.103 0.085 0.117 0.101 0.077 0.208 0.143

D. Viterbi Algorithm

The Viterbi algorithm calculates a Viterbi score for each
pitch candidate using the similarity after the frame additive
average method. When there were the pitch candidates in the
past frame, the proposed method calculates the Viterbi score

δl(j) =
[
max
i∈Pl∗

δl−1(i) · a(i, j)
]
· (G̃l(j) + 1), (13)

where l∗ denotes the latest frame where the pitch candidates
existed, and a(i, j) denotes a transition probability between
the pitch candidates at the l∗-th and l-th frames. The proposed
method designs a transition probability as well as the method
of Abel et al. [5]:

al(i, j) = max

(
1−

∣∣∣∣ f̂0l(j)− f̂0l(i)

∆f

∣∣∣∣β , 0

)
. (14)

Here, ∆f = 285 Hz and β = 0.3679 have been optimized
beforehand [5]. Finally, the proposed method outputs the pitch
as f̂0

PROP
l = f̂0l(j

∗) with j∗ = arg max
j∈Pl

δl(j). When there

were no pitch candidates in the past frame, the proposed
method outputs the pitch using the YIN algorithm such as
f̂0

PROP
l = f̂0

YIN
l .

III. EXPERIMENT AND RESULTS

A. Experiment Setup

We conducted an experiment to validate the performance
of the proposed method. In the experiment, 100 sentences
generated from 10 male and 10 female speakers were selected
from the PTDB-TUG database [20], where a speech signal has
been coded in 16 bits with Fs = 16 kHz. We pre-processed
a speech signal using a modified mobile station input filter to
assume that the speech signal was passed through the public
switching telephone network as well as the method of Abel
et al. [5]. First, the speech signal was high-pass filtered with
an infinite impulse response filter whose cutoff frequency was
300 Hz with 3 dB attenuation. We then employed a second
high-pass filter, which was attenuated by 80 dB at 200 Hz. The
high-pass filtered speech signal was low-pass filtered with an
infinite impulse response filter whose cutoff frequency was

3.4 kHz with 50 dB attenuation and then down-sampled at
Fs = 8 kHz. Finally, we obtain a narrowband speech signal by
encoding and decoding the low-pass filtered speech signal with
G.711 [21]. Four noise signals (Engine, Vehicle, Cockpit, and
Bubble noise signals) were used from the NOISE-X database
[22] and added to a speech signal before pre-processing. The
SNR level for each noise was set from -10 dB to 20 dB in
steps of 5 dB.

In this paper, a pitch range was limited to 50–400 Hz. Since
at least twice periods have to be considered to capture the min-
imum pitch of 50 Hz, we set the frame length and the frame
shift as 40 ms and 10 ms, respectively. We calculated the phase
differences between harmonics using STFT with Hamming
window. Also, we assumed that the voiced active frames has
been known to evaluate the accuracy of the pitch estimation
algorithm with the phase differences between harmonics in
this paper. The proposed method (PROP) was compared with
the YIN algorithm (YIN) [7], the Summation of Residual
Harmonics algorithm (SRH) [9] and the Pitch Estimation
Filter with Amplitude Compression algorithm (PEFAC) [10].

B. Evaluation Metrics

We evaluated the accuracy of the pitch estimation algorithm
using Gross Pitch Error (GPE) [7]. GPE is the rate of the
frames on voiced sounds where the relative error for the pitch
detection is higher than 20%, following as

GPE =
NE

NV
. (15)

Here, NE and NV denote the number of the frames where the
the relative error of the estimated pitch is higher than 20% and
the number of the frames on the voiced sounds, respectively.
Also, we used the rate for octave error (OER) on the estimated
pitch, following as

OER =
NOE

NV
, (16)

where NOE denotes the number of the frames where the error
of the estimated pitch is greater by more than one octave.
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(a) (b)

(c) (d)

Fig. 3. GPE of pitch estimation algorithms under noisy environments. (a)
Engine noise signal. (b) Vehicle noise signal. (c) Cockpit noise signal. (d)
Bubble noise signal.

C. Results

Table I shows GPE of the pitch estimation algorithms
under noisy environments at 0 dB SNR. Since the time-
domain pitch estimation algorithm was sensitive to noise, YIN
recorded the largest GPE for female speakers in all noisy
environments. Although PEFAC recorded the lowest GPE for
female speakers under the Bubble noise signal, the frequency-
domain pitch estimation algorithms increased GPE for male
speakers in all noisy environments because multiple harmonics
have been missed. Significantly, under the Engine noise signal,
the rate of the frames for the pitch with a relative error of
more than 20% was over 60%. The proposed method achieved
the lowest GPE of less than 0.40 for both male and female
speakers under all noisy environments. It can be seen that
the proposed method robustly estimates the pitch under noisy
environments regardless of male or female speakers, even
when the part of the harmonic structure has been lost.

Table II shows OER of the pitch estimation algorithms
under noisy environments at 0dB SNR. For YIN, octave
error occurred in more than 20% frames under all noisy
environments. SRH avoided octave error for female speakers
and recorded the lowest OER under the Vehicle, Cockpit,
and Bubble noise signals. However, OER for the frequency-
domain pitch estimation algorithms increased for male speak-
ers because several harmonics have been lost. Significantly,
SRH resulted in octave error in more than 60% frames under
the Engine noise signal. The proposed method suppressed
OER regardless of male and female speakers, and octave error
occurred in less than 20% frames under all noisy environments
on average. However, for female speakers under the Bubble
noise signal, the proposed method resulted in octave error in
more than 10% higher frames than SRH. Since a Bubble noise
signal is a non-stationary noise consisting of multiple speech
signals, a narrowband speech signal under the Bubble noise
signal not only has lost several harmonics but also has mixed

(a) (b)

(c) (d)

Fig. 4. OER of pitch estimation algorithms under noisy environments. (a)
Engine noise signal. (b) Vehicle noise signal. (c) Cockpit noise signal. (d)
Bubble noise signal.

other harmonic structures. As a result, it is challenging for the
proposed method to select the correct pitch using the mixed
phase difference between harmonics. Therefore, the proposed
method avoids octave error under noisy environments without
harmonic structures.

Figure 3 shows GPE for pitch estimation algorithms under
noisy environments. The proposed method achieved the lowest
GPE at all SNR levels. However, under the Vehicle and Bubble
noise signals at -10 dB SNR, GPE for the proposed method
was comparable to one for SRH. These results imply that the
partial harmonic structure on the narrow bandwidth has been
lost due to noise. Figure 4 shows OER for pitch estimation
algorithms under noisy environments. The proposed method
achieved the lowest OER at all SNR levels under the Engine
and Cockpit noise signals. Under the Vehicle and Bubble noise
signals, SRH recorded the lowest OER at less than 0 dB
SNR. These results confirm that the proposed method is an
effective pitch estimation algorithm for the narrowband speech
signal when the partial harmonic structure exists in the narrow
bandwidth.

IV. CONCLUSION

This paper proposed a pitch estimation algorithm for a
narrowband speech signal, which selected a pitch such that
phase differences between harmonics on the narrow bandwidth
were constant. We verified the proposed pitch estimation
algorithm under noisy environments. The proposed method
achieved the lowest GPE under noisy environments regardless
of male or female speakers compared with the traditional
methods. Also, we showed that the proposed method avoided
octave error when the partial harmonic structure existed in the
narrow bandwidth. In the future, the pitch estimation algorithm
robust to noise with a harmonic structure will avoid octave
error more effectively. The code of the proposed method is
available at https://github.com/Yuya-Hosoda/Works.
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